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ABSTRACT
Object detection tasks still often require manual image analysis.
Using Machine Learning (ML) instead creates accountability chal-
lenges, necessitating experts for model refinement, which is costly
and takes time. We investigate integrating crowd knowledge as a
cost-effective alternative. While human capabilities in recognizing
complex patterns and perceiving variations can still outperform
machines and improve an imperfect ML model, ML predictions
can compensate for the crowd’s lack of expertise. Our investiga-
tion (N=28 non-expert) in oil spill detection shows that adopting
an ML-assisted UI elevates precision and recall by over 11% and
increases efficiency by 29% compared to a non-assisted UI. Consider-
ing agreement among non-expert crowd workers further improved
precision by 8% and recall by almost 5%, which is also substantially
beyond pure ML performance. Our work contributes an approach
for combining crowd knowledge and ML to advance human-AI
collaboration in oil spill detection.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Applied computing → Environmental sciences; • Computing
methodologies→ Neural networks.
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1 INTRODUCTION
Oil spills occurring offshore and along coasts are considered hazards
to wildlife, marine ecosystems, and coastal environments [5]. In
recent years, the effectiveness of oil spill response operations, which
involve efforts to decontaminate affected areas, has been enhanced
due to a dense network of Earth Observation (EO) satellites [3]. The
data acquired by many satellite sensors enable quick identification
and delineation of the areas affected by oil slicks [41]. To process the
significant database of satellite data, ML models, specifically object
detection models, have been widely used in recent years [20, 42].
These models assist humans in diverse risk detection, enabling
them to take quick counteractions against economic and ecological
consequences [20].

However, current object detection models are often unreliable
[35]. Overcoming the limitations of thesemodels requires additional
(human) expert involvement for model refinement, which is expen-
sive and time-intensive [10]. Additionally, in some domains, ex-
perts are difficult to find [21]. Another approach is engaging crowd
workers for manual labeling, creating, e.g., labeled datasets for ML
models’ supervised learning [9]. Such a crowd – here referred to
as an untrained (non-expert) group of people – has proven to com-
prise valuable contributors in numerous fields, such as surveillance
and data gathering [32] and is easy to recruit through online plat-
forms. Depending on the area of expertise, crowd workers have also
proven to be well-suited substitutes for experts in specialized fields
(e.g., IT tasks) [22]. Further, including non-expert crowd workers as
collaborators offer a potentially more scalable and cost-effective so-
lution than including experts. The knowledge gathered from these
crowd workers is referred to as crowd knowledge (CK). According
to Blesik et al. [4]: "Crowd knowledge is a collaborative aggregation of
context-dependent information contributed and used by participants
that is stored in an artifact and provided to fulfill a purpose."

Building on the advantages of engaging CK, our work explores a
novel approach that fosters crowd collaboration and an ML object
detection model for oil spills in satellite images. In a within-subject
study, we convey this approach with 28 non-experts as crowd work-
ers, comparing an ML-assisted with a non-assisted interface. In
more detail, we assessed precision, recall, and efficiency for each
approach using a state-of-the-art object detection model. Our work
is guided by the following research questions:
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RQ1 Does the collaboration between the crowd and ML result in
more precise and efficient identification of oil spills in satellite
images than the crowd’s manual detection?

RQ2 How does the crowd complement the oil spill detection results
of ML?

We found that the crowd-ML collaboration substantially im-
proves precision and recall in the oil spill detection tasks compared
to non-assisted crowd knowledge and increases the overall accu-
racy with crowd consensus. The work emphasizes the potential
of crowd-ML collaboration to refine object detection models as an
alternative approach to expert involvement and highlights its chal-
lenges, such as e.g., generating consistent crowd engagement. With
this, our study contributes to the field of environmental science and
human-AI collaboration with an intelligent interface that employs
an imperfect ML model to assist the crowd in evaluating oil spill
detection in satellite images, enabling a faster and more precise
human-AI collaborative labeling process.

2 RELATEDWORK
This section provides an overview of CK applications related to
machine learning and insights into oil spill detection algorithms
and intelligent interfaces for human-AI collaboration.

2.1 Crowd Knowledge in Machine Learning
Through collective intelligence and aggregated information, CK
offers an alternative approach that complements and sometimes
even surpasses the insights provided by individual experts [36]. It
has been used in citizen science projects such as Galaxy Zoo [16]
to classify galaxies by observing their shapes from sample images.
Another example is the eBird citizen-science project, where bird
enthusiasts worldwide report their bird observations [34]. In both
cases, the collective information surpasses the expertise of individ-
ual experts since the vast numbers of participants provide broader
coverage of observation, diverse perspectives, and larger sample
sizes. CK has also been applied in ML and can, according to Wang
et al. [36], be included in all three stages of a standardML process: 1)
data preparation [18], 2) feature discovery and learning [44], and 3)
model assessment and refinement [15]. Consequently, a collabora-
tive approach combining CKwith ML can complement an imperfect
ML model and compensate for the crowd’s lack of expertise.

2.2 Deep Learning based Oil Spill Detection
Deep learning (DL) based object detection supports identifying
and localizing objects of interest in digital images or videos [45].
Some object detection algorithms are CNN, Fast RCNN [17], Faster
R-CNN [31], Mask R-CNN [19], and YOLO [30]. These detection
models have been researched in many applications contexts, in-
cluding medical image processing for, e.g., cancerous tumor detec-
tion [25], industrial activities for anomaly or fault detection [1]. In
maritime surveillance, DL techniques are applied to detect ships
and oil spills [20]. Liu et al. [27] utilizes a CNN algorithm for ship
detection whereas Nieto-Hidalgo et al. [29] utilizes CNN for SAR
images to identify oil spills. Nieto-Hidalgo et al. [29] pointed out the
feasibility of detecting oil spills with object detection algorithms.
Emna et al. [13] and Yekeen and Balogun [40] employed Mask-
Region-Based Convolutional Neural Network (Mask-RCNN) for

detecting oil slicks. Mask-RCNN combines object detection and
semantic segmentation. However, for the development of a near
real-time (NRT) oil spill detection system, the focus shifts to highly
efficient one-stage object detection algorithms, such as You Only
Look Once (YOLO) [39]. Considering these findings, we apply the
latest YOLOv81 and explore its efficiency compared to being en-
hanced through CK.

2.3 Intelligent Interfaces for Human-AI
collaboration

ML models, such as deep learning models, are used for aiding hu-
mans in annotations; tools like CVAT [11] and Annotator [6] offer
the ability to generate annotations using pre-trained models auto-
matically. Google Fluid [2] aims to achieve full image annotation
in a single pass instead of breaking it down into a series of micro-
tasks, such as identifying object presence or drawing polygons or
boxes around objects [18]. Moreover, significant efforts have been
directed towards developing intelligent interfaces supporting clini-
cians when working with imperfect ML models in decision-making
[7, 25]. Further, for annotating audio-visual data using a deep learn-
ing model, Zhang et al. [43] propose a collaborative tool named
Peanut. Peanut’s human-AI collaborative pipeline separates the
multi-modal task into two single-modal tasks. These advancements
highlight the importance of intelligent interfaces, emphasizing their
crucial role in enhancing collaboration and decision-making.

Drawing from previous work, we aim to investigate the collabo-
ration between a crowd and an ML model in the context of oil spill
detection. Specifically, we hypothesized that:
H1: The collaboration between the crowd and ML enhances the

performance efficiency in detecting oil spills in satellite images
compared to their individual performance.

H2: Crowd workers can identify errors of the object detection model,
such as missed oil spills (False Negatives) or wrong detections
of oil spills (False Positives).

3 SYSTEM DESIGN
To test our hypotheses, we developed two web interfaces for oil
spill detection, one with and one without ML assistance, using a
similar User Interface (UI) (see Figure 1).

3.1 Object Detection Model Development
We employed the YOLOv8 object detection model for oil spill de-
tection since it has the most balanced tradeoff between detection
accuracy and speed. For efficient computation and memory man-
agement, we chose a batch size of 8, which allows the model to
process several images simultaneously during each training iter-
ation. In this paper, we used 1445 Sentinel 1 Band A/B (S1-A/B)
labeled images. These images cover the Gulf of Mexico, the Indian
Ocean, and the East and South China Set between January 2015
and May 2021 [20]. These images were divided into two groups of
80% (1156) and 20% (289). The first set was used for training, and
the second was used for testing. The validation IoU (Intersection
over Union) threshold for the model was set to 0.5 to merge highly
overlapping bounding boxes and reduce redundancy in the output

1https://github.com/ultralytics/ultralytics, last accessed April 4, 2024

https://github.com/ultralytics/ultralytics
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Figure 1: Interfaces of Study Conditions: a) the ML-assisted interface, including ML oil spill suggestions and agreement scale in
the form of buttons. b) the non-assisted GUI.

detections. In the trained detection model, the F1-score peaks at
0.72 within a confidence range of 0.3 to 0.4. This threshold achieves
a balanced performance with high Precision (0.78) and Recall (0.67).
This precision implies that 78% of the positive predictions are cor-
rect, reducing false positives (FP). Recall signifies that the model
identifies 67% of actual positives, minimizing false negatives (FN).

3.2 Back End
We developed a Node.js server for our study and used a MongoDB
database to store users’ personal attributes, satellite image URLs,
ground truth information, and predictions from the ML model.
We used Cloudinary2 for storing the SAR satellite images. The
web application for both interface conditions runs on the server,
where the ML predictions are executed. Figure 2 shows the system
architecture and approach for both experiment conditions.

3.3 Front End and Interaction Concept
Both UIs share a common set of features while introducing elements
specific to their assistance mechanisms. In both cases, examples
and counterexamples (lookalikes) of oil spills are presented on the
left in a scrollable list (see Figure 1). In total, 100 randomly selected
images, each for oil spills and lookalikes, serve as reference points
for the crowd to identify potential oil spills. Both UIs offer two dis-
tinct modes: Drag Mode for image navigation and Draw Mode to
add bounding boxes for object detection by the crowd. These drawn
bounding boxes are fully reversible via the undo button. In case of
an inadvertent reversal, the redo button aids in recovering deleted
bounding boxes. In the ML-assisted UI, yellow dotted bounding
boxes represent suggestions made by the ML model. Further, users
must indicate the agreement level with the ML suggestions on a
5-point Likert scale from 1:Strongly Disagree to 5:Strongly Agree
before moving to the next image. Both UIs incorporate a 60-second
timer, encouraging but not limiting users to complete the detec-
tion task for each displayed satellite image within the specified
timeframe.

2https://cloudinary.com/, last accessed April 4, 2024

4 STUDY DESIGN AND APPROACH
We conducted a within-subject online study on Zoom, which was
approved by the university’s ethics board. The study involved 28
participants who compared both oil spill detection interfaces devel-
oped by us described in subsection 3.3.

4.1 Dataset Preparation
We used 40 SAR images chosen from the ML test set for the study.
One of the authors, an expert in the field of oil spill detection for
over five years, categorized the images into three distinct sets based
on their difficulty in detecting oil spills, considering factors such as
the presence of oil spill lookalikes, the level of noise in the image,
and other environmental complexities. Subsequently, a subset of
images was randomly selected for the main user study, consisting
of 20 easy images, 10 medium images, and 10 hard images.

4.2 Experimental Setup
4.2.1 Independent Variables. Our independent variable is the ma-
chine learning assistance with two levels: ML-assisted crowd detec-
tion and non-assisted crowd detection.

4.2.2 Dependent Variables. As dependent variables, we measured
precision and recall in detecting oil spills and efficiency following
prior work on object detection [18, 23]. We also assessed the user
experience using the Technology-Acceptance Model version 4 ac-
cording to Lewis [24] to identify potential interface design impacts.

4.2.3 Supplementary Open-ended and Single Choice Questions. We
added open-ended questions about whether participants had experi-
enced specific challenges or difficulties during task completion and
whether they could imagine continuing the collaboration for oil
spill detections. Furthermore, we collected suggestions for improve-
ment and motivational factors for further usage. Additionally, we
added three single-choice questions about which interface partici-
pants would choose regarding time efficiency, facilitating accurate
judgment and for future oil spill detections.

https://cloudinary.com/
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Figure 2: Oil spill detection approach and system architecture: both UIs ran on the same server and were presented using a web
application to participants. Depending on the interface, crowd labels were stored in a separate model in the MongoDB database.

4.2.4 Study Approach. We tested our study design in a pilot study
with five participants. In the pilot study, participants labeled im-
ages containing up to 50 oil spills, which resulted in prolonged
completion time fatiguing participants. Thus, only images contain-
ing fewer than five oil spills were considered further to balance
dataset diversity and study efficiency. The main study comprised
40 images and took approximately 60 minutes. Before each task,
participants were given instructions, task descriptions, and expert
tips and completed a trial run with each interface to reduce novelty
effects. In the main study, participants were evenly distributed to
either Group 1 or Group 2. Each participant evaluated all 40 SAR
images, comprising 10 easy, five medium, and five hard images in
each condition, with a predetermined order (easy to hard) to ac-
count for a learning effect in the process [8]. Group 1 started with
ML-assisted labeling, evaluating 20 images, then non-assisted label-
ing with another 20 images, while Group 2 began with non-assisted
labeling and then ML-assisted labeling. Both groups encountered
the images in an identical sequence. This guaranteed that both
groups assessed the same images in the same sequence but within
distinct tasks, enabling a fair comparison of the results between the
two approaches. Moreover, it ensured that each image received 14
evaluations from the non-assisted labeling task and 14 evaluations
from the ML-assisted task, enabling a comprehensive comparison
between these methodologies for each image. In the ML-assisted
condition, we asked participants to rate the system’s confidence
level of correctly labeled oil spills and mark additional oil spills. In
the non-assisted condition, participants marked all oil spills. They
also had the option to submit images without drawing bounding
boxes around any oil spills in either condition. We integrated a
soft timer in the UI set to 60 seconds for each image to manage
study duration. However, participants received extra time if needed.
After completing a condition, we asked participants to fill out a
questionnaire.

4.3 Participants
We recruited 28 participants between the ages of 18 and 44 years
(𝑀 = 27.73, 𝑆𝐷= 4.38) using convenience sampling, of which 23 self-
identified as male and five as female. They gave informed consent
and participated voluntarily without compensation. None of the
participants had any experience in oil spill detection.

5 RESULTS
We applied inferential statistics to compare precision, recall, F1-
score, and efficiency across conditions. All approaches were evalu-
ated using the same dataset of 40 SAR images containing 103 oil
spills. We measured the quality of the created annotations using
Intersection over Union (IoU) with existing ground truth labels.

5.1 Oil Spill Detection
We analyze the oil spill detection performance based on the met-
rics true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). The trained YOLO model detected 83 of 103
oil spills correctly (TP). However, the model missed detecting 14
oil spills (FN) and falsely predicted another 20 oil spills (FP) and
provided us with a precision of 0.856 and a recall of 0.806, leading to
an F1-score of 0.830. In the non-assisted condition, 1071 bounding
boxes were drawn in total by all participants, including 773 correct
labels (TP), 298 incorrect labels (FP), and 611 oil spills that were
not detected (FN), resulting in a precision of 0.755 and recall of
0.576, which led an F1-score of 0.653. For the ML-assisted UI, we
used a confidence-similar mapping to transform the ordinal scale
to a numeric scale to ensure that the data obtained from the user
study could be effectively analyzed to measure the overall detec-
tion performance and compare the results across different tasks.
To assess the performance of the ML-assisted task, the verification
of oil spill predictions and the additionally drawn bounding boxes
were considered. The prediction of the ML model was confirmed
by the crowd’s agreement responses. The level of agreement was
calculated for each box separately. We analyze the confidence via



Integrating Crowd and Machine Learning in an Intelligent Interface AVI 2024, June 3–7, 2024, Arenzano, Genoa, Italy

True Positive False Positive

333

500

666

833

1000

Av
er

ag
e

Ti
m

e
Sp

en
t

(m
s)

Average Time Spent

True Positive False Positive
0.2

0.4

0.6

0.8

1.0

Su
bj

ec
ti

ve
C

on
fid

en
ce

***

Average Confidence

Figure 3: Comparison between TP and FP results. There is
insufficient evidence to show a significant difference in aver-
age time spent. Instead, participants reported significantly
higher confidence in TP compared to FP.

a 5-point Likert scale. In the ML-assisted condition, 223 bounding
boxes were drawn, including 107 correct labels (TP) and 116 incor-
rect labels (FP). Regarding the oil spill prediction verification, the
participants verified 820 oil spills correctly (TP). However, 56 ML
predictions that are lookalikes are identified as oil spills (FP). In sum-
mary, 927 oil spills are correctly identified, and 182 are mistakenly
classified as oil spills in the ML-assisted condition. Furthermore,
515 oil spills were not detected during this task. In this case, we got
an increased precision of 0.843 and recall of 0.642 compared to the
non-assisted UI, leading to a higher F1-score of 0.729.

5.2 Crowd Contributions
5.2.1 Annotation Performance. We assessed the normality of dis-
tribution of the average subjectively reported confidence using the
Shapiro-Wilk test. For TPs, the test indicated a significant devia-
tion from normality (𝑊 = 0.948, 𝑝 = 0.002). Conversely, for FP
cases, the subjective confidence was found to adhere to a normal
distribution (𝑊 = 0.913, 𝑝 = 0.202). In addition, the homogeneity
of variances was evaluated using the Levene test, revealing signifi-
cant differences in the variances between TP and FP for subjective
confidence (𝑝 = 0.004,𝑊 = 8.559). Furthermore, a comparison of
the distributions for TP (𝑀 = 0.732) and FP (𝑀 = 0.411) using
the Mann-Whitney U test demonstrated a statistically significant
difference (𝑢 = 988.000, 𝑝 < .001). Similarly, we also evaluated the
distribution of average completion time. For TPs, there was a signif-
icant deviation from a normal distribution (𝑊 = 0.965, 𝑝 = 0.022).
On the other hand, for FPs, the average completion time conformed
to a normal distribution (𝑊 = 0.891, 𝑝 = 0.102). The Levene test
confirmed the equality of variances between TP and FP for average
completion time (𝑝 = 0.698,𝑊 = 0.152). Additionally, when com-
paring the distributions of TP and FP using the Mann-Whitney U
test, no significant difference was observed (𝑢 = 572.000, 𝑝 = 0.366),
as shown in Figure 3. These results, thereby, support hypothesis
H2.

In the evaluation process of the ML-assisted detection task, the
crowd demonstrated capabilities to complement the ML model.
Firstly, they identified a significant portion of FPs through a low
confidence score, which confirms our H2 for FPs. This corrective
ability significantly enhanced the overall accuracy of the combined

model (collective crowd evaluation combined with ML model pre-
dictions), as shown in Table 1. However, throughout the tasks, the
crowd also made mistakes. Particularly, falsely drawn bounding
boxes were found during the non-assisted task, which led to a lower
precision of 0.755 (see Table 1). However, the integration of the
ML assistance proved beneficial in mitigating FPs by 61% (see 4c).
In addition, with the help of ML assistance, the number of cor-
rectly detected oil spills was increased by 11.6%. Furthermore, in
several instances, the crowd successfully identified undetected oil
spills (FN) by the ML model (see Figure 5). Additionally, the crowd
extended the identified oil spill areas beyond the ML predictions
(see Figure 5). This capability adds value to the detection process,
occurring around 30 times, even without explicit instructions.

5.2.2 Crowd Consensus. For adapting this crowd consensus con-
cept, we introduce a confidence threshold, 𝑐threshold as a validation
mechanism to mitigate individual errors for the decisions on the
ML predictions. If the participants’ average confidence for an ML-
predicted oil spill is equal to or above 𝑐threshold, the prediction is
considered an oil spill and vice versa. A similar approach is applied
to the additionally drawn bounding boxes. Only areas labeled with
a sufficient number of participants are considered. Therefore, the
ratio of participants who drew a bounding box in the same area
to the overall number of participants who evaluated the image is
considered. The labeled area is considered an oil spill if this ratio
exceeds or equals 𝑐threshold. In our case, setting 𝑐threshold = 0.5
strikes the best equilibrium between precision and recall as we
have a higher F1-score at that point. This configuration maximizes
the detection of true positives while keeping false positives to a
minimum (refer to 7b). As mentioned in subsection 4.2, each image
had 14 evaluations for both the ML-assisted and non-assisted UI.
Therefore, for manual labeling in both UIs, setting 𝑐threshold = 0.5
gives us 0.5 ∗ 14 = 7 agreements for considering an object as an
oil spill. After applying the 𝑐threshold = 0.5, the crowd consensus
approach assisted by the ML model identified 87 oil spills correctly
(TP), while seven areas were mistakenly identified as oil spills (FP),
and 16 oil spills were missed (FN). This provided us with a higher
precision of 0.926 and a recall of 0.845, eventually leading to the
highest F1-score of 0.884. These metrics provide valuable insights
into the performance of the crowd consensus contribution com-
bined with theMLmodel in terms of the effectiveness of the assisted
object detection tool (see 4b).

5.3 Quality and Efficiency
We conducted a Shapiro-Wilk normality test for the efficiency and
quality of data and found that our data was not normally distributed.
We then performed a Wilcoxon test and found that participants
completed the ML-assisted task significantly faster than the non-
assisted (𝑀 = 46, 𝑆𝐷 = 30.02) task (𝑀 = 38.72, 𝑆𝐷 = 22.64, 𝑧 =

7.35, 𝑝 < .001), which supports our hypothesis H1. Considering
only the first 20 images, non-assisted (𝑀 = 56.41, 𝑆𝐷 = 31.77),
assisted (𝑀 = 40.31, 𝑆𝐷 = 23.31, 𝑧 = 11.56, 𝑝 < .001), the efficiency
gap widens to 56 seconds for the non-assisted task and 40 seconds
for the ML-assisted task on average. Consequently, an efficiency
improvement of 29% can be achieved by integrating ML assistance
for less experienced users. Additionally, the participants’ efficiency
demonstrated an upward trend throughout the study, indicating a
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(a) ML model (YOLO) (b) Non-assisted (c) ML-Assisted (d) ML-Assisted + Consensus

Figure 4: Confusionmatrices of (a) the YOLOmodel, (b) non-assisted crowd detection, (c) ML-assisted detection, and (d) validated
ML-assisted detection on the user study image set.

Table 1: Accuracy metrics table of the YOLO model, non-assisted detection task, ML-assisted detection task, and validated
ML-assisted detection task.

YOLO model non-assisted
detection task

ML-assisted
detection

Validated ML-
assisted detection

(crowd consensus-ML approach)
(𝑐threshold = 0.5)

Precision 0.856 0.755 0.843 0.926
Recall 0.806 0.576 0.642 0.845
F1-score 0.830 0.653 0.729 0.884

(a) Crowd Extension (b) ML-assisted UI (c) Non-assisted UI

Figure 5: (a) Examples of crowd extensions to cover the entire oil spill occurrence. Red bounding boxes are ground truth
labels. Yellow bounding boxes are ML predictions. Green-filled boxes are evaluations from the crowd. Here, bright green-filled
rectangles signify areas where the collective crowd expresses high confidence in the proposed area. Faded green-filled rectangles
represent areas where the confidence is lower or where an individual participant marked the region as a potential oil spill area.
(b) Identifying more oil spills not detected by the ML. (c) Mistakes by the crowd.

learning process as they became more familiar with the interface
and detection procedures. However, after the task switch, the par-
ticipants’ performance becomes influenced, making an unbiased
analysis feasible only for the first 20 images. After switching the
tasks, participants of both groups spent a similar amount of time on
the tasks (see Figure 7). Furthermore, our findings also show that
using the ML-assisted UI increased the quality of the crowd based
on individuals’ performance on precision and recall (see Figure 6).

5.4 User Experience and Technology Acceptance
For user experience and preferences, we assessed the open-ended,
single-choice, and TAM questions. For the TAM, we followed the
evaluation as described in Davis [12] by comparing the Perceived
Usefulness (PU) and Perceived Ease-of-Use (PEU) factors for both
conditions through a Wilcoxon-Signed Rank test. The non-assisted
interface (𝑀 = 5.685, 𝑆𝐷 = 1.194) was higher rated than the ML-
assisted one (𝑀 = 5.333, 𝑆𝐷 = 1.43) for PU, resulting in a significant
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(a) Non-assisted (b) ML-assisted

Figure 6: Quality of the crowd based on individuals’ performance on precision and recall.

difference, 𝑍 = −2.481, < 0.05. Comparing the results for PEU be-
tween the non-assisted interface (𝑀 = 6.071, 𝑆𝐷 = 1.382) and
the ML-assisted interface (𝑀 = 6.024𝑆𝐷 = 1.524) did not reveal
any significant results (𝑍 = −0.144, > 0.05). These results indicate
greater technology acceptance for the non-assisted UI. In contrast,
all participants would choose the ML-assisted interface for future
oil detection tasks. Further, the majority found the ML-assisted
more time efficient (n=26) and easier for making accurate judg-
ments (n=27). Participants appreciated the oil spill examples: “I
looked at the example oil spills and lookalikes. For me, the example
oil spills helped more than the lookalikes because the image quality
of the lookalikes was very poor [...].”, P8. Overall, participants found
both interfaces easy to use but hard to differentiate between oil
spills and example images. However, we also noted two people with
more negative attitudes toward the ML-assisted UI, who further
rated it considerably lower in the TAM questionnaire. Suggestions
regarding UI improvements concerned enabling different types
of boxes to increase precision in outlining oil spills or providing
better example images and more context information about them.
Further, only seven participants would reuse and continue to sup-
port refining the ML algorithm, particularly if some reward was
offered. The remaining participants did not feel qualified, lacked
the time, or did not want to spend their free time on such a task.
Motivational factors could be feedback on users’ performance or
a gamified approach; e.g., “Making it like a game and having some
points and ranking system.”, P9. This highlights another challenge
for crowd-ML collaboration concerning participants’ engagement
and reward system.

6 DISCUSSION
Ourwork compared two UIs for oil spill detection in satellite images,
one applying human-AI collaboration (ML-assisted CK) and one
based on CK only. We assessed the differences in precision, recall,
efficiency, and performance between the UIs (RQ1). The results
support our hypotheses, H1 about ML-assisted CK performs more
efficiently than the non-assisted UI, and H2 the crowd detects ML
model’s errors. Further, wewill discuss the takeaways and synergies
we found for crowd-ML collaboration (RQ2) below.

Crowd-ML collaboration significantly improves precision and recall
compared to only CK. Supporting our hypothesis H1, compared to
the non-assisted approach, the ML-assisted UI enhances the par-
ticipants’ ability to assess oil spills, improving precision and recall
by approximately 11%. This means that more oil spills are correctly
identified while errors such as undetected oil spills and incorrect
labeling of non-oil spill areas are reduced. Therefore, humans or
crowds can contribute to ML by bringing human expertise and
perception to enhance overall performance. It shows the synergy
potential generated through crowd-ML collaboration.

Displaying ML predictions to users accelerate the crowd-learning
process. TheML-assisted UI decreased participants’ evaluation time,
enhancing their efficiency. Particularly, within the initial 20 images
before the task switch, the average evaluation time decreased as
participants gained familiarity with the UI and the oil spill label-
ing process. It is worth noting that the suggestions from the ML
model accelerated the learning process, and multiple participants
acknowledged the significance of these suggestions compared to
the oil spill lookalike images. This indicates a crowd-learning effect
from the information provided by the ML model.

Crowd consensus can significantly improve ML precision and re-
call. The collective crowd contributions identified prediction errors
from the object detection model. While individual non-experts may
not achieve the accuracy of the ML model or can make precise
expert predictions, the cumulative crowd input by using the con-
fidence threshold 𝑐threshold allows for forming a more conclusive
and precise prediction significantly improving precision and recall
compared to ML model predictions. This makes crowd-ML collabo-
ration also interesting for other use cases beyond the scope of our
work, such as finding errors or faults in industrial activities [1, 37]
or in sports analytics [38].

Crowd complements the ML model by extending bounding boxes
and identifying errors. The crowd also identified errors such as
missed objects and wrong detections, supporting H2. The crowd
also exhibited a notable skill in extending the proposed oil spill
areas, pinpointing regions the model had missed. The crowd’s abil-
ity to discern and extend oil spill areas not captured by the ML
model demonstrates their capacity to contribute supplementary
insights and also can be used to label datasets of oil spills as there
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(a) All Images (b) Confidence threshold

Figure 7: (a) Average evaluation time for each image for the non-assisted task (orange), and for theML-assisted task (purple). The
task switch is indicated with the vertical green line. The orange and purple dotted lines display the general direction (trendline)
of the completion time. (b) Confidence-Precision Curve (purple), Confidence-Recall Curve (green), and Confidence-F1 Curve
(orange)

is a scarcity of real oil spill data [14], by working as an alternative
to experts.

Integrating CK with ML models through an intelligent interface
helps mitigate environmental hazards. Our study reveals that when
the crowd collaborates with ML algorithms through an intelligent
interface, there’s an increase in accuracy for identifying oil spills
compared to relying solely on ML models. By displaying ML predic-
tions, we expedite the learning process for the non-expert crowd,
who can leverage the model’s suggestions to enhance their as-
sessments. Moreover, collective insights from the crowd serve to
strengthen the model’s performance, highlighting its potential to
augment human expertise in environmental monitoring. Addition-
ally, the crowd’s ability to identify missed oil spills and errors
complement the ML model, contributing to more comprehensive
and accurate assessments of environmental hazards.

Including explainable AI techniques could improve the crowd-ML
relationship. The black-box nature of ML is commonly identified as
a threat to user trust and accountability [25]. As a result, users may
find it challenging to fully understand the reasoning behind the
ML predictions. This lack of transparency can reduce confidence in
the collaborative approach, which might explain the lower TAM
results. To address this issue, we suggest including explainable AI
techniques in future crowd-ML collaborations that could provide
valuable insights into an ML’s decision-making process [26].

7 LIMITATIONS AND FUTUREWORK
We address current limitations while emphasizing new research
opportunities. Encouraging active participation from a large crowd
can be challenging. To address this and sustain participants’ moti-
vation, implementing gamification or a reward system could prove
effective [28]. Further, the concept of crowd-ML collaborationmight
face limitations when dealing with complex tasks, such as identify-
ing cancer cells in microscopic images, which is a highly intricate
task that may be exceptionally challenging for non-experts [25].

Therefore, it’s crucial to assess the suitability of the collaboration
for specific object detection tasks based on their complexity and the
required expertise level. Furthermore, this work only focuses on
the use of non-experts; the results should be compared with respect
to the findings of experts and qualitative feedback on refining the
tool. In the future, we aim to explore how crowd-ML performance
could complement experts’ labeling or how to design a system that
facilitates such collaboration. Additionally, we intend to make the
annotation tool open source for broader application across various
sectors, drawing inspiration from the work of Schilling et al. [33].

8 CONCLUSION
Our work introduces a crowd-ML collaboration intelligent interface
that helps assess non-experts’ performance in an oil spill object
detection task with and without the assistance of an ML model.
The CK utilizing the ML-assisted UI outperformed the non-assisted
condition by achieving higher oil spill detection accuracy and mit-
igated errors. Notably, the collaborative effort of the crowd iden-
tifies a considerable number of errors wrongly proposed by the
ML model. Furthermore, our work shows that the crowd can com-
plement the capabilities of an imperfect ML model. Our findings
further show the potential of including non-experts in responding
to natural catastrophes from remote by training object detection
models. Thus, our work is relevant for the field of human-AI and
environmental science, contributing to human-AI collaborations.
For future research, the detections of the crowd-ML model can
serve as potential valuable labels for further model training and
provide an alternative to expert-driven labeling.
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