
Mobia Modeler: Easing the Creation Process of Mobile
Applications for Non-Technical Users

Florence
Balagtas-Fernandez

Media Informatics Group
University of Munich

florence.balagtas@ifi.lmu.de

Max Tafelmayer
Media Informatics Group

University of Munich
max@tafelmayer.de

Heinrich Hussmann
Media Informatics Group

University of Munich
heinrich.hussmann@ifi.lmu.de

ABSTRACT
The development of mobile applications has now extended
from mobile network providers into the hands of ordinary
people as organizations and companies encourage people to
come up with their own software masterpieces by opening
up APIs and tools. However, as of the moment, these APIs
and tools are only usable by people with programming skills.
There is a scarcity of tools that enable users without pro-
gramming experience to easily build customized mobile ap-
plications. We present in this paper a tool and framework
that would enable non-technical people to create their own
domain-specific mobile applications. The tool features a
simple user-interface that features configurable components
to easily create mobile applications. As a proof of concept,
we focus on the creation of applications in the domain of
mobile health monitoring. In the future, we would like to
extend our work to cover other domains as well.

Author Keywords
mobile application, modeling tools, domain-specific model-
ing, user-centered design

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User Inter-
faces—Graphical User Interfaces; D.2.2 Software Engineer-
ing: Design Tools and Techniques—User Interfaces, Evolu-
tionary prototyping; D.2.6 Programming Environments: Graph-
ical Environments

General Terms
Design, Experimentation, Human Factors

INTRODUCTION
With the mobile phone gaining ground in being the most ac-
cessible computing device [5], applications for such devices
are no longer limited to be created by mobile phone com-
panies alone, but are now extended to anyone with the right

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

skills and motivation (e.g. Android platform, iPhone plat-
form). However, like any other programming task, devel-
opment for mobile devices is a complicated job. Therefore,
we proposed [1] to apply the model-driven development ap-
proach in creating such applications. In this approach, an
application is generated by first creating a model of the ap-
plication and later on transforming the model to platform-
specific code through transformation tools. The main focus
of this paper is to discuss the Mobia Modeler which is a tool
that enables users without programming experience to eas-
ily build mobile applications through modeling. The Mobia
Modeler serves as the front end of the Mobia Framework
whose two major components are the modeler mentioned,
and the Mobia Processor which is responsible for transform-
ing the models into platform specific code. We followed a
user-centered iterative design approach in the development
of the modeler’s user interface. There have been various
designs in the past as mentioned in our previous paper [2],
which were tested and lead to improvements that were fi-
nally applied to the current design. The design of the Mobia
Processor and the process that the model goes through in or-
der to generate the final code will also be presented.

RELATED WORK
Various systems allow people with no technical expertise to
develop applications. Examples are, ESPranto SDK from
Van Herk et al. [10], Vegemite from Lin et al. [7], UI Fin
from Puerta et al. [9], and MAKEIT from Holleis et al. [5].
Our work is similar to the researches mentioned in a way
that we want to create an environment that would help users
with limited technical knowledge, create useful domain spe-
cific applications. However, the difference between the Mo-
bia Framework from the mentioned related work is that, the
focus is not only on the usability of the modeler for non-
programmers, but in the design of the underlying framework
as well such that it can be easily extended to support other
types of applications for such mobile environments in the
future.

MOBIA FRAMEWORK USE-CASE SCENARIO
In order to fully understand how non-technical users can
benefit from using a tool like the Mobia Modeler, we present
in this section an example scenario in the area of mobile
health monitoring.

Increasing Quality of Life with Mobile Health Monitoring
There has been an increased awareness of people with re-
gards to their health. Many technological devices are be-
ing created in order to aid people in their goals for better
health. Some tools [3] aim to aid people in keeping track
of their physical activities and at the same time motivating
them through visual and/or audio feedbacks. Others tools
[8] help people with existing health problems by monitoring
and analyzing physiological signals. However, the problem
with these existing applications and tools is that they already
contain predefined displays and functionalities. It would be
a big help if there was a way to customize these types of ap-
plications depending on the type of health related issues that
are to be addressed by such applications without the need to
do low-level programming. A tool like the Mobia Modeler
would be useful in order to achieve this.

Giving the Power to Create: The Target Users

Figure 1. The Mobia Framework and its use cases

As we have mentioned in our conceptual paper [1] about ap-
plying domain specific modeling for mobile health monitor-
ing, different types of people can benefit from a tool like the
Mobia Modeler. Domain experts in the field of healthcare
such as doctors, nurses and clinical technicians can create
customizable applications for their patients. Other domain
experts such as people in the field of medical research can
also make use of the tool for their own purposes. Other types
of users for the Mobia Modeler are ordinary people who are
just concerned about their own well-being and would like
to create their own applications for monitoring their health.
For clarification purposes, we want to emphasize that the
users we mentioned here are the people who create the ap-
plication using the Mobia Modeler. They may be the user of
the final application (e.g. ordinary people creating applica-
tions for themselves), or they may create the application for
other users (e.g. healthcare experts creating the application
for their patients). Figure 1 shows an overview of the whole
Mobia Framework and its use cases.

Health Monitor: A Sample Application
The scenario discussed is adapted from Leijdekkers et al. [6].
A doctor monitors his clinically obese patient by keeping
track of his nutrition, physical activities and heart rate. He
wants to ensure that his patient is eating the right foods and
doing the assigned exercises by getting a daily update on
the patient’s food intake and physical activities. Since the
patient just recently had a heart attack, the doctor wants to
ensure that the heart rate does not go over 120 bpm for the
next 30 days. In case this happens, the doctor would like to
be notified via his pager. He also configures the application

to call an emergency number when the patient’s heart rate
goes up beyond 150 bpm [6].

THE MOBIA MODELER
The main design idea for the Mobia Modeler is configura-
tion over combination. This means that instead of building
mobile applications by assembling individual user interface
elements on the screen, users can just add components to
the model and configure these artifacts based on the applica-
tion requirements. We call these components Configurable
Components. The formal definition of configurable compo-
nents in the context of Mobia is: it is a logical container for
multiple user interface elements that has a clearly defined
meaning and acts as a whole, and which functionalities can
be modified through simple configuration. The approach of
configurable component-based design has been applied to
many areas in software and embedded systems. However,
according to Fernando et al. [4], there are still issues that
need to be addressed in the design of such systems. The
key issues emphasized pertain to the attribute-dependent cat-
egorization of components, the development and storage of
component configurations, and how to provide guidance to
the developer/user to choose the right components [4]. We
address the issue of categorization mentioned by Fernando
et al. [4] by grouping configurable components in the Mo-
bia Modeler into: Basic, Structure, Sensor and Special (see
table in figure 2). The issues of development, storage and
developer guidance will be addressed in the next sections.

A Step-by-Step Guide into the Mobia Modeler
The modeler starts with a wizard which helps the user con-
figure the modeler’s general user interface and supported
functionalities. This is the time where the tool collects do-
main specific properties (e.g. domain, users) and adapts the
tool base on the supplied information. The modeler’s inter-
face (figure 3) is composed of three main parts: the Main
Area, the Menu Bar and the Side Bar. The Main Area is
the only view used by the Mobia Modeler for modeling mo-
bile applications. Previous studies [11][2] conducted sup-
ports this single view design since it increases the learnabil-
ity of an application. The Side Bar contains elements that
represent the different configurable components which are
grouped according to the four types mentioned in the pre-
vious section, and can be added to the screens in the Main
Area. To guide users, not all configurable components are
available at a given time. Some are disabled depending on
the current state of the model. The sidebar can be adapted
indirectly through settings made in the configuration wizard
during the creation of a new application. The Menu Bar is
located at the top of the Mobia Modeler’s user interface and
contains additional functions. All the menu items shown
in figure 3 are already supported in the current version of
the Mobia Modeler except for the Simulation function. The
created model can be saved and loaded either through the
server or as a local copy. Components can then be added to
the main area depending on the application the user wants
to create. Each component can be configured by clicking
on the pen symbol (see figure 3) on top of each component.
Aside from tool tips, the Mobia Modeler also offers visual
hints to the user such as the change in color of a config-

Figure 2. Examples of Component types

Figure 3. (left) The Mobia Modeler with the Health Monitor sample application model and its (middle) serialized form. (right) The design of the
Mobia Processor and the whole code generation process.

urable component if the default values have been changed,
or by disabling components in the Side Bar to prevent users
from doing invalid moves. Finally, the graphical model can
then be serialized into some XML format (see figure 3) that
is an important data used for processing the model into code
which is the topic of the next section.

From Model to Code: A Look into the Mobia Processor
In our previous paper [1], we have discussed an overview
of the initial design of the Mobia Framework including its
components. In this section, we will elaborately discuss the
Mobia Processor component of the framework and the steps
needed to achieve code generation (figure 3).

The process starts when the application model (Mobia PIM
(Platform Independent Model)) is exported from the Mobia
Modeler. The Mobia Manager then loads the information
from the Mobia PIM into the runtime system of the proces-
sor. It then calls the Configuration Loader which loads plat-
form specific information (e.g. target platform, code genera-
tion templates, Mobia metamodel) based on the information
specified in the Mobia PIM. The Mobia metamodel which
is in the form of an XSD file, contains a general description
of a model in the Mobia Framework. The Mobia Processor
relies on the Mobia metamodel to process the PIM file. For
future work, we want to use the Mobia metamodel to eas-
ily extend the Mobia Modeler in order to support other do-
mains, or add/modify currently existing components in the
modeler’s interface. The Model Mutator then processes the
Mobia PIM and transforms them into Mobia PSM (Platform
Specific Model). The difference between Mobia PIM and
Mobia PSM is that the Mobia PSM contains additional infor-
mation that is targeted towards a specific platform. The ter-
minologies PIM and PSM are borrowed from Model-Driven
Architecture (http://www.omg.org/mda). The Model Muta-

tor then passes the PSM object to the Apache Velocity En-
gine (http://velocity.apache.org/) which merges the informa-
tion from the PSM and the code templates to generate the
final source code. The Mobia Manager then calls the Mobia
Arbiter which is responsible compiling and deploying the
final application.

EVALUATION THROUGH QUALITATIVE USER STUDY
A qualitative user study was conducted in order to identify
issues that arise from the current design of the Mobia Mod-
eler and find ways to improve it. There were 16 partici-
pants in the user study (7 males, 9 females) with the aver-
age age of 30. All of the participants have experience in
computer usage. 10 of them have no experience in program-
ming, while the other 6 use programming in their respective
professions. Although none of the participants have expe-
rience in using mobile health monitoring applications, they
claim that they understood the concept. In order to evalu-
ate the different features of the Mobia Modeler, we observed
how the participants interacted with the modeler during the
exploration phase and combined it with the participants’ an-
swers during the interview (see figure 4). Comparing the
views from the two types of participants (programmers and
non-programmers or the non-technical people), in terms of
understanding the general concepts, usability and design ap-
proach of Mobia, it scored higher in the programmers’ group
as compared to the non-programmers. The variance between
the answers of the people in the non-programmers group is
also higher which correlates to the different experiences that
the participants in this group have.

SUMMARY AND FUTURE WORK
We have presented in this paper the Mobia Modeler which
aims to allow non-technical users to create domain-specific
mobile applications through modeling methods. We also

Figure 4. Comparing feedback from non-programmers (non-technical
people) and programmers with regards to the Mobia Modeler and its
concepts

briefly described the design of the Mobia Processor which
works together with the Mobia Modeler in order to gener-
ate platform specific code. We combined the use of models
and configurable component-based design is our approach.
However, our work still has issues which need to be resolved.

• Provide Richer User Experience and Help. Users in
general are more encouraged to work on a certain task if
they see immediate feedback. One thing that is currently
missing in the modeler is the simulator that shows the ba-
sic functionality of the application being modeled. An-
other thing that can be added is to provide templates or
pre-made models that the user can explore in order to see
the capabilities that can be done with the tool. Support for
Plug-and-Adapt which automatically adapts the interface
based on detected hardware components (similar to [10])
would also ease the initial configuration process.

• Support for Other Domains and Components. The un-
derlying Mobia metamodel which is in the form of an
XSD file, influences how the Mobia Processor deals with
the generated model for code generation. The next plan
is to automatically generate and adapt the modeler’s inter-
face based on the changes to the metamodel. To further
simplify the task, a separate tool may be created such that
new domains and its constructs can be added to the mod-
eler without having to manually edit the XSD file.

• Support for Multiple User Types. The current target
users of the front end (modeler) of the Mobia Framework
are novice users. However, as they mature and become
semi-skilled users, there should be a way to address their
growing needs. More research has to be done in terms of
adapting the tool to accommodate this change in expertise.

• Experience Report. Getting feedback from the target
users/domain experts with regards to the practicality of
using the tool for their respective fields is another impor-
tant thing that needs to be done in the future.

• Verification and Validation of Generated Artifacts. Test-
ing and verification of the models generated by the Mobia
Modeler and the code generated by the Mobia Processor
still needs to be done.

REFERENCES
1. F. Balagtas-Fernandez and H. Hussmann. Applying

domain-specific modeling to mobile health monitoring
applications. Information Technology: New
Generations, Third International Conference on, pages
1682–1683, 2009.

2. F. Balagtas-Fernandez and H. Hussmann. Evaluation of
user-interfaces for mobile application development
environments. In Human-Computer Interaction. New
Trends, volume 5610/2009, pages 204–213. Springer
Berlin/Heidelberg, 2009.

3. F. Buttussi and L. Chittaro. Mopet: A context-aware
and user-adaptive wearable system for fitness training.
Artif. Intell. Med., 42(2):153–163, 2008.

4. L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley,
and J. Haskins. A survey of configurable,
component-based operating systems for embedded
applications. IEEE Micro, 21(3):54–68, 2001.

5. P. Holleis and A. Schmidt. Makeit: Integrate user
interaction times in the design process of mobile
applications. In Pervasive ’08: Proceedings of the 6th
International Conference on Pervasive Computing,
pages 56–74, Berlin, Heidelberg, 2008.
Springer-Verlag.

6. P. Leijdekkers and V. Gay. Personal heart monitoring
and rehabilitation system using smart phones. In ICMB
’06: Proceedings of the International Conference on
Mobile Business, page 29, Washington, DC, USA,
2006. IEEE Computer Society.

7. J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau.
End-user programming of mashups with vegemite. In
IUI ’09: Proceedings of the 13th international
conference on Intelligent user interfaces, pages
97–106, New York, NY, USA, 2009. ACM.

8. N. Oliver and F. Flores-Mangas. Healthgear: A
real-time wearable system for monitoring and
analyzing physiological signals. In BSN ’06:
Proceedings of the International Workshop on
Wearable and Implantable Body Sensor Networks,
pages 61–64, Washington, DC, USA, 2006. IEEE
Computer Society.

9. A. Puerta and M. Hu. Ui fin: a process-oriented
interface design tool. In IUI ’09: Proceedings of the
13th international conference on Intelligent user
interfaces, pages 345–354, New York, NY, USA, 2009.
ACM.

10. R. van Herk, J. Verhaegh, and W. F. Fontijn. Espranto
sdk: an adaptive programming environment for
tangible applications. In CHI ’09: Proceedings of the
27th international conference on Human factors in
computing systems, pages 849–858, New York, NY,
USA, 2009. ACM.

11. M. Q. Wang Baldonado, A. Woodruff, and
A. Kuchinsky. Guidelines for using multiple views in
information visualization. In AVI ’00: Proceedings of
the working conference on Advanced visual interfaces,
pages 110–119, New York, NY, USA, 2000. ACM.

	Introduction
	Related Work
	Mobia Framework Use-Case Scenario
	Increasing Quality of Life with Mobile Health Monitoring
	Giving the Power to Create: The Target Users
	Health Monitor: A Sample Application

	The Mobia Modeler
	A Step-by-Step Guide into the Mobia Modeler
	From Model to Code: A Look into the Mobia Processor

	 Evaluation through Qualitative User Study
	Summary and Future Work
	REFERENCES

