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Figure 1: Marina is an expert in the traffic domain. She uses our interactive visualization tool, which processes raw traffic data
(at A) using machine learning (ML) algorithms (at B) to find hidden patterns and anomalies (at C). The ML-processed data is
then seamlessly visualized through the tool (at D). With her expertise, Marina explores the data and finds some partially okay
(p.o.k) and not okay (n.o.k) traffic detectors (at E). She contacts the service technicians from the city, presents her findings,
and asks them to check the corresponding detectors on the roads (at F). Marina also gets in touch with the engineering team
and tries to pinpoint why certain detectors start behaving unexpectedly. This enables them to make informed decisions that
contribute to efficient traffic management, leading to a more sustainable traffic system, aligning with broader environmental
sustainability goals (at G).

ABSTRACT
In traffic engineering, cities rely on large detector datasets to man-
age traffic. Visualizing these big, multi-dimensional datasets poses
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challenges such as overplotting and dimension reduction, often ren-
dering traditional visualization techniques inadequate. To address
this, we added two machine learning (ML) algorithms (Local Out-
lier Factor algorithm and K-Prototypes clustering) to an interactive
time series visualization to improve exploration by both domain
experts and non-experts. We used an original detector dataset of a
mid-sized German city. Our findings reveal that the ML algorithms
greatly enhanced data exploration in these interactive visualiza-
tions, particularly for users with limited domain knowledge. This
research directly contributes to the design of traffic data analy-
sis tools, offering a foundation for traffic detection hardware and
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software improvements but also advancing complex dataset visual-
ization in general. It will ultimately lead to more informed decisions,
improved traffic management, and has the potential to reduce air
pollutants, thus counteracting climate change.

CCS CONCEPTS
• Human-centered computing→ Information visualization;
• Computing methodologies → Anomaly detection; Cluster
analysis.
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1 INTRODUCTION
The traffic domain generates a vast amount of data crucial for
trafficmanagement and environmental decisions [11]. This research
addresses the analysis of a high-dimensional traffic dataset from a
mid-sized German city, provided by a German company, comprising
input from over 500 detectors from different detector groups. We
use the data from one detector groupwith 37 detectors. Ensuring the
quality of the detector data and detecting anomalies is vital because
inaccuracies can disrupt data analysis and traffic management. The
specific problem addressed in this research is the need to effectively
explore and identify anomalies in a complex, multidimensional
traffic detector dataset. Anomalies, or outliers, represent deviations
from expected data patterns [5, 16] and are challenging to define
precisely across diverse fields [18]. Detecting anomalies is crucial
for data accuracy [5], and error removal [39], as these anomalies
can take the form of both global and local outliers [18], potentially
indicating systematic biases in sensors [39].

There are ML algorithms that help detect the mentioned anom-
alies. Previous research in this field has primarily focused on su-
pervised ML approaches [19], which require extensive labeled data.
However, according to Chegini et al. [11], the unavailability of
labeled data in real-world datasets often poses a significant chal-
lenge. To avoid this issue, analysts resort to deriving initial labels
from the data itself by leveraging the data’s inherent characteristics
or drawing upon specialized domain knowledge [11]. In contrast,
unsupervised ML techniques offer an alternative approach that
does not require labeled training data. Clustering algorithms exem-
plify unsupervised ML techniques as they effectively group similar
records within a dataset, thereby revealing latent structures that
may remain concealed during manual exploration [11].

Identifying anomalies is the basis of traffic management require-
ments such as traffic congestion monitoring, hot spot analysis, and
incident detection. Data visualization plays a vital role in unveiling
these patterns and anomalies within big datasets [12], fostering
questions and insights [17]. In real-world datasets, latent structures

such as data anomalies or clusters often go unnoticed in visualiza-
tions like scatterplots and parallel coordinates [15]. Visual analytics
(VA), encompassing data analysis and human visual pattern recog-
nition [12], aids in these big data exploration, understanding, and
decision-making [13, 23]. However, large-scale multidimensional
data presents challenges in visualization due to human cognitive
limitations [40], necessitating innovative techniques. Moreover,
visualizing large-scale data with numerous features proves chal-
lenging on limited screen space [26].

In response to these problems, we have developed an interac-
tive application that enables users (both domain experts and non-
experts) to explore traffic detector data using time series visualiza-
tions, the Local Outlier Factor (LOF) algorithm [7], and K-Prototypes
clustering [20].

What sets our work apart is the customization of visual encoding
and interaction methods, specifically tailored to address the unique
challenges posed by traffic detector data. We found that ML tech-
niques significantly improve data exploration, especially for users
with limited domain knowledge. The clustering of measured data
provides distinct user groups with better insights into the data. This
implies that our approach can enhance data quality exploration and
contribute to more effective traffic management strategies.

Our work seeks to bridge the gap between ML and data visual-
ization, ultimately enhancing anomaly detection and data quality
assessment in traffic management by asking the following research
questions:
RQ1 How can ML be used to build insightful visualizations that

allow users to explore traffic detector data and spot anomalies?
RQ2 How can data visualizations aided by ML assist users with

varying levels of domain knowledge in discovering anomalies
effectively?

2 BACKGROUND AND RELATEDWORK
Proper traffic management can minimize the number of road acci-
dents, air pollutants, and energy consumption, besides other factors
[14]. This section summarizes some recent research approaches in
road traffic analytics and anomaly detection techniques.

2.1 Road Traffic Analytics
Different data sources influence the resulting data quality and the
data’s impact on traffic management. In addition to special de-
tectors that are permanently installed on the road, data from the
mobile network are also used. Some cities even offer public traf-
fic data, leading to tools like "Traffic-Cascade" by Kwee et al. [24],
detecting congestion cascades, which are clusters of spatiotem-
poral congested segments defined by slower speeds compared to
the normal pattern using public bus data and GenClus [32]. The
dashboard displays a list of these cascades, along with charts sum-
marizing their timing and a map showing their spatial distribution.
Expanding beyond public traffic data, Molina et al. [29] used IoT
technology and AI for real-time traffic monitoring. Their system
combined DeepSort and YOLOv5, displaying real-time traffic in-
formation, using color-coded heatmaps to show traffic volume on
a dashboard. To ensure traffic data privacy, Costa et al. [14] used
the k-anonymity algorithm on telecommunication data in their
traffic analytics dashboard with heat maps. Still, traffic data quality
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issues remain that can be caused by sensor failures and network
faults. Focusing on missing values and data anomalies of the Greek
traffic Open Government Data, Karamanou et al. [22] employed
flow-speed correlation and STL (Seasonal-Trend decomposition
using LOESS) for anomaly detection, improving data with spatial
information and concise visualizations with line charts and maps.
Therefore, diverse data sources and advanced analytical techniques
have significantly improved the understanding of traffic patterns
and management, although challenges related to data quality and
anomalies persist.

2.2 Anomaly Detection
Identifying anomalies is crucial for making informed decisions in
data analysis [27, 38]. Despite its essential role in scientific domains,
research on anomaly detection frequently leans towards ML meth-
ods, which may lack the interpretability necessary for effective ex-
ploration. In collaboration with NASA, Wright et al. [41] developed
interpretable anomaly detection models tailored for extraterrestrial
exploration. Furthermore, current anomaly detection systems focus
on a subset of anomalies and require human experts for verification,
making the process biased. The RAMAN framework by Ratadiya
et al. [30] addressed multimodal anomaly detection within the Mars
Science Laboratory power subsystem, demonstrating robustness
across diverse anomaly types, input data, and domain constraints.
In a similar vein, Meng et al. [27] introduced VADAF, a visual inter-
face designed for abnormal client detection in a federated learning
setting. Furthermore, Abello et al. [1] present ATLAS, a graph explo-
ration framework dedicated to anomalous subgraph detection. In
the context of social media, Schaffer et al. [33] delve into commuter
traffic anomalies extracted from Twitter messages, employing au-
tomated anomaly detection methods. According to Ahmed et al.
[2], these different types of anomaly detection techniques can fall
into three major categories: statistical approach, classification, and
clustering.

2.2.1 Statistical Approach. Statistical anomaly detection methods,
as described by Ahmed et al. [2], offer simplicity and do not re-
quire labeled training data, making them capable of detecting un-
known anomalies. However, they struggle with complex anomalies
and may produce a high number of false positives [2]. In urban
air quality data analysis, van Zoest et al. [39] introduced an out-
lier detection method based on confidence intervals. They visu-
alized their findings using line charts, scatterplots, and boxplots.
Similarly, Belhaouari et al. [5] utilized statistical approaches for
outlier detection. They transformed multidimensional data into
one-dimensional distances and employed unsupervised detection,
visualizing their results with boxplots. Their method overcame the
limitations of traditional boxplot outlier detection, particularly for
noisy data and small anomaly clusters, through the application of
probability density estimation using k-nearest neighbors (KNN)
distance vectors. Turkay et al. [37] introduced an abstraction layer
for high-dimensional datasets. They assigned representative factors
to sub-groups of dimensions with similar statistical values, visu-
alizing these relationships in scatterplots. Their iterative process
involved comparing data structures, computing statistical values
for dimensions, and using Principal Component Analysis (PCA) to

create new features for sub-groups. This method proved effective in
discriminating different medical conditions based on group factors.

2.2.2 Classification. According to Ahmed et al. [2], classification
algorithms excel at identifying anomalies and generating alerts,
but they cannot detect unknown anomalies. However, many ML
algorithms require an extensive amount of labeled training data [2].
Chegini et al. [11] conducted research on interactive labeling of a
multivariate football player dataset for supervised ML using linked
visualizations, clustering, and active learning. Their focus was on
seamlessly integrating interactive visualizationswith traditionalML
techniques to simplify labeling tasks while managing user workload.
They proposed a visual analytics approach for exploratory data
analysis and partitioning of multivariate datasets into meaningful
labeled sections. Users could semi-supervise the labeling process
with active learning, marking interesting patterns or outliers. Once
the classifier learns from the training data, it can automatically
partition similar datasets.

2.2.3 Clustering. ML-based approaches, like clustering, excel in
detecting complex anomalies, yet their performance on unknown
outliers may vary with hyperparameters [2]. Using K-Means and
Gaussian Mixture Models, Riveiro et al. [31] visualized anomalies
in road traffic data with circular layouts and heatmaps. The circular
layout also has its drawbacks whenmany features exist. For football
data analysis and labeling tasks, Chegini et al. [11] used K-Means
and hierarchical clustering. Although methods like K-Means and
hierarchical clustering are used for anomaly detection, choosing
them depends on the situation and requires domain expertise [11].
Moving towards a fuzzy clustering, Fan et al. [16] proposed an in-
teractive visual analytics approach for network anomaly detection
using a fuzzy c-means-based algorithm. Basurto et al. [3] employed
unsupervised visualization methods like Curvilinear Component
Analysis and t-distributed stochastic neighbor embedding (t-SNE)
for robot failure detection, visualized in 3D scatterplots. However,
no single anomaly detection algorithm outperforms others across
various time series datasets, with the challenge of parameter sen-
sitivity [34]. Systematic testing with different parameter values,
especially for k-nearest neighbor based methods in unsupervised
outlier detection, is crucial [10]. Hence, while ML-based techniques
show significant potential for detecting anomalies in diverse con-
texts, appropriate methods and parameter selection are essential
for effective application.

Due to the lack of labeled data, our application uses ML algo-
rithms that can work with raw data, such as the LOF algorithm.
Clustering, especially for mixed-type data, is valuable for finding
anomalies in traffic detector data [21]. Existing tools for visualizing
traffic data often skip assessing data quality, and the complexity
of visualizations can be a barrier for non-expert users. Our work
aims to fill these gaps by evaluating real-life traffic detector data
quality and providing user-friendly visualizations by testing the
hypotheses below:

H1: ML techniques make it possible to develop visualizations that
facilitate the exploration of traffic detector data and enhance
users’ ability to detect anomalies effectively.



IUI ’24, March 18–21, 2024, Greenville, SC, USA Amin et al.

H2: ML integration has the potential to support users with varying
levels of domain knowledge in improving their effectiveness in
identifying anomalies in interactive visualizations.

3 SYSTEM DESIGN
To test our hypotheses, we developed a graphical user interface for
exploring the traffic detector data with and without ML integration.
The traffic detector data visualization process is shown in Figure 2
and explained below.

3.1 Data Collection and Preprocessing
3.1.1 Data Collection. The company collected traffic detector data
from 37 different Traffic Eye Universal 5 (TEU) detectors in Decem-
ber 2022 in a mid-sized city in Germany. These detectors employ
overhead Passive Infrared Technology (PIR) and can be installed
without additional cables on poles or bridges, seamlessly integrat-
ing into existing traffic data systems. They are powered by solar
batteries capable of lasting four weeks without sunlight. TEUs can
count vehicles, measure their speed and street occupancy, and clas-
sify them into five vehicle classes based on length. However, they
cannot recognize cyclists and pedestrians. Data is transmitted to
the traffic center through mobile networks (3G or 4G/LTE) via an
integrated cellular modem. A terminal collects, preprocesses, and
transmits data from connected detectors at set intervals, aiding
traffic operations and environmental management strategies.

3.1.2 Data Preprocessing. The data was provided by the company’s
platform, downloaded, and stored locally for independence from
cloud platform availability. Each day had a separate folder contain-
ing multiple JSON files. For each day, there were around 150 files,
resulting in 4650 files for December 2022. These files consisted of
concatenated key-value pairs with attributes describing the keys
in the dataset. Each observation entry had five attributes, some of
which contained nested attributes, arrays, or objects. Notably, the
attribute containing the city’s name was anonymized. In addition,
some columns had mixed data types that required conversion to
strings. As a result of performance considerations, HDF files1 were
found to load faster in the backend than JSON or CSV files, leading
to the conversion of preprocessed data into HDF format.

The goal was to analyze and detect anomalies through clustering
and the LOF algorithm and create visualizations. Consequently,
all attributes in the traffic detector dataset were considered, as no
labeled dataset was available to identify outliers or group similar
observations.

3.2 Anomaly Detection and Clustering
The data was first examined using statistical parameters such as
mean and standard deviation. For this purpose, the one month
dataset was considered as a whole to get a first impression and ori-
entation. Since the dataset did not contain any labels, classification
algorithms were not feasible. Previous studies suggested dimen-
sionality reduction with PCA [11, 28]. But visualizing the results
of the evaluation for a subset of the traffic detector data with PCA
showed that overplotting hides data points, and the dimensions
were confusing to the user. In our case, K-Prototypes showed more

1https://www.hdfgroup.org/solutions/hdf5/, last accessed February 9, 2024

promising results during the testing phase. K-Prototypes combines
K-Modes and K-Means and can cluster mixed-type data, which
involves selecting prototypes and assigning units to clusters based
on the nearest prototype [21]. For anomaly detection, due to the
lack of a labeled dataset for training, we used the LOF algorithm
that performs well for multi-modal datasets [9]. LOF can effec-
tively detect anomalies when having two datasets with different
densities. The algorithm compares one sample’s anomaly score
with its neighbors [9]. Our application uses the LOF algorithm to
highlight anomalistic metadata, specifically timestamp differences.
To identify anomalies, conspicuous daily values within the month
were extracted by experts. These values are the ones that should
be extracted from K-Prototypes and the LOF.

3.3 Interactive Visualization
For building the interactive visualization tool, we conducted un-
structured interviews with a traffic engineer, a product owner, and
a developer to gather their initial impressions and address spe-
cific questions. These interviews aimed to provide insights into
the necessity for anomaly detection and the creation of concise
visualizations. Based on these insights, we created mockups, which
were then shared with potential end-users for their feedback and
integrated into the tool’s development. Inspired by Grimmeisen and
Theissler [19], our tool intentionally avoided general navigation fea-
tures to minimize interference with users’ decision-making. Given
the vast dataset, we offered filtering and slicing options for users to
specify data subsets based on attributes, ensuring fine-grained anal-
ysis. Users could easily navigate between different data views using
an on-click side menu, promoting efficiency. Fan et al. [16] stated
that users often switch between overview and detail views to judge
abnormal conditions. Hence, the visualization’s goal was to provide
the user with situational awareness and the ability to detect anoma-
listic data at the same time. Therefore, Shneiderman’s mantra [35],
"Overview first, zoom and filter, then details-on-demand" was ap-
plied. To create effective and efficient visualizations, we prioritized
showing complex data in a simple manner, taking into account the
challenges of high-dimensional spaces and complex relationships,
as noted by Behrisch et al. [4]. This approach helped users focus
on primary visual patterns, enhancing efficiency in clustering and
anomaly detection tasks. Since the traffic detector data lacked a
pre-existing hierarchical structure and was time-based, our appli-
cation included a time selector for all visualizations, enabling users
to adjust the date range for their analysis.

Below, we explore different views used in the application. These
views are essential for monitoring detector statuses, identifying
data duplicates, examining data submission intervals, assessing
timestamp differences, and exploring measured data patterns. We
discuss each view’s unique features and design considerations.

3.3.1 Detector Status View. In the first view (see Figure 3), users
were able to monitor the statuses of 37 detectors over time. To
prevent clutter, detectors were grouped, and users could toggle
between groups. The system used colored bars to represent detector
statuses, enabling users to track changes over time. Clicking on a bar
revealed a legend at the bottom, displaying all detectors and their
statuses at that specific time.When selecting a broader time range in
the top time selector (as shown in Figure 4), the x-axis switched from

https://www.hdfgroup.org/solutions/hdf5/
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Figure 2: Traffic detector data visualization process. The traffic detector data was stored in the cloud. After that, Flask received
requests. The data was then processed via machine learning (ML) algorithms. Here, K-Prototypes and Local Outlier Factor
(LOF) algorithms. Afterward, the ML-processed data was sent to the front end (the web application). The application rendered
the react component and appended D3 visualizations. Users could interact with the tool, exploring visualizations both with and
without ML-enriched data.

(a) Single Day View (b) Multiple Days View

Figure 3: Detector Status View. Here, p.o.k. = partially okay, n.o.k. = not okay.

hourly to daily intervals. Multiple colors for a detector on a given
day indicated varied statuses. We maintained a fixed color scale
to align with our design system and user clarity. Our visualization
accommodated multiple detectors on one page without overlapping
or losing historical data, enhancing data presentation and user
experience.

3.3.2 Duplicate Entries View. The duplicate entries view (see Fig-
ure 5) displayed data duplicates in the dataset. The x-axis, as in the

detector status view, represented hours, and the y-axis listed detec-
tors. Turquoise bars indicated duplicate data on certain days, while
gray bars signified no duplicates. Empty rows meant no data sub-
missions by the detector. Each row displayed the total observations
within the chosen time range. In the single day view (See 5a), users
could click turquoise bars to explore duplicate details, while in the
multi day view (See 5b), bars showed only the days with duplicates,
requiring users to adjust the time range for closer examination.
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Figure 4: Application’s header showing the time selector (top right).

(a) Single Day View (b) Multiple Days View

(c) Submission Intervals View

Figure 5: Duplicates View (a) Single Day View, (b) Multiple Days View, and (c) Submission Intervals View.

3.3.3 Data Submission Intervals View. Detectors submitted data at
varying intervals, indicated using a bubble chart (See 5c). Larger
circles representedmore observations in a specific interval. Clicking
a circle updated sensor colors in the list, indicating data submission
in that interval. Users could select up to six detectors in a line chart
for a detailed comparison. The x-axis represented chosen detectors,
and the y-axis displayed submission intervals (formatted as hh:mm).
The dot size on the line chart indicated the number of entries for
each interval. Users could add or remove detectors in the detail
view, available only for one-day selections.

3.3.4 Timestamp Differences View. In this view, two timestamps
were analyzed: the control unit timestamp and the publishing times-
tamp. In the single day view (see Figure 7), the x-axis represented
time, and the y-axis listed detectors. Each detector row contained
a small scatterplot illustrating time delays in seconds. Users could
select up to three sensors on the y-axis to display them in a de-
tailed line chart at the bottom. This line chart’s x-axis showed time,
while the y-axis showed timestamp differences in seconds. Red dots
indicated anomalies detected by the LOF algorithm, sensitive to
rapid increases in seconds. Users could deselect detectors in the
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detailed view (see 6b). Zooming in by narrowing the time range
in the selector allowed for more detailed data exploration. For a
multi-day perspective (see 7c), users could switch to a view display-
ing dates on the y-axis and a 24-hour time format on the x-axis.
Bars in each detector row represented hourly data availability, with
color intensity indicating mean timestamp differences. Darker hues
signified larger mean differences, and users could hover over bars
for detailed means. To delve deeper into specific dates, users could
adjust the time selector and return to the single day view once they
had gained an overview.

3.3.5 Measured Data View. This view (see Figure 8) complemented
the previously described metadata visualizations. It displayed data
for a single day and employed the K-Prototypes clustering algo-
rithm to reveal data patterns. Users could toggle between four
clusters. They could click on a cluster to zoom in and access de-
tailed information, including small bar charts depicting attributes
like alarm, quality, measuring duration, and detector status. The
y-axis showed observation counts, and the x-axis displayed unique
attribute values. Above these charts, users found cluster averages
for vehicle counts, occupancy, and speed, which were updated when
switching clusters. On the left side, a list of detectors in the cluster
was provided, acknowledging that multiple clusters might include
the same sensor. Users could click on a specific sensor to view its
measured data in a line chart. The chart encoded data using glyph
characteristics such as position, color, size, and stroke style. Dot
height represented vehicle counts (y-axis), while the x-axis indi-
cated measurement time. Stroke design indicated detector status,
color represented measurement time, and circle fill reflected oc-
cupancy. Hovering over dots revealed detailed observation values.
The measured data without clustering view (See 8b) lacked cluster
differentiation and displayed all detectors with overall averages
simultaneously.

3.4 Back End
The application’s back end module was responsible for handling
data processing and applying anomaly detection algorithms. It
used Flask2 to manage routing, entry, and endpoint (see Figure 2).
The data was analyzed depending on the request triggered by the
user’s input. Flask handled incoming requests, with each request
being associated with a dedicated function. Each routing function
checked whether the time range selected in the front end exceeds
24 hours. Depending on this evaluation, distinct functions were
executed when either a single day or multiple days were chosen on
the front end. These functions were responsible for data analysis,
organization, and the application of ML techniques.

3.5 Front End
After Flask processed incoming requests, it sent formatted data
to the front end without relying on a database or caching, which
posed challenges for handling large traffic detector data. To improve
loading times, clusters were computed in the backgroundwith every
data change in the visualization. The application’s front end utilized

2https://flask.palletsprojects.com/en/2.3.x/, last accessed February 9, 2024

JavaScript3, React4, and the Material UI5 library for web interfaces.
Data visualizations were created using D3.js6, allowing users to
manipulate and interact with data. Application styling was achieved
through CSS (Cascading Style Sheets).

4 STUDY DESIGN AND APPROACH
We conducted a within-subject study, approved by the university
with 24 participants comparing the timestamp difference view with
(see Figure 6) and without the LOF algorithm (see Figure 7) and the
observations of the measured data with and without K-Prototypes
clustering (see Figure 8).

4.1 Experimental Setup
4.1.1 Independent variables. The independent variables in this
study are the visualizations (with and without ML techniques)
shown to the participants.

4.1.2 Dependent variables. As dependent variables, we measured
the users’ ability to identify anomalies and effectiveness in identi-
fying insights. Additionally, we assessed the user experience using
the User Experience Questionnaire (UEQ)7 to identify any potential
interface design impacts.

4.1.3 Interview and Questionnaire. We conducted unstructured
interviews with each participant. Additionally, we added single-
choice and open-ended questions to gather demographic informa-
tion and previous experience using ML-integrated visualizations
and traffic detector data. The overall experience using the appli-
cation and ML integration section asked participants to rate their
experience on a 5-point Likert scale. An open question encouraged
users to elaborate on how ML integration affected their experience.
Screenshots were provided for participants to select visualizations
in their responses.

4.1.4 Study Approach. Each participant completed the studywithin
a 60 to 120 minutes time frame, including the unstructured inter-
views. The difference in expertise caused the varying duration. The
web application is a tool requiring some domain knowledge and
background information. So, the participants needed a thorough
explanation and the possibility to ask questions when using the tool.
Except for one interview conducted in English, the conversations
and thinking aloud exercises were conducted in German. In order
to ensure accessibility, we present translations of the participants’
quotes and key points into English. The translation process was
done using the DeepL Translator 8 and cross-checked with native
speakers. At the beginning of each study session, the participants
watched a 7-minute video introducing the study background, ML
techniques, and the user interface (see supplementary material for
the tutorial text). After watching the video, the participants explored
the visualizations by themselves. They evaluated the visualizations
showing detector status, duplicate entries, data submission inter-
vals, timestamp differences, and measured data. The visualizations
3https://developer.mozilla.org/en-US/docs/Web/JavaScript?retiredLocale=de, last ac-
cessed February 9, 2024
4https://react.dev/, last accessed February 9, 2024
5https://mui.com/, last accessed February 9, 2024
6https://d3js.org/, last accessed February 9, 2024
7https://www.ueq-online.org/, last accessed February 9, 2024
8https://www.deepl.com/en/translator, last accessed February 9, 2024
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(a) Overview (b) Detailed View

Figure 6: Timestamp Differences View with LOF algorithm marks.

(a) Overview Single Day (b) Detailed View Single Day

(c) Multiple Days View

Figure 7: Timestamp Differences View without LOF algorithm marks.

displaying detector status (see Figure 3) and duplicate entries (see
Figure 5) show the data without enhancing them with ML tech-
niques for anomaly detection. Due to the relatively small number
of participants, experts and non-experts explored identical data for
comparable group sizes. In our study design, all participants used
the timestamp difference view, with and without the LOF algorithm,

and observed measured data with and without clustering. The data
for the data submission intervals (see Figure 5c) were manually
clustered depending on the interval. Users were asked how they
perceived them and the visualizations with horizontal bar charts
showing time series data (Figure 3, Figure 5). The participants’
screens and voices were recorded during the study to be available



Using ML to Improve Interactive Visualizations for Traffic Detector Data IUI ’24, March 18–21, 2024, Greenville, SC, USA

(a) With Clustering (b) Without Clustering

Figure 8: Measured Data View.

for analysis after the experiment. After users identified potential
data anomalies and had no further comments, they completed a
digital questionnaire via Microsoft Teams, ensuring compliance
with company data policies.

4.2 Participants
24 people aged 25 to 64 (𝑀 = 33.25, 𝑆𝐷 = 8.03) participated in
the study. Among them, 14 participants identified as male, nine as
female, and one preferred not to say. 17 participants had experience
using time series data visualization tools, but only eight participants
had used tools combining visualization with ML. As depicted in
Figure 9, one participant had experience with ML visualization but
not with time series data decision-making and had no prior ML
knowledge. Eight participants had experience with only visualiza-
tions for decision-making with time series. Five used visualizations
with ML for time series data. Two users had used visualizations
with ML for decision-making; nevertheless, they did not have any
ML knowledge. Two other users had ML knowledge and used visu-
alizations for decision-making but never with ML. Six participants
stated that they had no prior experience with ML algorithms and
visualizations or decision-making visualizations. The participants
were invited personally to the study. The study was not compen-
sated and involved recruiting participants from different sources
such as the company, university, and acquaintances. From the com-
pany, one solution architect, two product managers/owners, two
traffic engineers, and one developer participated. Nine participants
were domain experts from the company, while the remaining 15
were unfamiliar with the domain (non-experts). The supplementary
material offers more information regarding participant profiles.

5 RESULTS
5.1 User Expectations
Participants’ qualitative feedback on their expectations from the
application were grouped into four categories. In the first cate-
gory, participants conveyed their expectations to gain insights into
specific detectors’ functionality and quality, the ability to observe
the detector’s operation and traffic, and to identify detectors that
might not be performing as expected. Eight participants expressed

the expectation to delve into raw data, seeking insights about its
credibility. Two participants mentioned their desire to export the
resulting data for testing applications and bug identification, while
one participant expressed the aspiration to optimize and debug traf-
fic data collectors using insights from the application. The second
category focused on an intuitive user interface, with two partic-
ipants highlighting the importance of clear data visualization of
time series data and comprehensible representation of anomalies.
They expected interactions and various views to facilitate a deeper
understanding of the data. The third category emphasized the im-
portance of identifying anomalies for debugging purposes, with
five participants explicitly mentioning this need. One participant
aptly summarized their expectation: "More transparency in data.
Too much aggregation leads to blind spots. Would rather keep data
raw so that diagnostics is easier and more transparent. Use clustering
only to identify potential anomalies as a guidance, but access to raw
data should still be available." — P3 (expert). Lastly, participants in
the fourth category expressed expectations related to improving
traffic management products based on the insights gained from the
application. These responses set the background for subsequent
analysis to assess whether these expectations were met.

5.2 Experience with Visualization and ML
The study results indicated that the introduction of ML techniques
facilitated the exploration of traffic detector data and significantly
aided in detecting anomalies. In the timestamp differences visu-
alization (see Figure 6, Figure 7), 14 participants could identify
patterns based on location in the timestamp differences view with
LOF (Figure 6). They considered the entire patterns to be more
anomalous than individual data points. "I can see a pattern here
for the different detector locations." — P14 (non-expert). 10 partic-
ipants specifically identified problematic days through the mean
delay visualization. Throughout their use of the application, par-
ticipants discussed anomalies and recommended the inclusion of
additional explanations in the visualizations to highlight them.
"Helpful would be a view that gathers all detected anomalies. This
would help to get a preselection and an overview." — P3 (expert). The
majority of participants (96%) preferred the timestamp difference
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Figure 9: Experience in the usage of visualization tools and ML knowledge.

view, which displays anomalies detected by the LOF algorithm as
red dots (Figure 6). "I can spot anomalies way faster than in a ta-
ble." — P13 (non-expert). Another participant (non-expert) explicitly
mentioned that the small row-wise scatterplots helped in spotting
large delays. Despite their varying levels of ML experience, 11 par-
ticipants found the measured data view with clustering to be the
most helpful for identifying insights, suggesting that ML-based
visualizations can effectively support users, even those with lim-
ited prior knowledge of ML or the traffic domain. Those who do
not frequently work with traffic detector data were able to iden-
tify important insights with the help of visualized clustered data
𝜒2 (3, 𝑁 = 24) = (8.96, 𝑝 = 0.03). The resulting Cramer’s V of 0.61
indicated that the integration of ML, specifically clustering, in the
UI, had a notable impact on users’ ability to identify important
insights and make informed decisions in the context of analyzing
traffic detector data. These results, therefore, support H2.

Identifying patterns and trends and interpreting the data with
the clustering approach was more manageable for two participants.
Another participant stated that they see the data as problematic
because the quality seems insufficient. Participants acknowledged
the usefulness of clustering, "The clustering helped significantly in
showing trends that would have been harder to find without the clus-
tering" — P4 (non-expert), but also emphasized that it depends on
the quality of input data. They remarked that it could be helpful
if there were only a few anomalies and the data quality was not
a general problem. "The values without an alarm value, for exam-
ple, don’t help us, but imagine we had more meaningful data. Then
the clustering could provide more insights." — P1 (expert). However,
two traffic engineers did not find value in seeing all attributes in
the measured data visualization. Nonetheless, they appreciated
the detailed views for status, duplicates, and delay. Some experts
recommended using a combination of cluster and non-clustered
views and displaying multiple detectors simultaneously. As partici-
pants detected anomalies in the data, they confirmed that the ML
integration enhanced their ability to spot irregularities. This ob-
servation aligned with the expectations set in H1, suggesting that
ML-based visualizations indeed support the exploration of traffic
detector data and improve anomaly detection. We tested H1 on
four aspects (Figure 10): identifying anomalies, clearest data rep-
resentation, identifying important insights and making informed
decisions, and the easiest to understand. The answers to these (with
ML vs. without ML) shed light on whether visualizations of ML-
integrated data help users explore data and detect anomalies. The

result 𝜒2 (3, 𝑁 = 24) = (19.6, 𝑝 = 0.0002) indicated a significant
association between the UI (with ML or without ML) and partic-
ipants’ perceptions of the UIs concerning ease of understanding,
clarity of data representation, effectiveness in identifying insights,
and anomaly detection, supporting H1.

5.3 User Experience
We ran the Shapiro-Wilk test for normality for our small sample size
and performed a two-tailed t-test to find out whether differences
exist between experts and non-experts. The UEQ results indicated
that the application generally met user expectations. Participants
considered the system to be attractive ("Attractiveness") with a
high agreement (𝑝 = 0.93, 𝑀 = 5.46, 𝑆𝐷 = 0.82) while finding the
system easy to get familiar with and learn how to use it ("Perspicu-
ity") with a medium agreement (𝑝 = 0.14, 𝑀 = 4.90, 𝑆𝐷 = 0.93).
The observation was consistent, with the non-experts saying they
needed more time to familiarize themselves with the tool and
the domain. Participants also showed medium agreement in the
"Efficiency" (𝑝 = 0.45, 𝑀 = 5.48, 𝑆𝐷 = 1.01) and "Stimulation"
(𝑝 = 0.62, 𝑀 = 5.67, 𝑆𝐷 = 0.8) categories, respectively. The users
felt differently about the amount of control they had while using
the application ("Dependability") (𝑝 = 0.76, 𝑀 = 5.07, 𝑆𝐷 = 1.02).
"Novelty" (𝑝 = 0.63, 𝑀 = 5.28, 𝑆𝐷 = 1.02) had lower agreement lev-
els too. Overall, the application’s performance compared favorably
to the UEQ benchmark, with "Attractiveness," "Efficiency," "Stimula-
tion," and "Novelty" rated as "Excellent," "Perspicuity" as "Good," and
"Dependability" not comparable due to a removed item. Participants
suggested improving filtering, searching options, and providing an
overview page for guiding users to anomalies. Some users foundML
integration helpful in enhancing their understanding, emphasizing
visual highlighting and the ML’s simplicity. However, participants
desired more detailed information in visualizations, especially for
extended data analysis, and suggested UX enhancements for date
selectors and information accessibility. No category had a p-value
smaller than 0.05, indicating no significant difference between ex-
perts and non-experts. Figure 11 shows the overall mean per UEQ
category.

6 DISCUSSION
Our study involved the exploration of traffic detector data visual-
izations to detect anomalies. We investigated two distinct scenarios:
one with the integration of ML techniques and one without, as
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Figure 10: User preferences for UI (With ML vs. Without ML).

Figure 11: Mean per UEQ category.

outlined in RQ1. Additionally, we aimed to determine if the ML
integration enhances anomaly detection for users with different
levels of domain knowledge, aligning with RQ2. Our results vali-
date both H1 and H2, providing support for our initial hypotheses.
In the following discussion, we will unravel the significant insights
from our analysis.

Allowing users to customize the features to include in the clustering
could benefit future application versions. The participants expressed

the necessity for manual inclusion or exclusion of specific features,
reflecting the need for flexibility. Additionally, as we explore vi-
sualizations that refrain from aggregating information, evaluating
their effectiveness is crucial, especially in accommodating more
data features. Taking cues from examples like DendroMap for image
data [6], manual cluster setting or adjustment can offer flexibility
in the clustering process.
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Optimizing clustering techniques for outlier detection is essential.
As many conventional clustering methods inadvertently identify
anomalies [5]. Evaluating specialized outlier detection methods
such as FastABOD, explicitly designed for high-dimensional data
[10], holds the potential to provide valuable insights. Furthermore,
considering the choice of distance measure in scenarios involving
mixed-type data, such as employing Euclidean distance for contin-
uous variables and Hamming distance for categorical variables, can
significantly impact clustering outcomes [21].

Data quality is a cornerstone of algorithm performance. Prioritiz-
ing data quality is essential for algorithm effectiveness. Addressing
data insufficiency issues should precede the pursuit of better algo-
rithms. Filters within the application can also influence algorithm
performance. Consider implementing filters for detector type and
weekdays, resulting in varied data due to weekday-dependent traffic
fluctuations. Creating a benchmark dataset marked with anomalies
beyond the norm is valuable for improving classification algorithms.
This involves dataset labeling for precise efficiency assessments.
Inspired by Chegini et al. [11], an anomaly detection and labeling
tool enriched by expert insights can be developed. Additionally, in-
tegrating active learning strategies can reduce user labeling efforts
and enhance the system’s anomaly detection capabilities [19].

To enhance user trust, clear explanations of anomaly detection and
clustering are needed. When considering the inclusion of labeling
features with LOF and clustering, a prime objective should be to
empower users with guidance toward relevant observations. From a
user experience perspective, the requirement of extensive explana-
tions concerning anomaly detection, particularly the complexities
of the clustering process, is pivotal. Users had expressed a strong
desire to understand why algorithms like K-Prototypes cluster data
in specific ways and why LOF flags specific timestamp differences
as anomalies. The desire to understand the algorithms better comes
from a sincere intention to evaluate how well they work and how
reliable they are. It is not just about labeling data but also about
making users feel confident in using the application. So, finding
ways to give personalized guidance based on each user’s needs
using ML can make the application much more helpful.

7 LIMITATIONS AND FUTUREWORK
Most participants, experts, and non-experts expressed a need for
more detailed information in the visualizations. Addressing their re-
quests for more detailed visualizations and improved usability, such
as a different time selector, is essential for enhancing the overall
user experience. Moreover, there is a potential to create a catego-
rized dataset for accurate anomaly identification, fulfilling the user
demand for benchmark metrics and labeled datasets. However, algo-
rithm accuracy and efficiency concerns must be addressed through
proper training and explanation. Moreover, combining user feed-
back, usability evaluations, and cognitive effort assessments, such
as the System Usability Scale (SUS) [8], can guide the application’s
refinement.

Furthermore, some potential threats to the validity should be
considered. To enhance the generalisability of the results with 24
participants, our study involved diverse profiles (ages 25 to 64) to
ensure comparable group sizes for both experts and non-experts.

To mitigate potential bias, a specific order was imposed on par-
ticipants, alternating the presentation of visualizations with and
without the LOF algorithm. However, despite these precautions,
order effects may still influence participants’ responses, particularly
regarding their ability to identify anomalies and insights. Given the
60-120minutes experiment duration and extensive data observation,
minimal learning or fatigue effects were expected for treatment
ordering in controlling learning effects. We encouraged the users
to select different dates in the different visualizations but did not
want to restrict them to specific dates. The goal was to let them
explore freely. There were no visible learning effects during the
study. To tackle this, we propose a future study with more partici-
pants, separating them into groups (with ML vs. without ML) and
measuring learning curves [25]. Regarding ML algorithms, while
we used K-Prototypes for clustering, concerns still remain about
not employing density-based clustering, e.g., Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). We avoided this
as Python’s scikit-learn DBSCAN is unable to handle mixed-type
data. However, literature [36] suggests that Gower distance with
DBSCAN solves mixed data problems. Objective metrics, such as
the number of anomalies detected or the time required for specific
tasks, were not employed due to the study’s design constraints as
the study duration varied depending on the participants’ questions.
Hence, the overall time was not representative, and no helpful mean
could be calculated. Future work could benefit from integrating
learning sessions to familiarize participants with the tool. Consecu-
tive second sessions in which they find anomalies independently.
Afterward, the latter would be timed, and the anomalies found
would be counted.

8 CONCLUSION
Our work deals with a large traffic detector dataset containing
numerical and categorical data. Since location information is absent,
the developed application covers a research gap in handling traffic
detector data without location attributes and creating improved
time series visualizations. The application visualizes time series
traffic detector data using innovative techniques tailored to time
series data characteristics. Furthermore, we explored the potential
of interactive visualizations in detecting anomalies effectively while
considering the varying levels of user expertise and familiarity
with the raw data. The study results demonstrate that applying ML
techniques facilitates the exploration of traffic detector data and
also reveals that ML-based visualizations can support users with
scarce domain knowledge in ML or the traffic domain. This research
contributes to the field of traffic data analysis. The findings serve
as a basis for extended investigations into hardware and program
quality improvements in the company. It paves the way for future
advancements in visualizing and understanding complex datasets
for traffic management and decision-making processes.
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