
Your Browser is the Controller - Advanced Web-Based
Smartphone Remote Controls for Public Screens

Matthias Baldauf1, Florence Adegeye2, Florian Alt3, Johannes Harms1

1Vienna Univ. of Technology
INSO Research Group

Wiedner Hauptstrasse 76
1040 Wien, Austria

{first.second}@inso.tuwien.ac.at

2FTW Telecommunications
Research Center Vienna

Donau-City-Strasse 1
1220 Wien, Austria

adegeye@ftw.at

3LMU München
Media Informatics Group

Amalienstrasse 17
80333 München, Germany

florian.alt@ifi.lmu.de

ABSTRACT
In recent years, a lot of research focused on using smart-
phones as input devices for distant screens, in many cases by
means of native applications. At the same time, prior work of-
ten ignored the downsides of native applications for practical
usage, such as the need for download and the required instal-
lation process. This hampers the spontaneous use of an inter-
active service. To address the aforementioned drawbacks, we
introduce ATREUS, an open-source framework which enables
creating and provisioning manifold mobile remote controls
as plain web applications. We describe the basic architecture
of ATREUS and present four functional remote controls re-
alized using the framework. Two sophisticated controls, the
Mini Video and the Smart Lens approach, have been previ-
ously implemented as native applications only. Furthermore,
we report on lessons learned for realizing web-based remote
controls during functional tests and finally present the results
of an informal user study.

Author Keywords
remote control, public display, smartphone, interaction

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies, prototyping

INTRODUCTION
Digital public displays have come a long way from a static
advertising medium to ubiquitous, networked screens that en-
able engaging experiences through interactive content. Today,
different interaction modalities are commonly used, includ-
ing touch, mid-air gestures, and smartphone-based interac-
tion [11]. In particular, we see potential in the latter modality
for that it does not require additional technology to be de-
ployed at the display (touch surface, depth sensor, etc.).

At the same time, smartphone-based interaction infers sev-
eral challenges, both for the user as well as for the display

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PerDis ’16, June 20-22, 2016, Oulu, Finland
2016 ACM. ISBN 978-1-4503-4366-4/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2914920.2915026

Figure 1: Unified Remote as an example for a native remote control ap-
plication.

provider. From a user perspective, current solutions usually
require downloading and installing a native application that
serves as a remote control. Solutions range from generic re-
mote controls apps (e.g., Unified Remote1, depicted in Fig-
ure 1, or HippoRemote2) to mobile applications that integrate
with a display application [1, 2]. Such tedious download and
installation processes can even be necessary for different ap-
plications and for different screens. For providers, the obvi-
ous drawback of native apps is the need to develop them for
multiple mobile platforms and that the functionality needs to
be re-implemented for each application.

As a solution to these challenges, we present ATREUS3 (Ad-
vanced web Technologies for REmotely controlling Ubiq-
uitous Screens), a web-based open source framework that
simplifies the dynamic provisioning of novel remote con-
trols for multi-application displays. The framework provides
high-level methods to exchange remote control commands
and feedback by an interactive display application. Utiliz-
ing the manifold features of HTML5, advanced platform-
independent mobile controls can be realized.

Stakeholders can benefit from this approach in several ways.
For display providers, the costs of development, customiza-

1http://www.unifiedremote.com/
2http://hipporemote.com/
3https://bitbucket.org/matbal/atreus

The 5th International Symposium on Pervasive Displays (PerDis'16)

175

tion, and maintenance of native applications for several plat-
forms is reduced. Application developers can focus on the
actual interactive service instead of caring about the commu-
nication with and management of mobile devices. Users can
be provided easy means to interact with a display, for exam-
ple by scanning a QR code that directs to a website with the
remote control functionality. And finally, also researchers can
benefit, since the framework enables rapid prototyping of mo-
bile remote controls and display applications without the need
for re-compiling in short iteration cycles.

The contribution of this work is twofold. First, we describe
the framework architecture and the implementation of ad-
vanced demonstrators which partly have been realized as
native applications only so far. Second, we present lessons
learned for the development of web-based remote controls
and report on user feedback gained in an informal pilot study.

RELATED WORK
Our work draws from several strands of prior research, most
importantly mobile interaction with displays and toolkits used
in the context of interactive screens.

Mobile Interaction with Public Displays
Smartphones and feature phones have been used in different
ways for interaction with large displays [6, 10]. Basic forms
include using the traditional communication functionality of
the device. For example, SMS has been used for text-based
control of a display [13].

More sophisticated applications use smartphones as remote
controls. For example, Vajk et al. used the accelerometers of
a smartphone in a native application to control a racing game
on a remote screen [20]. In a similar vein, Pietroszek et al.
exploit built-in orientation sensors to enable various opera-
tions in a 3d environment on a distant screen through a smart-
phone [16]. An example for direct interaction is TouchProjec-
tor, where remote displays could be controlled by using the
mobile device as a “Smart Lens”, i.e. remote content could be
manipulated through the live video image on the mobile de-
vice [7]. Sahami et al. used the flashlight of a phone to create
a novel pointing device [19].

She et al. suggested to use the smartphones’ accelerometers
to detect gestures and hence indicate the selection of items
on a display [18]. The user experience and performance of
different remote control approaches was investigated by Bal-
dauf et al. [3]. They compared touchpad-like and pointing-
based smartphone controls with advanced techniques such as
the camera-based Smart Lens approach.

Purely browser-based approaches for interacting with screens
through a mobile device are scarce and are either isolated
proof-of-concept applications such as a maze game4 or a
sports game5 by Google or are restricted to simple non-
dynamic use cases such as submitting a vote [5]. Most re-
lated to the work presented in this paper is uCanvas [12], a

4https://chrome.com/maze/
5https://chrome.com/supersyncsports/

recent Web-based framework for using smartphones as ges-
tural controllers for applications on a distant screen. In con-
trast, ATREUS does not focus on a particular type of remote
control but enables different further kinds of advanced remote
controls.

Toolkits for Display Applications
A number of toolkits and frameworks has been proposed with
the aim to facilitate developing applications for interactive
public displays.

For example, Cardoso et al. presented PureWidgets, a web-
based toolkit that supports the development of interactive
multi-display applications [9]. Their focus is on facilitating
the creation of the UI by means of web-based widgets rather
than on interaction. Linden et al. developed a web-based
framework with the aim to facilitate the dynamic partition-
ing of screen real estate into virtual screens to concurrently
run applications on an interactive display [15]. Schneegass et
al. presented SenScreen, a toolkit to support the use of display
sensors by multiple applications [17]. Realizing interaction is
left to the designer of each application.

A technical approach similar to ATREUS was presented by
Cardoso and Barreira [8]. Their public display toolkit also en-
ables web-based smartphone controls, however, is currently
restricted to basic remote controls such as a preliminary joy-
stick control or text input. Finally, the Tandem Browsing
Toolkit [14] allows building web applications with additional
“virtual screens” to be displayed concurrently on mobile de-
vices. The toolkit focuses on collaborative browsing and or-
chestrating navigation through online content. In contrast,
ATREUS emphasizes the creation of advanced mobile remote
controls which support streaming of commands for highly dy-
namic interactive applications.

While prior research focused on creating the UI and on pro-
viding raw sensor data, we present a toolkit that focuses on
smartphones as universal input devices and enables realizing
advanced remote controls in a platform-independent manner.

DESIGN REQUIREMENTS
At the outset of our research, we identified design require-
ment for the framework. The requirements are based on a lit-
erature review in Google Scholar with the keywords “smart-
phone mobile handheld interaction public screen” and an
analysis of available native apps in Google’s Play Store with
the keywords ”remote control gamepad”. Additionally, we
drew requirements from own experiences in creating remote
control prototypes for mobile devices [1, 2, 3, 5].

R1. Web-based user interfaces. This is the most central re-
quirement of the presented framework. To realize the afore-
mentioned benefits for developers and display operators, the
ATREUS framework should allow for the development of re-
mote controls as web pages, i.e. using common web technolo-
gies such as HTML, CSS, and JavaScript.

R2. Stream-based bidirectional communication. Instead of
single commands, the framework should allow for quick se-
quences of remote control commands to support highly dy-
namic applications such as games and enable feedback by the

The 5th International Symposium on Pervasive Displays (PerDis'16)

176

Interactive Application

WebSocket Client

API Action Emulator

WebSocket Server

Remote Control Handling

Touch and Sensor Processing

Command Generation

Remote Control UI

WebSocket

WebSocket
channels

M
o

b
ile

 L
ib

ra
ry

P
la

tf
o

rm

Figure 2: ATREUS architecture overview: The ATREUS Platform han-
dles incoming commands and provides them to the interactive applica-
tion running on the display. The Mobile Library enables the communica-
tion with the platform and contains methods to create control messages.

application. Such feedback could include vibration in case a
player’s character was hit or coupons in case a new high score
was reached.

R3. Formalization of commands. Due to the lack of a suit-
able open protocol, we aim for a simple and generic way to
formalize and exchange remote control commands between
mobile devices and a remote application.

R4. Direct integration through API. Developers of appli-
cations for a public display should be able to add interactive
features by connecting to the ATREUS framework through an
easy-to-use Application Programming Interface (API).

R5. Support of legacy applications. For supporting exist-
ing applications and extending them with mobile remote con-
trols, the framework should provide means to externally con-
trol such legacy applications, for example, by emulating re-
spective key presses or mouse actions.

R6. Multi-user support. Our framework must provide meth-
ods to separate and react on commands issued from different
mobile devices. Enabling interactive applications with sev-
eral concurrent users is obviously one of the key advantages
of handheld-based screen interactions over alternatives such
as touch- or gesture-based approaches.

BASIC ARCHITECTURE
Similar to prior native approaches, we follow a typical
client-server model (Figure 2): the server component, called
ATREUS Platform, is executed on the computer hosting the
large screen and features a QR code generator to enable the

pairing process. Building mobile clients is facilitated through
the ATREUS Mobile Library. These two components ex-
change commands via a WebSocket channel, a TCP-based
full-duplex communication protocol implemented by modern
web browsers. Information about commands is structured in
the text-based JSON (JavaScript Object Notation) format, a
de-facto standard for data-interchange in web applications.
Advanced remote controls can open additional WebSocket
channels for dedicated tasks (see examples in next section).

Platform
The ATREUS platform is implemented in Java. A Jetty6

server receives commands from mobile clients. Jetty provides
an open source HTTP web server and supports various exten-
sions such as WebSockets. We encapsulated all central server-
side functions in form of the AtreusServer class which can be
easily integrated into applications to allow access from mo-
bile clients and thus to enable interactive smartphone features.
We applied the common observer pattern to specify opera-
tions to be triggered in case of relevant events such as incom-
ing commands or a recently joining or leaving mobile client.
Typically, commands are mapped to suitable key presses as
specified in a configuration file by an Action Emulator.

Each exchanged command contains an interaction type (for
example, button, touch, orientation, acceleration), an action
(for example, up, down, move), the id of the associated UI el-
ement, a coordinate triple (typically for the touch point), and a
multi-purpose value array (for example, for sensor data). Fur-
thermore, each of these objects features a combination of IP
and port of the source device as client identifier to distinguish
different devices for multi-user applications.

To allow for bidirectional communication, we considered a
feedback mechanism. ATREUS provides different types of
feedback messages such as a TextMessage for transmitting
simple text (for example, ‘thank you’ after participation) or a
VibrationMessage for triggering the device’s vibration mod-
ule in a specified timely pattern (for example, in case the
player’s game character was hit).

Such feedback messages can be either broadcasted to all con-
nected clients or be targeted at a specific client. Due to this
feedback mechanism, the application logic stays on the plat-
form side and the mobile code remains lean. There is no need
to duplicate logic parts for the mobile clients (for example,
the calculation of a game score) since those can be easily syn-
chronized by pushing important information through textual
feedback messages.

Mobile Library
The Mobile Library is written in JavaScript and can be in-
tegrated in web pages to enable communication with the
ATREUS platform. It contains convenient methods to con-
nect to the platform, create control messages and send them to
the platform. For example, a typical gamepad control would
call the library’s createMobileAction and sendMobileAction
each time a button is pressed, to create a JSON-formatted text

6http://eclipse.org/jetty/

The 5th International Symposium on Pervasive Displays (PerDis'16)

177

(a) An on-screen gamepad to control a platform game. (b) Steering a racing car by tilting the device.

(c) A touch-enabled miniature view in full-screen mode. (d) Interacting with the screen through the camera viewfinder.

Figure 3: Using the ATREUS framework, we prototyped four web-based remote controls as demonstrators: Gamepad (a), Driving Wheel (b), Mini
Video (c), and Smart Lens (d).

string including central control parameters and submit it to
the platform.

Further methods allow the data of built-in sensors, such
as accelerometers, to be continuously streamed to the plat-
form. For processing feedback messages from the plat-
form, the mobile library offers a basic listener concept. The
functions addVibrationEventListener(func) and addSoundE-
ventListener(func) can be used to override the default behav-
ior (vibrating and playing an audio file) with custom func-
tions, addTextEventListener(func) specifies the handling of an
incoming textual feedback.

DEMONSTRATORS
To demonstrate the basics of the described framework and
show how to extend it with custom components for advanced
remote controls, we built four functional prototypes (Fig-

ure 3) which were implemented as native apps in prior work
(e.g., [3, 7, 20]).

Button-based Remote Controls
Realizing button-based remote controls, such as the on-screen
gamepads (Figure 3a), is straightforward: when a touch is reg-
istered through the respective JavaScript calls, we create cor-
responding control messages through the mobile library (for
example, one control message for each direction of a 4-way
directional pad and two for two action buttons) and send them
to the platform.

Driving Wheel
As an example for a remote control exploiting the built-in
sensors of a smartphone, we realized a driving wheel for con-
trolling a remote racing game by tilting the smartphone (see
Figure 3b). A control message containing raw accelerometer
values is generated and transmitted to the platform each time

The 5th International Symposium on Pervasive Displays (PerDis'16)

178

the orientation of the device changes. At the platform, the val-
ues can be either translated to key presses when pre-defined
tilt thresholds are reached (for example, the right cursor key
is pressed when the tilt value is larger than 20 degrees) or, for
a more realistic user experience, used to emulate continuous
movements through a virtual joystick driver such as vJoy7.

Mini Video
For realizing the Mini Video technique (a touch-sensitive
miniature version of the remote screen content), we applied
a separate WebSocket channel in addition to the one dedi-
cated to exchanging remote control and feedback commands.
This channel is purely used for distributing the content of the
remote screen: A custom component at the platform contin-
uously takes screenshots and encodes the binary image data
into Base64 text strings which are sent over this second chan-
nel to connected mobile clients. This binary-to-text encoding
step on the platform helps to reduce the computational efforts
on the mobile devices since Base64-encoded images can be
directly displayed using so-called Data URIs8.

Depending on the required video quality, the size of the origi-
nal screenshot can be reduced for quicker encoding and trans-
mission. For example, for the Mini Video control depicted in
Figure 3c the platform shrinks the original screenshot images
by a factor of 0.5 while the mobile browser simply scales up
these miniatures to full-screen using Cascading Style Sheets
(CSS). The current prototype runs at 10 frames per second
on a Nexus 4 device in an 802.11n WiFi network. Since the
mobile web application is aware of the dimensions of the re-
mote screen due to an initial welcome message, touches on
the video can be mapped to actual screen coordinates and re-
spective control commands created and sent to the platform.

Smart Lens
The most advanced remote control currently built with the
ATREUS framework is the Smart Lens technique (Figure 3d).
This recent input method enables interaction with a remote
screen by targeting it through the camera viewfinder of the
mobile device and pushing remote buttons by touching them
on the mobile live video. It is typically realized by means of
computer vision to match the camera frames with the current
content of the remote screen and thus to map touches on the
mobile display to according positions on the remote screen.

Camera access for web applications is enabled by the
WebRTC (Web Real-Time Communication) API for voice
calls and video chats. Instead of a continuous visual track-
ing of the screen content on the mobile device, we decided on
a computationally less intensive implementation for our web-
based version (cf. [4]). Besides sending the touch position in
mobile display coordinates, we use a second (binary) Web-
Socket channel to transmit the current camera video frame as
soon as the user touches the mobile display. Gaining access to
the frame is currently only possible through a work-around:
each camera frame needs to be drawn to a canvas acting as
the viewfinder where it can be retrieved from in compressed
JPG format as Data URI.
7http://vjoystick.sourceforge.net/
8https://developer.mozilla.org/en-US/docs/web/HTTP/data URIs

After the transmission of the camera frame, a custom compo-
nent at the platform side is responsible for creating a screen-
shot and comparing these two images. For this task, we use
BoofCV9, an open source Java library for real-time computer
vision. For the Nexus 4 device connected in an 802.11n WiFi
network, our current implementation takes about one second
to translate a touch on the viewfinder (frame size 800x600) to
the corresponding remote action.

LESSONS LEARNED
In this section, we summarize lessons learned during the de-
velopment and testing of the ATREUS demonstrators. In par-
ticular we highlight challenges of providing web-based re-
mote controls compared to native counterparts.

Browser support. We tested all demonstrators on iOS and
Android, using the most recent mobile versions of Safari,
Chrome, Firefox and Opera. All browsers provide the re-
quired methods to process touch events, access built-in sen-
sors, display inline images, and establish WebSocket connec-
tions and thus supported the remote controls Gamepad, Driv-
ing Wheel, and Mini Video well.

The Smart Lens control requires access to the smartphone’s
camera. While this is fully supported by Chrome and Opera,
the mobile Safari browser currently does not provide the
HTML5 functions to infer information about built-in cameras
and access them. Firefox Mobile is able to open the camera
and show its video stream. However, in our implementation it
fails to access single video frames. Even when browsers pro-
vide WebRTC support, developers should be aware of varying
behaviors on different browsers. For example, Opera Mobile
shows a menu for choosing between the front and the back
camera while in many browsers the front camera (video tele-
phony as the major use cases) is the default camera.

Permissions. One peculiarity of web applications are
browser-initiated permission prompts. In contrast to native
apps, permissions for security- or privacy-relevant features
such as camera access can not be granted once during installa-
tion but need to be confirmed by the users each time they use
the application. Similarly, modern mobile web browsers sup-
port switching to full-screen mode (i.e., hiding the browser’s
address bar) to enable a more native app-like experience, yet
prompt a permission request.

Furthermore, a web application can currently only switch to
full-screen mode after an explicit interaction by the user such
as a button press. Thus, starting a remote control in full-screen
by default is not possible, yet not a crucial requirement.

Placement of Controls. While for a native application soft
buttons for system operations (such as the “back” button in
Android) can be disabled, this is not possible for a web ap-
plication. During fast-paced games, players may hit system
buttons by mistake and close the browser, for example. Thus,
buttons of a web-based remote control should not only con-
form to well-known minimum sizes for touch elements but
should also not be placed close to system buttons to avoid
unintentional hits.
9http://boofcv.org/

The 5th International Symposium on Pervasive Displays (PerDis'16)

179

Screen Rotation. For tilt-based remote controls, designers
need to consider the mobile platform’s default screen rotation
settings. Expansive gestures (with the Driving Wheel control,
for example) may trigger an automated screen re-arrangement
from landscape to portrait orientation. Consequently, poten-
tial on-screen buttons appear at different screen positions,
making them more difficult to hit.

Hence, tilt-based controls should either not use touch ele-
ments or screen re-orientations should be detected and man-
aged accordingly (by cleverly relocating touch elements, for
example).

EVALUATION
To gain first insights on how users perceive these web-based
remote controls, we conducted an informal user study with
15 users in our institution’s user experience lab. We invited
participants with diverse educational backgrounds and asked
them to use the aforementioned prototypes to control a simple
game on the remote screen for about 15 minutes. Finally, they
were asked about their opinions on these web applications in
a qualitative interview afterwards.

From a performance perspective, we found all our remote
controls to run smoothly, leading to participants did not com-
plain about reaction times. Furthermore, we were interested
in the participants’ preference if given the choice to use a
web-based control versus a native control application. Eight
out of 15 participants stated to not care about the underlying
technology. For example P5 stated “I don’t care about the
technology as long as it works.” whereas P11 mentioned that
“If there are no differences in functionality or costs, it’s all the
same to me.”. Two participants stated to prefer such web ap-
plications. Participants justified their decision by statements
such as “No download, no installation, that’s convenient.”
(P12) and “The web app doesn’t need any storage space.”
(P3).

One participant with experience in software development
raised trustworthiness as an additional advantage of web apps
over native applications and stated “I would rather trust in
a web application since I can browse its source code.” (P2).
Finally, five participants stated to prefer native counterparts.
Statements included “I prefer a native app because I have to
install it only once. A browser-based application needs to be
downloaded each time I want to use it.” (P5) and “I rather
like a native app because it does not need a constant data
connection.” (P6).

The last comment hints at a potential challenge: users may
associate costs (i.e., the need for an Internet connection) with
using a browser-based control compared to using a native app.
In fact, both types could be implemented in a way such that
no Internet connection is required at all, for example by using
a local wireless network.

As solution, for an interactive display application, a WiFi net-
work (without Internet connectivity) could be provided that
users can connect to. This provides a convenient way of ac-
cessing the remote control, as the router could immediately
direct to the URL for the remote control.

CONCLUSIONS AND OUTLOOK
In this paper, we investigated current opportunities and draw-
backs of realizing web-based remote controls for smart-
phones. We introduced ATREUS, an open source frame-
work for realizing advanced browser-based remote controls
for smartphones to control interactive applications on remote
screens. Based upon the basic framework, we presented four
demonstrators including sophisticated remote controls such
as the Mini Video and the Smart Lens technique which pre-
viously were realized as native apps. Experiments with these
prototypes and an informal study yielded useful overall in-
sights on the design of web-based remote controls for smart-
phones.

After these first proof-of-concept prototypes, we see the op-
timization of the visual remote controls as promising future
work. Our current Mini Video implementation could be en-
hanced by integrating efficient web-suitable codecs for en-
abling smoother video streaming. Recent advancements in
web-based computer vision (e.g., tracking.js10) could enable
the continuous tracking of the remote content by the Smart
Lens and help to create more seamless interactions and real-
ize more complex use cases in the future.

After our pilot study with users, we plan to invite developers
to gain feedback on the API design and assess its usability.
Further, we expect to receive suggestions for potential exten-
sions in brainstorming sessions.

ACKNOWLEDGMENTS
This work has been carried out within the project ATREUS
financed by the netidee initiative of the Internet Foundation
Austria (IPA).

REFERENCES
1. Florian Alt, Thomas Kubitza, Dominik Bial, Firas

Zaidan, Markus Ortel, Björn Zurmaar, Tim Lewen,
Alireza Sahami Shirazi, and Albrecht Schmidt. 2011.
Digifieds: Insights into Deploying Digital Public Notice
Areas in the Wild. In Proceedings of the 10th
International Conference on Mobile and Ubiquitous
Multimedia (MUM ’11). ACM, New York, NY, USA,
165–174. DOI:
http://dx.doi.org/10.1145/2107596.2107618

2. Florian Alt, Alireza Sahami Shirazi, Thomas Kubitza,
and Albrecht Schmidt. 2013. Interaction techniques for
creating and exchanging content with public displays. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1709–1718. DOI:
http://dx.doi.org/10.1145/2470654.2466226

3. Matthias Baldauf, Peter Fröhlich, Jasmin Buchta, and
Theresa Stürmer. 2013. From Touchpad to Smart Lens:
A Comparative Study on Smartphone Interaction with
Public Displays. IJMHCI 5, 2 (2013), 1–20. DOI:
http://dx.doi.org/10.4018/jmhci.2013040101

4. Matthias Baldauf, Peter Fröhlich, and Peter Reichl.
2010. Touching the untouchables: Vision-based

10http://trackingjs.com/

The 5th International Symposium on Pervasive Displays (PerDis'16)

180

http://dx.doi.org/10.1145/2107596.2107618
http://dx.doi.org/10.1145/2470654.2466226
http://dx.doi.org/10.4018/jmhci.2013040101

real-time interaction with public displays through
mobile touchscreen devices. In Adj. Proceedings of the
8th International Conference on Pervasive Computing
(Pervasive10). Helsinki, Finland.

5. Matthias Baldauf, Stefan Suette, Peter Fröhlich, and
Ulrich Lehner. 2014. Interactive Opinion Polls on Public
Displays: Studying Privacy Requirements in the Wild. In
Proceedings of the 16th International Conference on
Human-computer Interaction with Mobile Devices &
Services (MobileHCI ’14). ACM, New York, NY, USA,
495–500. DOI:
http://dx.doi.org/10.1145/2628363.2634222

6. Rafael Ballagas, Jan Borchers, Michael Rohs, and
Jennifer G. Sheridan. 2006. The Smart Phone: A
Ubiquitous Input Device. IEEE Pervasive Computing 5,
1 (Jan. 2006), 70–77. DOI:
http://dx.doi.org/10.1109/MPRV.2006.18

7. Sebastian Boring, Dominikus Baur, Andreas Butz, Sean
Gustafson, and Patrick Baudisch. 2010. Touch Projector:
Mobile Interaction Through Video. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 2287–2296. DOI:
http://dx.doi.org/10.1145/1753326.1753671

8. Jorge C. S. Cardoso and Maria Barreira. 2014. A
Web-based Toolkit for Remote Direct Manipulation
Interaction with Public Displays via Smartphones. In
Proceedings of the 11th International Conference on
Mobile and Ubiquitous Systems: Computing,
Networking and Services (MOBIQUITOUS ’14).
357–358. DOI:http://dx.doi.org/10.4108/icst.
mobiquitous.2014.258067

9. Jorge C. S. Cardoso and Rui José. 2012. Creating
Web-based Interactive Public Display Applications with
the PuReWidgets Toolkit. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous
Multimedia (MUM ’12). ACM, New York, NY, USA,
Article 55, 4 pages. DOI:
http://dx.doi.org/10.1145/2406367.2406434

10. Sarah Clinch. 2013. Smartphones and Pervasive Public
Displays. IEEE Pervasive Computing 12, 1 (2013),
92–95. DOI:
http://dx.doi.org/10.1109/MPRV.2013.16

11. Nigel Davies, Sarah Clinch, and Florian Alt. 2014.
Pervasive Displays: Understanding the Future of Digital
Signage. Morgan & Claypool Publishers. DOI:http:
//dx.doi.org/10.2200/S00558ED1V01Y201312MPC011

12. Tilman Dingler, Tobias Bagg, Yves Grau, Niels Henze,
and Albrecht Schmidt. 2015. uCanvas: A Web
Framework for Spontaneous Smartphone Interaction
with Ubiquitous Displays. In Human-Computer
Interaction–INTERACT 2015. Springer, 402–409. DOI:
http://dx.doi.org/10.1007/978-3-319-22698-9_27

13. Aiman Erbad, Michael Blackstock, Adrian Friday,
Rodger Lea, and Jalal Al-Muhtadi. 2008. MAGIC
Broker: A Middleware Toolkit for Interactive Public

Displays. In Proceedings of the 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and
Communications (PERCOM ’08). IEEE Computer
Society, Washington, DC, USA, 509–514. DOI:
http://dx.doi.org/10.1109/PERCOM.2008.109

14. Tommi Heikkinen, Jorge Goncalves, Vassilis Kostakos,
Ivan Elhart, and Timo Ojala. 2014. Tandem Browsing
Toolkit: Distributed Multi-Display Interfaces with Web
Technologies. In Proceedings of The International
Symposium on Pervasive Displays (PerDis ’14). ACM,
New York, NY, USA, Article 142, 6 pages. DOI:
http://dx.doi.org/10.1145/2611009.2611026

15. Tomas Linden, Tommi Heikkinen, Timo Ojala, Hannu
Kukka, and Marko Jurmu. 2010. Web-based Framework
for Spatiotemporal Screen Real Estate Management of
Interactive Public Displays. In Proceedings of the 19th
International Conference on World Wide Web (WWW
’10). ACM, New York, NY, USA, 1277–1280. DOI:
http://dx.doi.org/10.1145/1772690.1772901

16. Krzysztof Pietroszek, James R. Wallace, and Edward
Lank. 2015. Tiltcasting: 3D Interaction on Large
Displays Using a Mobile Device. In Proceedings of the
28th Annual ACM Symposium on User Interface
Software & Technology (UIST ’15). ACM, New York,
NY, USA, 57–62. DOI:
http://dx.doi.org/10.1145/2807442.2807471

17. Stefan Schneegass and Florian Alt. 2014. SenScreen: A
Toolkit for Supporting Sensor-enabled Multi-Display
Networks. In Proceedings of The International
Symposium on Pervasive Displays (PerDis ’14). ACM,
New York, NY, USA, Article 92, 6 pages. DOI:
http://dx.doi.org/10.1145/2611009.2611017

18. James She, Jon Crowcroft, Hao Fu, and Pin-Han Ho.
2013. Smart Signage: An Interactive Signage System
with Multiple Displays. In Proceedings of the 2013
IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing
(GREENCOM-ITHINGS-CPSCOM ’13). IEEE
Computer Society, Washington, DC, USA, 737–742.
DOI:http://dx.doi.org/10.1109/
GreenCom-iThings-CPSCom.2013.133

19. Alireza Sahami Shirazi, Christian Winkler, and Albrecht
Schmidt. 2009. Flashlight interaction: a study on mobile
phone interaction techniques with large displays. In
Proceedings of the 11th International Conference on
Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’09). ACM, New York, NY, USA,
Article 93, 2 pages. DOI:
http://dx.doi.org/10.1145/1613858.1613965

20. Tamas Vajk, Paul Coulton, Will Bamford, and Reuben
Edwards. 2008. Using a mobile phone as a Wii-like
controller for playing games on a large public display.
International Journal of Computer Games Technology
2008 (2008). DOI:
http://dx.doi.org/10.1155/2008/539078

The 5th International Symposium on Pervasive Displays (PerDis'16)

181

http://dx.doi.org/10.1145/2628363.2634222
http://dx.doi.org/10.1109/MPRV.2006.18
http://dx.doi.org/10.1145/1753326.1753671
http://dx.doi.org/10.4108/icst.mobiquitous.2014.258067
http://dx.doi.org/10.4108/icst.mobiquitous.2014.258067
http://dx.doi.org/10.1145/2406367.2406434
http://dx.doi.org/10.1109/MPRV.2013.16
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011
http://dx.doi.org/10.1007/978-3-319-22698-9_27
http://dx.doi.org/10.1109/PERCOM.2008.109
http://dx.doi.org/10.1145/2611009.2611026
http://dx.doi.org/10.1145/1772690.1772901
http://dx.doi.org/10.1145/2807442.2807471
http://dx.doi.org/10.1145/2611009.2611017
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.133
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.133
http://dx.doi.org/10.1145/1613858.1613965
http://dx.doi.org/10.1155/2008/539078

