Squaring the Circle: How Framedness influences User Behavior around a Seamless Cylindrical Display

Gilbert Beyer, Florian Köttner, Manuel Schiewe, Ivo Haulsen, Andreas Butz

University of Munich and Fraunhofer FOKUS

Shaped Displays

HASE

CHASE

CHASE

HASE

EHAS

ISON REU

Digital Advertising Column

Audience behavior

Defining qualities of shaped displays

Form Factor / Framedness / Seamlessness

Q1: Form Factor

SHAPE primitive / complex

PLANARITY flat / non-flat

CURVATURE concave / convex

SURFACE ROUGHNESS

Page 6 of 51

Cylinder

Page 7 of 51

Circular Cylinder

Page 8 of 51

Polygon (Octagon)

*For a hexagon see Koppel et al. 2012

Surface Roughness

Q2: Framedness

FRAMED DISPLAYS

4 boundaries

SEMI-FRAMED DISPLAYS 2 boundaries

UNFRAMED DISPLAYS 1-0 boundaries

Page 11 of 51

Semi-framed (curved)

Page 12 of 51

Semi-framed (flat)

Page 13 of 51

Q3: Seamlessness

NO EDGES

NO BEZELS

NO FRAMES

Page 14 of 51

Q3: Seamlessness

The same? Or producing different user behavior?

User positions and constellations

Column Display

Interaction / Hardware / Challenges

Interaction Principle

Communicating the interactivity by means of an unaware or implicit initial interaction

Frontal approachers

Unaware initial interaction using a space-saving user representation

Tangential passers-by

Unaware initial interaction using particles appearing slightly ahead

Design Challenges

SEAMLESS INTERACTION within a circular space

SEAMLESS CONTENT not affecting positions

UNBIASED INTERACTION STYLE no specific poses

COMPUTING POWER 8 Kinects

Page 22 of 51

Multi-Kinect load

name	core count	core clock	1	2	3	4
Core 2 Duo (Allendale , Conroe, Melom)	2	up to 2.8 GHz				
Core 2 Quad	4	up to 2.8 GHz				
Core 2 Quad	4	from 3.0 GHz				
Core 2 Duo (Wolfdale)	2	up to 2.8 GHz				
Core 2 Duo (Wolfdale)	2	from 3.0 GHz				
Core i7 (Bloomfield)	4	up to 3.0 GHz				
Xeon	2	up to 2.6 GHz				
Xeon	4	from 2.8 GHz				
Core i7 (Nahelem)	4(8)	2.5 - 3.3 GHz				
Core i5 (Nahelem)	4	2.5 - 2.8 Ghz				
Core i5 (Westmere)	2(4)	3.2 - 3.6 GHz				
Core i3 (Westmere)	2	2.9 - 3.3 GHz				
Core i5 (Sandy-Bridge)	4	2.5 - 3.3 GHz				
Core i7 (Sandy-Bridge)	4(8)	2.8 - 3.6 GHz				
Core i3 (Sandy-Bridge)	2(4)	2.5 – 3.3 GHz				
Core i3 (Ivy-Bridge)	2(4)	2.8 - 3.4 GHz				
Core i5 (Ivy-Bridge)	4	2.7 – 3.4 GHz				

Hardware Setup

distributed system exchanging depth and skeleton data

integrating Kinects as unobtrusively as possible

Hardware Setup

distributed system exchanging depth and skeleton data

integrating Kinects as unobtrusively as possible

Conditions / Design / Data collection

Condition 1: Unframed Column

Seamless content and interaction

Condition 2: Framed Column

Frames were just a visual overlay over the seamless content

Four-week deployment

Data Collection

FIELD RATER (hidden)

VIDEO-REC. 220 hours

LOGGING

data assessed by Kinects

INTERVIEWS

semi-structured after the study

Scoring Positions

Nesting Behaviors

Page 31 of 51

Results

General / Conditions / Post-hoc analysis

762 interactions and 205 people watching others within 33 hour sample

40.9 seconds average interaction interval length

Initial interaction: already reacting from a distance if approaching frontally – later when deviating

Pairs and groups interacted untiringly, but singles devoted as well

All kind of human behavior between cooperation, competition, self-activity

Conditions

Observations: unframed condition

Users assumed diverse positions, dispersed around the column to assume an active role

Observations: framed condition

Significant association between frame and whether users assumed a central position

Observations: framed condition

Nested behaviors: Users reposition themselves when starting to interact

Observations: pairs and groups

Unframed condition: comfortable distances between users

Observations: pairs and groups

Framed condition: Conflicts when interacting in front of the same frame or cooperating between neighboring frames

Interviews

Out of 79 interviewees

- most assumed purpose was entertainment
- most could reproduce detailed functionality
- only 1 recalled the presence of the frames

Interpretation

Columns / Framedness / Seamlessness Framedness significantly influences user positioning

around more complex display shapes The basic shape should not be considered in isolation

> when designing for new display shapes

Blindness for the Frames

Advantages or otherwise

CLOSE-BY INTERACTION avoid frames

MAXIMIZING USERS avoid frames

POSITIONING USERS use frames

REGULATING DISTANCE use or avoid frames

Seamless displays: more options

Virtual frames already performed well to draw users to a position

Outlook: visual moderation

Actively shaping the audience by dynamically employing virtual frames?

Discussion

gilbert.beyer@ifi.lmu.de