
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 204–213, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evaluation of User-Interfaces for Mobile Application
Development Environments

Florence Balagtas-Fernandez and Heinrich Hussmann

Media Informatics Group, Department of Computer Science,
University of Munich, Germany

{florence.balagtas,heinrich.hussmann}@ifi.lmu.de

Abstract. This paper discusses about the different user-interfaces of mobile de-
velopment and modeling environments in order to extract important details in
which the user-interfaces for such environments are designed. The goal of
studying such environments is to come up with a simple interface which would
help people with little or no experience in programming, develop their own mo-
bile applications through modeling. The aim of this research is to find ways in
order to present the user interface in a clear manner such that the balance be-
tween ease-of-use and ease of learning is achieved.

1 Introduction

Nowadays, the development of software applications is no longer bounded within the
confines of people with programming skills. People are no longer limited to just being
end-users of an application, but are encouraged to be the creators of their own appli-
cations as well. An example of this is the growth of the world wide web and how the
creation of web pages are no longer restricted to people who have skills in writing
HTML code and scripts. The introduction of WYSIWYG HTML Editors such as Mi-
crosoft Front Page and Google Page Editor has made this possible. By hiding the
HTML code in the background and allowing components to be dragged and dropped
on to a page makes it easy for novices to create their own web pages.

The same thing is happening now to the mobile industry. Mobile phone users are
no longer limited to use pre-installed applications on their devices or buying ready-
made mobile applications for their personal purposes. People now have the power to
create their own applications given the right motivation, creativity, skills and tools.
Mobile phone companies and organizations have now opened up their application
programming interfaces (APIs) that would allow anyone to develop their own applica-
tions for their mobile devices. Examples of these are the Java Platform Micro Edition
(Java ME) API1 from Sun Microsystems, the Android API2 from the Open Handset
Alliance and the iPhone API from Apple3. However, even though many users may
have ideas for novel applications for mobile phones, software development is simply
too difficult for most people. It takes a large amount of skill and familiarity with how

1 http://java.sun.com/javame/index.jsp
2 http://code.google.com/android/
3 http://developer.apple.com/iphone/

 Evaluation of User-Interfaces for Mobile Application Development Environments 205

the framework is used before a person can create a decent amount of code for a sim-
ple application. Even setting up the programming environment is a complex task, let
alone, trying to figure out how to use the APIs, compiling, running and deploying the
application on the actual device. Other things that make developing applications for
mobile devices more difficult as compared to desktop applications are factors such as
device limitations (e.g. screen size, computing power, power consumption) [4], dif-
ferent operating systems for mobile devices, different data representation and addi-
tional device capabilities (e.g. Bluetooth, Wifi, GPS, Camera-enabled) which are not
standard to all devices and therefore should be considered when developing a uniform
application that can be run on different mobile devices.

In this research, we are investigating ways to make application development acces-
sible to people with low or no programming skills. We propose applying model-
driven development (MDD) which is an approach to creating complex software
systems by first creating a high-level, platform-independent model of the system, and
then generating specific code based on the model to the target platform [5]. In ordi-
nary software development, models are just thought of as tools for getting system
requirements and for documentation purposes, however, in MDD, the models are ac-
tually part of the implementation of the system. The basic idea of our work is to come
up with a modeling environment that is specific for modeling mobile applications
which targets non-experts as the main users. Non-expert users here are defined to be
people who have little or no experience in programming for mobile platforms.

We want to present to the user one application that they could use to model their
mobile applications without having to worry about low-level coding. In order to do
this, we are developing a tool called Mobile Applications Modeler (Mobia). The focus
of discussion for this paper is on the design of the user-interface for the Mobia model-
ing environment. The aim here is to find out which user interface design concepts are
most suitable in order for non-expert users to develop their own mobile application
with ease. The goal is to present the interface such that the balance between ease-of-
use and ease-of-learning [10] is achieved. We have focused on non-expert users in
this research and do not include expert users in general since these two types of users
often differ in their experiences and needs [6]. Unlike existing modeling tools such as
Magic Draw4 and Eclipse with the Eclipse Modeling Framework (EMF)5 plugins that
are more general purpose modeling tools, we want to present to the user a more do-
main-specific modeling tool that specializes only on modeling mobile applications.
The focus of this part of our research is on how to present the user interface of the
Mobia modeler such that it is easy to use for non-expert users.

The rest of the paper is organized as follows: section 2 will discuss a few related
researches to our work particularly in the area of model-driven development. In
section 3 we will discuss the different user interfaces of existing development and
modeling tools that are the basis of some of our designs. And then, the remainder of
the paper will be a discussion of our approach such as, the design of our prototypes
and evaluation results.

4 http://www.magicdraw.com/
5 http://www.eclipse.org/modeling

206 F. Balagtas-Fernandez and H. Hussmann

2 Related Work

Integrated development environments (IDEs) are tools which are made to ease the ap-
plication development process. Most IDEs provide an environment that features a text
editor, compiler, debugger and simulator to name a few, which are all integrated into
one application. They have evolved throughout the years, adding more features (e.g.
GUI designer, version control, etc.) that would help the developer in accomplishing
their tasks in the most efficient way. For mobile applications development in particu-
lar, examples of IDEs that allows plugins for mobile application development are the
Netbeans, Eclipse and XCode development environments. A problem with IDEs for
mobile application development though is that, different mobile phones have different
application programming interfaces and platforms. Thus, creating a common applica-
tion that would run on different platforms of mobile phones tends to get tedious and
redundant since developers have to develop different code for each of them. One solu-
tion to this problem is by applying the model-driven approach in which models are
used to describe the application and through transformation tools, these models are
transformed to code that would run on specific platforms [5].

An example research that applies MDD is the Multimedia Modeling Language
(MML) which is a platform-independent language used for the model-driven devel-
opment of multimedia applications [7]. MML models are transformed into Flash
models which can then later on be loaded into the Flash authoring tool for further
completion of the application [8]. The approach [7,8] is usually for teams wherein
graphical designers and software designers need to work together in a certain project.
Each group of users has their own expertise in terms of skills and tools they are using.
However, when non-expert users are involved in the development process, this ap-
proach can be quite complicated. Extensive knowledge on how to make UML models
is necessary in order to create the applications using this approach, and since the tools
are not yet integrated, mastery in using these tools is a must [8]. Dunkel and Bruns [3]
also presents a model-driven way of producing business applications for mobile de-
vices with BAMOS (Base Architecture for Mobile Applications in Spontaneous net-
works) as the target platform. Their models are expressed in UML activity diagrams
to specify control flow and the description of mobile services through a DSL they
have defined using UML profiles. As with MML, the approach uses different tools
which are not yet integrated [3]. Another research that applies the MDD process and
targets non-experts as the primary developers is the Simple Mobile Services (SMS)
project. This project aims to create service authoring tools and mobile services that
are simple to use, find and set up[9]. They focus on non-expert users as the people as-
sembling these mobile services on their own. SMS applies the MDA [5] approach in
building their services [2]. Our approach is similar to SMS in a way that we target
non-expert users as main users of our tool for developing mobile applications. How-
ever, while SMS focuses on mobile web-based services, our research focuses on mo-
bile-based applications.

In the next section, we will discuss the different user-interface components present
in various development and modeling environments. We want to find out which exist-
ing approaches in the UI and some new ones are most suitable for non-experts.

 Evaluation of User-Interfaces for Mobile Application Development Environments 207

3 A Closer Look into the User Interfaces

In this section, we would like to compare user-interfaces of existing IDEs that sup-
ports mobile application development (Netbeans and Eclipse), and a modeling tool
(MetaEdit+) that supports domain specific modeling of mobile applications. We want
to explore what features these tools have, and which of these features are essential
parts of an environment in which non-experts can benefit in it.

Fig. 1. General Parts of a Development/Modeling Environment

In studying these tools, we have identified four basic areas that are usually present
in such environments. For the purpose of discussion in this paper, we will attach a
general name to each of the areas, which may be identical or not to how they are
labeled in such environments. Fig. 1. shows the typical default location of the main
areas and their names. Table 1 contains the main areas and some of the possible con-
tents that may appear in those areas.

Table 1. The different areas and their possible contents

Area Possible Contents
Navigation/Browsing Area Different components in a certain development project (e.g.

files and folders, classes and packages)
Main/Central Area The component in which the user is currently working on

(e.g. source code, design for a user interface, data source)
Palette/Properties Area Components that can be dragged and dropped to the

main/central area (e.g. UI components, Datasets)
Toolbar Area Button controls (e.g run, debug), editing controls (e.g. copy,

paste)
Output Area Program output, Compiler errors, Debugging messages, etc.

Shown in Fig. 2. is an overview of the Netbeans 6.5 environment. The components
described in our general UI model for a development environment are present in the
Netbeans environment. One additional feature of Netbeans is the ability to switch to
different views in the main area depending on what the user is focusing on. The
source view allows the user to make changes to the source code; the screen view al-
lows drag and drop design of the mobile application’s user interface; the flow view al-
lows adding logic to the program by dragging flow arrows between the different

208 F. Balagtas-Fernandez and H. Hussmann

screens; and the analyzer view shows unused resources and MIDP compliancy.
Switching through the different views changes the contents of the palette area, de-
pending on what components are needed in that certain view. Netbeans also has the
ability to bind a screen component’s data to information taken from a database.

Fig. 2. Overview of the Netbeans Environment

The next IDE interface that we are going to discuss is the Eclipse IDE. There are
several projects that aim to develop plugins for Eclipse to allow mobile applications
development (e.g. EclipseME6, Eclipse Plugin for Android7). For the purpose of this
paper, we will focus on analyzing the interface for the Eclipse IDE used for develop-
ing Android applications since the basic components of the IDE are similar anyway.
As shown in Fig. 3, the positioning of the components in the environment are similar
to that of Netbeans. However, the features offered by the Eclipse environment are just
a subset of Netbeans. As of the moment this paper is written, it does not feature a
drag-and-drop GUI environment for developing Android applications, but through
editing an XML file for the placement of the GUI components on the screen, or by di-
rectly adding lines to the source code for the GUI. Although, as expected in the fu-
ture, developers might add more features for easy GUI development as the platform
matures. DroidDraw8 is one example application UI editor for the Android platform
which generates an XML file that can be copied to the main code.

The MetaEdit+ Modeler is a DSM tool that allows the modeling of different do-
main specific applications (e.g. Mobile, Automotive, Telecom, Embedded, etc.). One
supported domain is for modeling smartphone applications. Fig. 4 shows an overview
of the basic user-interface of MetaEdit+ for modeling mobile applications. Unlike the
first two IDEs we have described, the MetaEdit modeler features a simpler interface
with several of its components positioned at different areas. The palette area contains
fewer number of components as compared to the first two tools discussed. It features
specialized constructs which is specific for such mobile platforms. The navigation
area contains a list of components in the model. Below the navigation area is the
properties area, which contains information about the current component in focus.

6 http://eclipseme.org
7 http://code.google.com/android/intro/installing.html
8 http://www.droiddraw.org/

 Evaluation of User-Interfaces for Mobile Application Development Environments 209

Fig. 3. Overview of the Eclipse Environment

From these three examples, we want to extract the most desirable feature of each that
can be applied to the design of Mobia. The Netbeans environment for instance, features
the ability to change to different views, which can allow the user to concentrate on one
task at a time. However, it contains so much features that it can take awhile before the
user can actually take advantage of such features. The MetaEdit tool on the other hand
contains only a limited number of components. It contains specialized constructs that
could easily be identified by the user. All the tasks such as designing the screen and
adding flow to the program is modeled in one view. The disadvantage about this
though, is that since it is very specialized, the user is restricted to the type of application
they can create. The Eclipse environment also offers a very simple interface and not
shows too much features. It is clearly a tool for expert developers, who basically know
what source code to type in for the applications they are developing.

In the next section, we will discuss more about our approach in finding the ideal
user-interface for the Mobia Modeler such that non-expert users will be able to use it.
We apply some design patterns that is shown in the previous tools that we have de-
scribed, and try to evaluate it in order to find out which features are most desirable for
such an environment.

Fig. 4. Overview of the MetaEdit+ Modeler

210 F. Balagtas-Fernandez and H. Hussmann

4 The Mobia Modeler User Interface

The Mobia Modeler is a modeling tool specifically designed to allow modeling for
mobile applications. The target users for Mobia are non-expert users who are people
that have little or no experience at all in programming for mobile platforms. For this
particular study, we feature a module of Mobia that is focused on modeling applica-
tions in the domain of mobile health monitoring. As of the moment, we want to focus
on one type of domain, since different domains may offer different modeling con-
structs. For this module, the users will model a certain type of application that can be
used for health monitoring and feature modeling constructs that represent data from
different medical gadgets or medgets (e.g. ECG meter, Thermometer, etc.). In order to
find the ideal interface for Mobia, we have created two prototypes using Flash, which
offers two different UI designs. Just to clarify, these prototypes are simply focused on
evaluating the different user interface designs and interactions and do not yet have
code transformation features.

4.1 Mobia with One View

Shown in Fig. 5 is a screenshot of the first version of our Mobia prototype which we
called Mobia One View. The first prototype offers one view for the user which means
that, the user can design an instance of the mobile screens, add data and application
control flow all in one view. The user can concentrate on designing a single screen by
zooming into that area, and try to see an overview of the whole system by zooming
out. The palette on the right side of the screen contains screen components that can be
dragged on to the mobile screen. For our prototypes, we only feature a subset of the
possible screen components that a mobile application can have. The right palette also
contains data input which we call medget (short for medical gadget) input. The
medget constructs in the medget input palette contains abstract representations of in-
formation that comes from health monitoring devices capable of sending their data to
a mobile device. More information about the different representations of medget data
will not be discussed in this paper, but in a separate paper [1].

Fig. 5. Mobia with One View. (In the foreground) The main area is zoomed-in to see the screen
designs better.

 Evaluation of User-Interfaces for Mobile Application Development Environments 211

4.2 Mobia with Multiple Views

The second design approach that we did for Mobia is what we called multiple views
which is shown in Fig. 6. This is similar to the Netbeans IDE in which the main area
features different kinds of views depending on the specific task that the user is doing.
The reason behind the choice of this type of design is that we want the user to focus
on one task at a time.

Fig. 6. Mobia with Multiple Views (Design, Data and Navigation View)

The default view is the Design View in which the user can design individual
screens by dragging and dropping screen components from the palette to the screen.
The left panel contains all the mobile screens for that application. Clicking on an
individual screen in the left panel shows it in the main view to be further edited and
designed. Screens can be added and deleted by pressing the add and delete buttons re-
spectively. This design is borrowed from presentation programs such as Microsoft
Powerpoint and OpenOffice Impress wherein each slide can be viewed from a panel
and allows switching from one slide to another by clicking on the mini versions of the
slides in the panel. The Data View is similar to the design view except for the fact that
the palette contents on the right panel changes to medget data. In this view, the users
can concentrate on how they want data taken from health monitoring devices be dis-
played on the screen. These medget components act as placeholders into which the
real information from the devices will appear in the real application. The last view is
the Flow View, which shows all the screens in the model and how the screen transi-
tions from one to the next. The user can add basic control logic to the application by
dragging on arrows and linking the screens together. In this view, a small component
palette contains buttons in which the users can drag to the screens. The logic behind
this design approach is that, in the application, only by pressing a control component
such as a button can trigger going from one screen to the next.

5 User Study Evaluation and Results

Given the prototypes that we have described in the previous section, we want to find
out which of the prototypes provides a simpler UI for the user and gets the task done

212 F. Balagtas-Fernandez and H. Hussmann

quickly. For a more subjective evaluation, we also want to find out which design is
more fun and easier to use. In order to do this, we have conducted a user study in
which each user is given a task to accomplish using both prototypes. In order to
measure efficiency, we get the time in which the user accomplishes a certain task. In
order to eliminate the bias towards the second prototype, we alternate which prototype
each participant uses first in doing the tasks. The participants were instructed not to
ask any questions from the evaluators. The goal here is to allow the participants to
explore the tool themselves and learn how to use it by themselves without any outside
intervention. At the beginning of the user-study, the participant was asked to explore
the prototypes and give comments. After they are done studying the tool in whichever
method they choose, they are given two tasks which are to design the contents of the
screens and then later on to add control flow to the screens. They were asked to create
3 screens with some screen components in them. After designing the screens, they
were asked to add control flow in which allows switching to a different screen when-
ever a button is pressed.

Table 2. The average times accomplishing the tasks using the two prototypes

Average Time (Minutes)
Version Screen Design

Task
Adding Control

Flow Task
Mobia One View 4.036 minutes 1.126 minutes
Mobia Multiple Views 5.833 minutes 2.223 minutes

There were 10 participants to our user study: 60% have backgrounds in the field of
Computer Science and the rest from the fields of Educational Psychology, Archeol-
ogy, Architecture and Social Welfare. Only 10% of the participants have a back-
ground in programming for mobile platforms which is also in the very basic level.

Table 2 shows the average times of when the users accomplished the tasks while,
Table 3 shows the results for the subjective evaluation in terms of which prototype is
easier and more fun to use. Based on the results shown in the tables, Mobia One View
allows the users to do the tasks faster as compared to the multiple view. A factor that
might contribute to this is the fact that in multiple views, the user has to switch from
one to the next in order to add a different component or do another design task. Based
on the subjective feedback of the participants, the Mobile one view poses an envi-
ronment that is both easy and fun to use.

Table 3. Subjective evaluation for the Mobia Prototypes

Criteria (Percentage of Users)
Version

Easier to Use More fun to Use

Mobia One View 60% 50%
Mobia Multiple Views 40% 40%
None 0% 10%

 Evaluation of User-Interfaces for Mobile Application Development Environments 213

6 Summary and Future Work

In this paper, we have presented different design ideas for a mobile application mod-
eling environment that targets non-experts as the main users. The design and results
presented here are just the initial phase of our iterative approach to finding the ideal
interface for a tool that would help accomplish tasks with ease.

Our future work aside from continuing to polish the user interface design of Mobia,
is to come up with an underlying framework to support code transformation from the
models. An approach to have a user-adaptive tool that changes according to each
user’s existing skills and preferences to enhance user experience and learning is also
envisioned.

Acknowledgments

We would like to thank the German Academic Exchange Service (DAAD) for fund-
ing this research. We would also like to thank Ugur Örgün for helping with the proto-
types and to the people who participated in our user study.

References

1. Balagtas-Fernandez, F., Hussmann, H.: Modeling Information From Wearable Sensors. In:
MDDAUI 2009- Model Driven Development of Advanced User Interfaces 2009. CEUR
Proceedings (2009)

2. Bartolomeo, G., Casalicchio, E., Salsano, S., Melazzi, N.B.: Design and Development
Tools for Next Generation Mobile Services. In: International Conference on Software En-
gineering Advances, ICSEA 2007, p. 16 (2007)

3. Dunkel, J., Bruns, R.: Model-Driven Architecture for Mobile Applications. Business In-
formation Systems, pp. 464–477 (2007)

4. Gaedke, M., Beigl, M., Gellersen, H.-W., Segor, C.: Web Content Delivery to Heterogene-
ous Mobile Platforms. In: ER 1998: Proceedings of the Workshops on Data Warehousing
and Data Mining, pp. 205–217. Springer, London (1998)

5. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise. Pearson Education, Inc., Boston (2003)

6. Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming.
Commun. ACM 38, 33–44 (1995)

7. Pleuss, A.: MML: A Language for Modeling Interactive Multimedia Applications. In: ISM
2005: Proceedings of the Seventh IEEE International Symposium on Multimedia, pp. 465–
473. IEEE Computer Society, Washington, DC, USA (2005)

8. Pleuß, A., Vitzthum, A., Hussmann, H.: Integrating heterogeneous tools into model-centric
development of interactive applications. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 241–255. Springer, Heidelberg (2007)

9. The SMS Project, http://www.ist-sms.org
10. Weiss, S.: Handheld Usability. John Wiley and Sons, Chichester (2002)

	Evaluation of User-Interfaces for Mobile Application Development Environments
	Introduction
	Related Work
	A Closer Look into the User Interfaces
	The Mobia Modeler User Interface
	Mobia with One View
	Mobia with Multiple Views

	User Study Evaluation and Results
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

