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ABSTRACT / ZUSAMMENFASSUNG 

 
Abstract 

 
Several instrumented environments have been implemented in different research laboratories 
during the past years. Their objective is to create simulations for ubiquitous computing which 
can be used to test certain scenarios. This paradigm is descriptive for the idea of computers 
appearing almost invisible to users while being available on any spot. 

For further insight on how to display information in the environments mentioned above, the 
need of interaction with those emerges. Thanks to the desktop metaphor this is not a problem for 
pure display devices like computer monitors. For displaying them throughout a whole room, 
however, new interaction techniques have to be created in order to modify digital information 
directly. 

This thesis is to present such an interaction technique. It will show how an entire wall can 
serve as one single display on which users can interact with it by hand. To achieve that, several 
graphical display technologies will be combined to depict information on the wall’s surface. 
Additionally, cameras that enable the interaction are to be installed. Since the size of the wall 
will allow multiple users to stand in front of it, potentials of multi-user bimodal interaction will 
be gained. 

The combination of divers technologies makes it possible to have the wall act as an 
interactive surface with different finesses. It enables users to selectively modify detailed 
information while having an overview of the whole content. The actual combination of 
technologies remains incognizable to them, resulting in one sole system in their imagination. 
 
 
 

 
Zusammenfassung 

 
Während der letzten Jahre wurden mehrere instrumentierte Umgebungen in verschiedenen 
Forschungslabors erschaffen. Ziel dieser ist es, Simulationen für allgegenwärtige Computer zu 
geben, in denen bestimmte Szenarien getestet werden können. Dieses Paradigma beschreibt die 
Fähigkeit von Computern für den Benutzer nahezu unsichtbar und überall verfügbar zu sein. 

Eine weitere Frage besteht darin, wie Informationen in solchen Umgebungen angezeigt 
werden können. Basierend darauf entsteht zusätzlich der Bedarf an Interaktion mit diesen. Auf 
reinen Anzeigegeräten, wie zum Beispiel Bildschirmen ist dies mit der Desktop-Metapher kein 
großes Problem. Spricht man jedoch von der Darstellung in ganzen Räumen müssen neue 
Interaktionsmöglichkeiten geschaffen werden, die es dem Benutzer erlauben, digitale 
Informationen direkt zu verändern. 

Diese Arbeit präsentiert eine solche Interaktionsmöglichkeit. Es wird gezeigt, wie eine 
gesamte Wand als einziger Bildschirm dienen kann mit dem Benutzer mit ihren bloßen Händen 
interagieren können. Hierzu werden verschiedene, grafische Ausgabetechnologien kombiniert, 
damit auf der gesamten Wand Informationen dargestellt werden können. Zusätzlich werden 
Kameras montiert, welche die Interaktion damit ermöglichen. Da diese Wand durch ihre Größe 
die Möglichkeit bietet, dass mehrere Benutzer gleichzeitig vor ihr stehen können, werden 
außerdem Möglichkeiten für eine Vielzahl von Benutzern geschaffen, die wiederum mit beiden 
Händen arbeiten können. 

Durch die Kombination verschiedener Technologien ist es möglich, die gesamte Wand als 
eine einzige interaktive Fläche zu gestalten. Diese beinhaltet verschiedene Feinheitsgrade der 
Interaktion und ermöglicht den Benutzern gezielt detaillierte Informationen zu verändern 
während sie den Überblick über den gesamten dargestellten Inhalt besitzen. Den Benutzern 
selbst bleibt durch das vorgestellte System die Kombination der Technologien jedoch 
verborgen. 
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in the basement of Amalienstrasse 17, will, for example, contain three large back projection 
displays next to each other, covering the full width of a wall. In addition, a steerable projector 
can display objects directly on the wall above and below the displays. While the middle 
display will be interactive by itself (SmartTech SmartBoard), we need a form of interaction 
for the rest of the wall. The overall setup will then form a large focus-and-context display 
with exact interaction on the middle display and coarser interaction on the side displays and 
on the wall. 

The idea how to build the coarse interaction is to place four fire wire cameras in the four 
corners of the wall, so that they look flatly over the wall along the diagonal. Within the 
camera images, we just look at the 2-5 rows of pixels which show the area immediately close 
to the wall. If a user touches the wall with a hand, each of these cameras will see a few pixels 
of different color in this row, suggesting in which direction the hand is seen. From the four 
patterns (actually already from two of them), the position of the hand on the wall can then be 
inferred more or less exactly. If we observe several rows, it might be possible to detect and 
distinguish a hand hovering over the wall. 
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praktikum), connect them to a PC, and write software to read them out, analyze the necessary 
part of the image, and calculate one or several hypotheses for hand positions at interactive 
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PREFACE 

Preface 

ABOUT THIS WORK: This thesis has been written as Diplomarbeit (diploma thesis) at the 
Ludwig-Maximilians-Universität München (LMU), Lehr- und Forschungseinheit 
Medieninformatik during the past five months (November 2005 through March 2006). This 
work has been embedded in a research project named FLUIDUM and is part of its instrumented 
environment. FLUIDUM investigates interaction with different types of information within 
instrumented environments. For that purpose several displays embedded into a wall as well as a 
steerable projector mounted on the ceiling have been established. Different displaying 
techniques turn the entire wall into a display. The intention of this work is to solve the problem 
of interaction with such a large display for multiple users. 
 
STRUCTURE OF THIS THESIS: This thesis addresses various aspects of my work and is thus of 
interest for varying readers. I would like to give a short overview of the different audiences that 
might read this piece of work including the chapters that could be of interest to them. 

GENERAL READERS might not be familiar with ubiquitous computing and instrumented 
environments and should read chapters 1 and 2 to get a description and an overview of what 
has been done so far. Chapter 3 introduces the project FLUIDUM and explains the problem 
statement of this thesis followed by chapter 4 explaining the design decisions. Chapter 5 
describes the theory of finger recognition including a mathematical background whereas 
chapter 6 is explaining the system’s setup. Chapters 7 and 8 illustrate the implementations 
of both, the system and a demo application. The following two chapters give a summary of 
conclusions as well as future work. 

FUTURE DEVELOPERS should read chapters 5, 6 and 7 to get a deeper understanding of how 
the system has been built. Finally, chapters 9 and 10 will give a summary of the 
performance of the system and describe the desired future work. 

THE FLUIDUM TEAM should be familiar with chapters 1, 2 and 3. Chapter 4 is important to 
understand what hardware and software decisions have been made regarding this system. 
Furthermore, chapters 5, 6 and 7 are of interest to get an insight of how the system’s theory 
and of how the system has been implemented. Chapter 8 illustrates how applications can 
make use of the tracking system whereas chapters 9 and 10 show conclusions and future 
work. 
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Chapter 1  

Introduction 

With the new computing systems being faster, smaller and smarter, a new aspect has been 
formed, known as ubiquitous computing [55]. This new paradigm describes the ability of 
computers to be invisible to users while they support our everyday lives. One of many examples 
for this would be electronic devices integrated into a car that increase the convenience for the 
driver. These can be implemented as proximity sensors that open the door whenever a 
transducer gets within a certain distance of the car, for example. This paradigm also supports 
user activities in their original process. One example for this is a therapist using a paper-based 
technique which is then supported with a digital pen and paper to provide additional 
information. The therapist’s practice itself is not changed due to the integration of a computer 
system [21].  

Besides the paradigm of ubiquitous computing suggested by Weiser et. al., several other 
options for interfaces have been proposed, such as ambient [10] and pervasive computing [14]. 
All of them more or less describe the same function of computers: The computer should be a 
secondary device to the user, which is mainly invisible to him or her.  

To simulate ubiquitous computing in specific situations many instrumented environments 
have been implemented in different research laboratories during the past years. One of the major 
questions asked is how information can be displayed at different levels, as well as how users are 
able to interact with it. For this, many more or less applicable approaches to the problem exist. 

1.1 Instrumented Environments 

Due to restrictions of computational power in association with the computer’s size, the vision of 
ubiquitous computing cannot be realized today or in the near future. Thus, researchers need to 
implement specific environments where ubiquitous computing can be simulated in particular 
situations. One example of such an environment is a residential house augmented with sensors 
to test the paradigm in a real-life setting [15]. Other research groups use instrumented 
environments to simulate office or meeting situations [13]. All of them are, of course, 
prototypical settings which will not be used in real environments in the future. 

To ensure ubiquity, sensors and other tracking devices need to be integrated in those rooms 
in a way that the user will not recognize them. Thus, people in those rooms should not be 
equipped with any additional computing devices such as sensors. Instead, they usually bring 
their own computers, such as a laptop, a cell phone or a personal digital assistant (PDA). 
Furthermore, multiple sensors need to be integrated in an instrumented room, to allow 
interaction with the room that seems to be a single device to the user. 

One major question is how information can be displayed in such an environment, which 
needs to be highly interactive. Users should be able to modify digital information, which, for 
example, includes spatial arrangement across several displays using gestures as input [57]. This 
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is a major challenge in current computer science research. For this reason, display walls (several 
displays on a large wall) have been implemented in instrumented environments 
[12][16][20][27][33][42]. Most of them have been built as rear-projection displays. Those are 
equipped with additional sensing technologies to allow the noted interaction. This shows the 
prototypical setting as the envisioned screen will not be implemented in this way in most cases. 
Instead, researchers are interested in the effect of a wall-sized interactive display. In the future 
those displays might be realized as electronic wallpaper.  

Having multiple screens on a wall primarily relies on obsolete assumptions that have been 
made for desktop computers and screens. The most common one is a fixed screen size of a 
single desktop display where control elements of applications or even the operating system have 
a well-defined position and are easily accessible for a single user. This will not be true if every 
wall can act as an interactive display. One example of such a fixed position of a control is the 
Microsoft Windows “Start” button on the lower left of the screen. This is an unwanted situation 
if one is thinking about a wall with a large screen width. Thus, new display and interaction 
techniques need to be developed. One might think of a moveable menu realized by other display 
technologies such as steerable projectors, for example. 

The interaction on a large display wall is another major field in computer science. There are 
several solutions using different tracking and recognition methods whereas most of them are 
planned and designed for a fixed maximum screen size and are thus not scalable, due to 
technical or financial issues. For this reason, new technologies will be examined and 
implemented to figure out the benefits they have for instrumented environments. Additionally, a 
wall-sized display needs to allow interactions with more than one user. The main problem is 
that users do not want to be equipped with hardware as they enter the room. Instead, the room 
should already be aware of the user’s position and the actions s/he wants to undertake. This is 
an open topic in computer science as it is very complex even for humans to know what a person 
wants to do. Additional complexity will be added having multiple people in one room since the 
computer then needs to know what tasks they want to perform and whether those are 
collaborative actions or not. 

1.2 Focus plus Context Paradigm 

Regarding the display technique, several approaches have been taken to implement new 
technologies, which assist users in accomplishing their tasks. One possibility would be the 
paradigm of zoom and pan [5]. This gives the user the ability to change the scene while panning 
or zooming. Panning may be realized with a fixed virtual camera, while moving the 
information, or with fixed information and a moving camera. Zooming allows the magnification 
or miniaturization of the information. In everyday life, several applications require this aspect. 
One for example is a user who wants to find the shortest path between two points on a city map. 
For accomplishing this task, s/he needs to zoom in to identify special points of interest (one way 
streets, for example) and to zoom out to find the spatial relation of the departure and destination 
point [3]. These are complex steps for the user as s/he needs to memorize the overview of the 
whole map when s/he is in detailed mode. Furthermore, all detailed information needs to be kept 
in mind when s/he is in overview mode. This example describes the principle of pan and zoom 
taken in the last years.  

Another approach is the focus plus context paradigm, which suggests that the user – while 
working on a document’s part in detail – should still have the ability to have an overview of the 
complete document. The advantage the user gains with this paradigm is that s/he is able to view 
changes of the full information even if only a small portion (in the focus area) has been varied. 
This paradigm provides the user with the ability of concentrating on his or her task completely. 
There are several visual implementations for this paradigm while most of them are distortion-
based ones. These allow the user to see the complete information with the focus region being 
enlarged and the context region being distorted. In the example given above, the outer parts of 
the focus region can be distorted using the fisheye view, for example [23]. This results in losing 
some information of the context but still gives the overview needed by the user. 
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The Focus plus Context technique does not only regard display technologies. Several 
implementations exist that combine multiple tracking systems resulting in one application. In 
the field of Augmented Reality, for example, different technologies have to be used since one 
system might not work inside (e.g. GPS1) and another one could only be operable indoors. This 
is mainly used in applications that need to track users in large areas. In the approach taken in 
this thesis, the system is a wall with a fixed size. In this case, the context region is not been 
intended for fine-grained interaction. Since I am not aware of visual tracking systems that are 
able to cover a wall, new input methods are needed besides existing solutions that have a 
smaller size. Thus the context region can use the same tracking technique with a lower 
resolution whereas the focus region has a high resolution. 

In this thesis, I will describe a system designed to track people that want to interact with a 
large display wall. I will start with the related work that has been done in the research field 
(chapter 2). After this, I will introduce the thesis context (chapter 3) to describe the goals of this 
work and the design decisions (chapter 4) made to realize the proposed system. Chapters 5 and 
6 will discuss details on finger recognition and the system’s setup. Chapter 7 describes the 
implementation of the tracking system, whereas chapter 8 shows a first demo that has been 
implemented to demonstrate the system. Finally, I will discuss the conclusions (chapter 9) and 
give a perspective what will be done in future work regarding the system (chapter 10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 GPS (Global Positioning System): Satellite-based positioning system developed by the Department of 

Defense (DoD) of the United States of America (Official start of operation: July 17th, 1995) 
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Chapter 2  

Related Work 

In this chapter I will give an overview of related work that has been done by others in the 
research fields. I will divide this into three major categories: “instrumented environments”, 
“focus plus context displays” and “touch sensitive displays”. I will compare each of them to the 
work I have done in this thesis, which also includes explaining the advantages and 
disadvantages of the introduced related work. I will also illustrate the reason why I have chosen 
certain parts of those solutions for this project. 

2.1 Instrumented Environments 

There are several implementations of instrumented environments as well as techniques for 
manipulating digital information that have been built in research. In this section, I will first 
describe those environments before I will show solutions which have been realized for such 
instrumented rooms. 

The Aware Home Research Initiative (AHRI) [15] has been realized at the Georgia Institute 
of Technology and involves a complete three-storey, 5040 square feet house which functions as 
laboratory within a living environment. In this building, several researchers are able to 
implement and test their technologies. The main focus is on ubiquitous tracking and sensing to 
locate the inhabitants and recognize their activities [20], mainly using visual based tracking 
technologies [37][38]. Another focus lies on the design for elderly people and how technology 
has to be brought into their life to allow simple use of it. As this project covers a real living 
home, it is not applicable to the environment used in this thesis. The main reason for this is that 
the room in this case is only a single living room or office. However, this initiative generates a 
lot of ideas on what is possible and what might be possible in the near future in instrumented 
environments. 

Another project is the Interactive Workspaces Project (iWork) of the Stanford University 
[45]. Its research focus and setup are much closer to the environment I have used in this thesis. 
It envisions a meeting and office room to support collaboration including three large displays 
(back-projected smartboards for interactivity) mounted on one wall. Additionally, a table 
including a non-interactive screen has been placed in the middle of the room. The most 
important implementations within this room are iROS (interactive room operating system) and 
iStuff (interactive stuff) [6][19] that both create a flexible software framework. This allows 
applications running in this setting to communicate with each other in a customizable way. 
Especially because of this dynamic architecture, iROS has been chosen for communication in 
this thesis. Besides this, iWork does not support interactivity throughout the whole wall and is 
thus not applicable to the proposed solution. Furthermore, the use of a table without any built-in 
interaction possibilities is not desirable by our project and will thus be extended as described 
later. 
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The project Roomware [33] also envisions an instrumented environment including a wall-
sized display (DynaWall), several tables (InteracTable and ConnecTable) and a mobile armchair 
(CommChair). This scenario realizes the situation that is of interest in this thesis. The main 
focus is the DynaWall. It consists of three large displays that allow interaction with digital 
information. The interaction is limited to pen-based gestures and thus is not the desired final 
solution. Instead, the ideas given in this project will be used whereas the tracking will be 
generalized to a stage where additional hardware is not needed. 

Furthermore, implementations for continuous workspaces [36] exist. This work presents a 
computer augmented environment in which users are able to interchange their data between 
various displays implemented in the room. These displays include stationary wall and table 
screens as well as portable computers brought into the room by users. Having all those tables 
allows people to use these as a virtual extension of the limited screen size given by personal 
computers and laptops. The interaction is realized by several installed digital cameras. The 
approach taken in this thesis still differs from this idea. Although I use large displays on the 
wall as well, they will have several technologies to track the user’s input. Furthermore, the table 
will be interactive as it will have a DViT overlay to track two fingers simultaneously. Finally, 
the screens will not be an extension to existing display devices. They will build a single 
continuous display with personal devices still being a part of it. 

After describing the visions for instrumented rooms, I will briefly introduce some 
technologies that have been used to support such environments. The main focus will be on 
steerable projectors and manipulation technologies. Rekimoto [35] has shown a new user 
interface allowing the physical copy of data among various computers and their attached 
screens. Internally, the data will be still transferred across a network infrastructure, but the 
conceptual model of physically picking data with a pen and then dropping it with the pen on 
another screen is simple to understand. The limitation of this system is the use of pens, which 
need to be available to every user. My approach is heading towards users without augmentation 
such as sensors and/or pens. 

Another technique for interactive rooms is to transform surfaces into displays by using a 
steerable projector. This allows projection on any surface within the environment and is referred 
to as multi-surface interactive display projector (MSIDP) [32]. The tracking of user 
interactions, such as pointing and clicking, is realized with a camera mounted next to the 
projector. This work also describes a technique for the correction of distorted projected images 
as they occur whenever the optical axis is not orthogonal to the projection surface. A sample 
application of a steerable projector can be found in [8] where the projector acts as a pointing 
device to identify previously recognized items using visual markers. In this thesis, the approach 
is to take the advantages of the steerable projectors described in this related work without 
having the camera attached to the projector. This avoids interactions the camera cannot 
recognize as they are occluded by people standing between the interaction surface and the 
camera. 

 

2.2 Focus plus Context Displays 

The Focus plus Context technique “allows dynamic interactive positioning of the local detail 
without severely compromising spatial relationships” [23]. This means that a region of special 
interest will be shown in greater detail (focus region) whereas the global view is preserved at 
reduced detail (context region). The focus region does not leave out any parts of the context 
region and thus everything is visible. Implementations of such visualization techniques mostly 
use distorted views (bifocal display, fisheye view, perspective wall, etc.). There are several 
implementations for displays using this technique. One of them will be discussed in detail in the 
following. 

Focus plus Context screens as described by Baudisch et. al. [3][4] try to combine display 
technologies with visualization techniques. The simple problem is that users often work with 
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large documents that require them to manipulate a small portion while having an overview of 
the complete information. In today’s computers, this can be realized with zooming or scrolling, 
which limits the user to see only a portion of the information at a time. Thus, the screen’s size 
needs to be extended, resulting in expensive large high-resolution displays. Another approach is 
to use an off-the-shelf computer screen as focus screen and projecting the context region around 
the screen with a projector. The focus display has a higher resolution and thus allows users to 
work on a detailed portion of the document while having an overview of the complete 
information through the projection. 

In this thesis’ context, this paradigm will be modified as the display wall uses three 
projectors with the same resolution. Thus, the context region has the same visual quality as the 
focus region. The visualization technique will become a tracking technique, which means that 
tracking in the focus region will be much more accurate than in the context region. The 
projected image using a steerable projector does not have the same resolution as the embedded 
displays and serves as visual context display, which then might use both accurate and non-
accurate tracking methods provided by the display wall. 

Overall, the idea of focus plus context displays is the basic concept used in this thesis to 
implement the tracking system. Users will be able to do their fine-grained interaction on the 
focus display while having an overview of the complete information on the two context screens 
with the same resolution. Additionally, they are able to interact with digital items on the context 
screens as well as having a much lower resolution regarding the tracking. 

 

2.3 Touch Sensitive Displays 

This is the main part of related work regarding the tracking of this system. Within this field of 
research many technologies have been implemented and tested. The important point is whether 
the system uses infrared light (IR), pure visual or capacitive tracking. In the following I will 
discuss several implemented systems and explain whether they are applicable to this system or 
not. 

The first design is the HoloWall [27] which uses infrared light as tracking method. The basic 
idea is a glass wall with a rear-projection sheet as display. Besides the projector, there are 
infrared light emitting diodes and a camera with an attached IR filter mounted behind the wall. 
The emitted light is reflected by the users hand as it approaches the wall. This becomes visible 
to the camera and can be evaluated by software using frame differencing as a simple image 
processing technique. The approach used in this thesis is not the same since I have a concrete 
wall surrounding the displays. Because of this, the technique would only be able to detect 
fingers touching the displays but not on the wall. For this reason, using IR-based tracking is not 
applicable with rear-mounted cameras. 

Another approach is the use of frustrated total internal reflection (FTIR) [16] which also 
uses infrared light to detect a finger’s position. The difference to HoloWall is the use of FTIR, 
the basic idea of fiber optics. When light travels across the border of two different media it 
usually becomes refracted to a certain extent. This depends on the angle of incidence and a 
specific critical angle corresponding to the entered medium. If another material is touching the 
interface, it frustrates the total internal reflection which causes the light to escape [16]. In this 
implementation, the light is being brought into an acrylic pane by attached infrared LEDs on 
each of its sides. The escaping light is then captured by a camera with an IR filter. This 
implementation has a high accuracy and the ability to track the touch of multiple fingers 
simultaneously. Unfortunately, this technique has some disadvantages that do not allow the use 
of it in the thesis. First, hovering is not possible as the only time light will escape the acrylic 
pane is when a finger actually touches the surface. Another point is that the LEDs would use a 
large amount of power as the emitted light has to have high signal strength to be used on a large 
wall. Besides these two disadvantages, the system also assumes having a camera mounted 
behind the display wall which is not possible as mentioned above. 
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The next solution in this field is an industrial product created by SMART Technologies [41]. 
This system is very close to the desired solution as it does not use back-mounted cameras. 
Instead, the cameras are built into a frame which is used as an overlay for a projection screen or 
television. It is equipped with four cameras to ensure a robust detection of positions using 
triangulation as tracking method [42]. Additionally, the frame contains infrared LED arrays 
which allow a stable detection. Whenever a finger or an object such as the provided pens 
touches the surface, the emitted light will be interrupted and the camera detects this missing 
light as stripe in the captured image. The usage of these arrays is highly desired but as shown 
above, using LEDs at this distance would increase the power consumption. Furthermore, the 
DViT only detects two objects at a time, which is not sufficient for a wall sized display. For this 
reason, only the position of the cameras and the idea of triangulation as tracking method may be 
obtained by the proposed system. 

A further technique is to use capacitive sensing as it is implemented in today’s touch screens 
and touch pads. The Diamond Touch [12] developed by the Mitsubishi Electric Research 
Laboratories (MERL) [31] is one of those systems. The idea is to use the user as an active part 
of the system where s/he acts as a coupling device between antennas and receivers. The 
antennas are implemented as an array in the interactive display whereas the receivers are 
attached to the chairs the users sit on. This allows a clear association of fingers placed on the 
screen to users as the system receives the signals from each user’s chair simultaneously. The 
system is also robust to various objects being placed on the screen as these objects will not send 
any signals back to the computer. The main problem in using this system is that the user more or 
less needs to be connected to the computer. This fact is not desirable in this thesis as the users 
need to get into the room, move arbitrarily and interact with the system from wherever they 
want. Furthermore, the Diamond Touch only associates signals to chairs and not to the users 
[12]. Thus, using this technique is not applicable for this work. 

Other capacitive sensing methods are extremely accurate as well, but highly expensive for a 
large display wall. Thus, the key factor is to use camera-based visual tracking as implemented in 
the DViT frame used for the smartboards. Also their tracking with the method of triangulation 
seems to be sufficient for the purpose of this system. In the following chapter, I will describe the 
problem as it exists after evaluating the related work in this field. 
 
 
 
 
 



CHAPTER 3: THESIS CONTEXT 
 

 
9 

Chapter 3  

Thesis Context 

In this chapter I will illustrate the context of the presented work. First of all, I will introduce the 
project FLUIDUM at the LMU Munich with its core ideas, research goals and, of course, its 
members. After that, I will explain the initial problem statement and how it has been changed 
during the planning phase and implementation phase to the final one which has been realized in 
this work. 

3.1 The FLUIDUM Project 

The project FLUIDUM is a research project and is located at the LMU in Munich. It is part of 
the Lehr- und Forschungseinheit (LFE) Medieninformatik [28] and funded by the Deutsche 
Forschungsgesellschaft (DFG). The project has three permanent members (Prof. Dr. Andreas 
Butz, Dipl.-Inf. Otmar Hilliges and Dipl.-Design. Lucia Terrenghi) as well as several students 
working on different parts of the overall project. 
 

 
Figure 3.1: Left shows a common setting at home. Right illustrates the augmentation of this setting with 
continuous information spaces using display technologies. 
 

The name FLUIDUM stands for Flexible User Interfaces for Distributed Ubiquitous 
Machinery and basically describes the main goal of this project. It examines the paradigm of 
ubiquitous computing [54] which is the disappearance of computers in the form of desktop PCs. 
Since those computers get smaller, faster and smarter, they can be embedded in our everyday 
life such as in furniture. The augmented items obtain computational capabilities and thus gain 
new functionality a person can use [13]. One example of such items would be a table acting as a 
standard table as well as an interactive surface by having a screen embedded in it. Another 
instance would be walls in a house which can act as display surfaces as well. With these ideas, 
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the project’s research focuses on continuous information spaces as exemplified in Figure 3.1. 
One of those information spaces has been built in the basement of the LFE Medieninformatik. 
In this room, several input and output components which will be described later in this thesis 
have been installed to create the illustrated setting.  

Another research focus is the collaborative aspect of ubiquitous computing. In general this 
means, that large display surfaces will have multiple users working together to accomplish a 
specific task. Thus, all integrated components will be implemented to accept multi-modal input 
simultaneously allowing users to work on different digital snippets at the same time. 
 

  

  
Figure 3.2: Top left shows a virtual mug filled with information. Top right shows the user turning the 
mug to pour out its content. Bottom left shows the user’s dominant hand handling information. Bottom 
right shows the user’s non-dominant hand managing resources [47]
 

A third aspect is the use of so-called tangible user interfaces (TUI). These allow users to 
interact with digital information using real-world objects with their specific and well-known 
behaviors. One example for such a well-known behavior is the Mug Metaphor [47] as shown in 
Figure 3.2. The mug has greatly acquainted attitudes such as its content being poured out. A 
tangible solution would be the handle of scissors as a tool to span a personal region on a screen. 
This can be done using the non-dominant hand whereas the dominant one will interact with the 
display in a more detailed manner. 

Overall, the project investigates several interaction techniques with virtual information. As 
noted before, this includes having multiple users that might want to use both of their hands to 
interact with the displayed content. As I have now described the main goals of the project, I will 
introduce the problem statement related to this work and how it will be included into the 
research of FLUIDUM in the next section. This will be a brief overview of the goals I want to 
achieve during the thesis. 
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3.2 Problem Statement 

As mentioned above, the project FLUIDUM has built an instrumented room in the basement of 
the LFE Medieninformatik. Several input and output technologies have been placed in the room 
to get a continuous information space. As information can be displayed throughout the room on 
all its walls, the project needs to enable interaction with the contents being shown anywhere. In 
the first phase only one wall will be instrumented to allow interaction. This wall additionally 
contains three large displays (one smartboard and two projection screens) as well as the 
possibility to have a projected image on any place of its surface through a steerable projector 
mounted on the ceiling in front of the wall. 

The mentioned interaction needs to be available without having to equip the user with 
special sensors or visual markers. There are several industrial solutions for this problem without 
having the user augmented with sensors, but they are extremely expensive if used on a complete 
wall. For this reason, I am trying to find a much more inexpensive solution to solve the problem 
of having interaction on a complete wall. One approach to this is to augment the wall with 
cameras to capture interaction of users. To ensure that the system will track different users with 
the same performance, the cameras will only observe a small stripe shortly before the wall’s 
surface. Whenever fingers touch the wall, the cameras will recognize them as shown in Figure 
3.3. Once these positions have been recognized, the system should be able to determine the 
finger’s position on the wall using mathematical calculations.  
 

 
Figure 3.3: Left shows the basic idea of the wall’s setup. Right shows the disturbance in the captured 
images resulting from a finger touching the wall (Drawings by Prof. Dr. Andreas Butz) 
 

An additional feature is to track multiple fingers. This can be done by capturing multiple 
disturbances in the image of each camera. After the recognition, the software needs to calculate 
the positions on the wall. Having multiple fingers on the wall also needs a motion prediction to 
ensure a correct association between detected positions and previously recognized fingers. This 
component must then be able to feed other running applications with the newly created data on 
the current interaction happening on the wall. It can be implemented independently of the main 
tracking system if it permanently gets the position data from it. The component also should 
accept multiple inputs from various devices such as the main tracking system based on cameras 
and the interactive smartboard in the center. This ensures that an arbitrary number of 
applications can use the data in a unified form. 

Furthermore, the tracking system needs to be inexpensive, which especially affects the used 
cameras. A suggestion would be to use webcams instead of high-performance video cameras 
with a frame grabber. This is an additional challenge for the software as it has to deal with low 
resolution images. 

On the output side of the system, several components need to be connected. These include 
the display wall which has multiple screens as well as the steerable projector. Both need to be 
able to use the calculated position data within their applications. As the display wall is fixed, 
this can be easily done by giving screen coordinates to it. The steerable projector instead needs 
to get real-world three-dimensional data to know where it has to project the requested 
information. This needs to be provided by the component merging the input data from multiple 
devices. 
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The main research question for this thesis is to figure out if relatively inexpensive hardware 
is able to compete with industrial solutions as well as technologies described in section 2.3. This 
includes the accuracy of detected positions (measurable with the Euclidian distance of real and 
detected position), the system’s execution speed (measurable with the time difference of 
touching the wall and actually executing the desired action) and the system’s robustness 
(measurable with the number of detection errors). This also includes having several people use 
the system to evaluate if the system is able to perform correctly independent of the users. 

Another question is to find out if the measured performance of the system is applicable for 
users. This might be answered by developing a demo application which takes all described 
components into account. Then, several tasks need to be defined to figure out if the users are 
able to use such a system. After evaluation, it is possible to see whether the system is 
performing well enough for users or not. 

To answer most of these research questions, I will implement a fully functional prototype as 
well as a demo application regarding to the problem stated in this section. In the following I will 
describe in detail how these steps have been performed. 
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Chapter 4  

Design Decisions 

In this chapter I will describe which decisions have been made regarding the hardware and 
software design of the system. I will start with the resulting requirements to build the system as 
envisioned in section 3.2. Further, I will explain the decisions made regarding the hardware 
components. Finally, I will describe how the software decisions have been made regarding 
programming languages and third-party libraries. 

4.1 System Requirements 

In this section I will describe the basic requirements to implement the desired system. Since this 
application falls into the category of tracking applications, it needs to have a low latency as well 
as high accuracy. This includes decisions about on which cameras and computers to use in the 
system. Also, the output is required to be fast in order to give a quick feedback to the user. To 
get a deeper understanding of the general requirements, I will describe them separately, divided 
into functional, non-functional and pseudo requirements [7]. 

Functional requirements describe specific behaviors of the system during runtime. They are 
supported by non-functional requirements which usually describe adjectives of the system such 
as performance, accuracy or reliability. Table 4.1 summarizes the functional requirements that 
have been defined to implement the system. 
  

Requirement Description 

Visual-based tracking The system needs to capture images from streams 
produced by attached cameras which then will be 
evaluated. 

Image processing Useful methods need to be implemented to process 
images and detect objects within them. This may be 
done using third party libraries. 

Calibration procedures The system must provide calibration functions. With 
them, the user can re-calibrate the system, should it 
become inaccurate. The calibration should also allow 
adjustments of the used filters. 

Multi-modal input The system must support multiple users while keeping 
it possible for them to interact with both of their hands 
simultaneously. Thus, a unique association between 
recognized positions and fingers must be provided. 
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Unified input device Input produced by several devices needs to be unified 
to enable application programmers to use the different 
input devices as one virtual device. 

Adapt Event Heap infrastructure The tracking system needs to use the Event Heap which 
already exists in the current setting. Thus, several 
events need to be defined to identify the desired actions 
a component wants to execute. 

Use of different displays The system needs to use several output technologies to 
display information onto the complete wall. This 
includes having large displays as well as a steerable 
projector. 

Table 4.1: Functional requirements of the system 
 
I will continue with the non-functional requirements to introduce the user-related aspects of the 
system. Table 4.2 gives a detailed summary of the main (non-functional and pseudo) 
requirements that will be used to implement the system. 
 

Requirement Description 

Availability All components that are producing input events need to 
be available at all time. Without them, the system is 
unable to work properly. 

Reliability All components that are producing input events need to 
work properly without creating wrong events and/or 
associations between positions and fingers. 
Additionally, the output devices must not display any 
incorrect content. 

Robustness Wrong inputs such as tapping the finger multiple times 
on the same place must not affect the system because 
users want to learn how the system works and get 
frustrated if errors occur too often. 

Fault tolerance The system must be able to handle failures occurring 
during image capturing as well as position detection. 
Additionally, the system should be able to handle 
connection errors. 

Responsiveness The system must provide fast feedback to users to let 
them know whether an operation succeeded or failed. 
This must be provided by the system at any time and in 
any circumstances. 

Table 4.2: Non-functional and pseudo requirements of the system 
 
Besides these requirements, there will be no further limitations regarding the programming 
language used to implement the complete system. In the following sections I will give an 
overview of the hardware and software decisions that have been made according to the 
requirements gathered above. 
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4.2 Hardware Decisions 

For the used hardware, I had to make several decisions which took a large amount of time while 
planning and implementing the system. The first decision had to be made regarding the large 
display wall. The visual output will be given with three projectors mounted behind the wall for 
rear projection. The wall itself contains three displays. Due to financial constraints, only the 
center screen is equipped with its own tracking provided by a smartboard from SMART 
Technologies [41]. For the side displays simple projection foil with Perspex has been used. The 
three projectors display one desktop screen which means that they all need to be attached to a 
single computer. Thus, this computer needs to have a graphics card with three output connectors 
and auxiliary software to display the content. Additionally, the smartboard will be attached to 
this computer as part of the large screen. This results in a high load of capacity for this machine 
which makes it impossible to accomplish other high-performance tasks. For this reason, the 
visual tracking system needs to be placed on another machine. Since the task of capturing 
images is resource-consuming as well, it must be the only task running on this computer to 
avoid leaks in the capturing process. It also needs to have at least four USB 2.0 connectors to 
ensure that all cameras can be attached. Since both machines are dedicated to their tasks, a third 
machine is being needed to serve the steerable projector (see Figure 4.1) mounted on the ceiling.  
 

 

 

Figure 4.1: Left shows an example of the steerable projector unit [11] used in the system. Right shows 
the USB to DMX interface which is used to connect the projector to a computer [42]
 
This machine also needs a USB port to connect the projector, as well as a graphics card with 
two connectors to have a standard display attached besides the projector. The projector has 
already been installed prior the implementation has been started. It is a Sanyo PLC-XP45 [39] 
attached to the steerable unit beamMover 40 from publitec [34]. Table 4.3 summarizes the 
different computers that will be used for the system. 
 

Designation Resources 

Display component, smartboard Pentium 4 with 2.4 GHz and Hyper Threading 
1 GB of main memory 
Matrox Parhelia 256MB, AGP 8x, Triple Monitor Out 
USB 2.0 port for the smartboard 

Tracking system Pentium 4 with 2.4 GHz and Hyper Threading 
1 GB of main memory 
Four USB 2.0 ports for the cameras 

Steerable projector Pentium 4 with 2.4 GHz and Hyper Threading 
1 GB of main memory 
NVIDIA GeForce 6200 TurboCacheTM 

USB 2.0 port for the DMX interface (projector) 

Table 4.3: Summary of the computers and their designations being used in the system 
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The second decision was the choice of appropriate cameras. Since the system should be 
realized at low cost, I settled for off-the-shelf webcams with high resolution, fast connection 
interfaces, high frame rates and a wide-angle lens. Thus, I intensively tested four products to 
figure out which camera matches the system’s needs. 

First, I tested the Logitech QuickCam Pro 4000 [26] since it was already available at the LFE 
Medieninformatik in Munich. This product comes with a USB 1.1 connection, a resolution of 
320 by 240 pixels at 30 FPS and a horizontal field of view of about 45 degrees. Compared to the 
cameras tested subsequently, it did not match the desired requirements at all. 

The next camera was the Unibrain Fire-i digital camera [51]. The LFE Medieninformatik 
also had some of those cameras which made tests easily possible. This product uses FireWire as 
connection interface providing up to 400 MBit per second. Additionally, it has a video 
resolution of 640 by 480 pixels with 15 FPS. The only disadvantage is the small horizontal field 
of view (42 degrees), which means that the camera is not useful for this system.  

The third camera I have tested is the Creative WebCam Live! Ultra [9]. With a field of view 
of 76 degrees diagonally, 640 by 480 pixels of resolution at 30 FPS and USB 2.0 as connection 
interface (up to 480 MBit/s), this camera would have been perfect for the system. Unfortunately, 
it was not possible to connect more than one camera to a single computer. If a second camera 
was attached, the captured images of both devices are merged into one image stream.  

Thus, I had to test and evaluate another camera, which was the Logitech QuickCam Fusion 
[25]. It provides a resolution of 640 by 480 pixels at 30 FPS, a USB 2.0 connection interface 
and a field of view of 72 degrees diagonally. Additionally, it has a very low image distortion 
which is negligible. This camera satisfies the requirements and is used in the system. Table 4.4 
finally summarizes the four cameras with their parameters. 
 

Model name Logitech Quick-
Cam 4000 Pro 

Unibrain Fire-i 
digital camera 

Creative Web-
Cam Live! Ultra 

Logitech 
QuickCam 

Fusion 

Product view 

    

Resolution 320 x 240 640 x 480 640 x 480 640 x 480 

Frame rate 30 FPS 30 FPS 30 FPS 30 FPS 

Field of view 45° 42° 76° 72° 

Connection USB 1.1 FireWire USB 2.0 USB 2.0 

Problems Connection 
interface too 

slow (15 MBit/s) 

Low field of 
view 

Only one camera 
per computer 

possible 

– 

Table 4.4: Tested cameras with their specifications of interest to the system (Image sources from left to 
right: [26][51][9][25]) 
 

With these decisions, I finally had all hardware components to build the system. In the 
following section I will describe the decisions made regarding the software including 
programming languages, third-party libraries and device drivers. 
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4.3 Software Decisions 

In this section I will describe the software decisions I made to implement the system on the 
chosen hardware. First, I needed to figure out which programming language fits best for the 
main tracking system. This decision included the possibility of rapid prototyping, simultaneous 
support of four capture devices and fast processing of images. I intensively examined Java 1.5 
[46] and C# with the .NET Framework [29]. Because of a strong teaching in Java by LMU, I 
wanted to use it for this system, but due to several problems I finally decided to use C#. Before I 
will explain this decision, Table 4.5 will summarize the comparison of both languages. 
 

 Java C# 

Platform independence Available Restricted to Windows 

Execution speed Fast Fast 

Rapid prototyping Given Given 

Support of capture devices None in standard version 
One at maximum with 

JMF2

None in standard version 
Arbitrary number (DirectShow) 

Image processing Good in standard version 
Fast with JAI3

Fairly good in standard version 
Fast with external libraries 

Table 4.5: Summary of the comparison of programming languages 
 

As shown in this table, the use of Java would have been possible if it supported more than 
one camera at the same time. Since this is not given, I decided to use C#. Thus, I had to find 
libraries that can handle multiple devices. The possibly best solution is the DirectX SDK [30] 
from Microsoft which has the DirectShow package in its extra components. With this library, I 
was able to use the FilterGraph concept provided by DirectShow. This graph allows a 
hierarchical structure of the attached devices as well as filters (see Figure 4.2). Although it 
comes as a C/C++ library, it is easily embeddable into C# using a COM wrapper [49]. 
 

 
Figure 4.2: Shows the GraphEdit application included in the DirectShow package used to build and test a 
created filter graph. 
 

The next step was the decision about the imaging library. There are basically two libraries I 
had to choose from. One is OpenCV from Intel [17] written in C/C++ and the other one is 
                                                 
2 JMF (Java Media Framework): Framework for capture and access applications of digital media such as 

audio and video streams. Latest version is 2.1.1e 
3 JAI (Java Advanced Imaging): Java API for digital image processing. Latest stable version is 1.1.2 
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AForge from Andrew Kirillov [48], written in C#. OpenCV provides a lot more functions than 
AForge, but those are not of interest for this system. Since the desired operations are provided 
by both libraries, I decided to use the second one because it is easier to integrate in the system’s 
main software component, as it is written in the same programming language. 

As described in section 4.1 the system needs to use the Event Heap infrastructure written in 
Java. Thus, all distributed components should be easily attachable. This is the main reason for 
the third decision I made. Besides the main tracking system, all other components will be 
implemented in Java to ensure high compatibility without using wrappers and/or native 
interfaces. As shown in Table 4.5, Java is as fast as C# and as such appropriate for tasks that do 
not need to use multiple capture devices. 

The final decisions made were on the device drivers of all attached components. The first is 
the smartboard in the wall’s center region. The University of Queensland (Brisbane, Australia) 
provides an SDK [50] to receive events produced by the smartboard. It is written in C/C++ and 
comes with a native interface for Java and C#. Thus, it is easy to integrate the smartboard into 
applications written in Java. The second device attached is the steerable projector. It only comes 
with a C/C++ dynamic-link library (DLL) to control the projector’s DMX interface. For this 
reason, I need to use C/C++ to implement a library that can be called from a Java application 
using JNI4. The third decision was made on the device drivers of the capture devices. Since 
DirectShow provides most of the functionality needed to operate and configure the devices, I 
decided against using the Logitech QuickCam SDK [24] to avoid a programming overhead. 
After that, all decisions had been made regarding the software components. Table 4.6 will 
finally summarize the different languages to be used for the complete implementation of the 
system. 
 

Component Programming Languages 

Tracking system C# (basic tracking) 
Java (v1.4.2 / connection to the Event Heap) 

Display wall Java (v1.4.2 / display component and 
smartboard SDK) 

Steerable projector Java (v1.4.2 / display component) 
JNI (DMX to USB interface) 

Table 4.6: Summary of the used programming languages to implement the system 
 
As I have described all design decisions regarding both, hardware and software, I will continue 
with the theoretical thoughts of finger recognition in the next chapter. Subsequent, I will explain 
the system’s setup and its implementation using the decisions illustrated in this chapter. 
 
 
 
 
 
 
 
 
 
 

                                                 
4 JNI (Java Native Interface): Provides connectivity from Java to native C/C++ libraries 
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Chapter 5  

Finger Recognition 

This chapter will give an overview of how the system is able to detect objects and fingers 
respectively. First, I will give a short overview of tracking methods currently available. After 
that, I will describe how fingers are recognized in captured images. In section 5.3 the principle 
of triangulation will be introduced to explain the basic concepts used for calculating positions. 
In section 5.4, I will show how positions match up with detected fingers to ensure continuity of 
movement. Finally, an overview of the calibration procedures will be given to demonstrate how 
the system and its cameras can be calibrated and how they can make use of this data during 
runtime. 

5.1 The Tracking Method 

Today, there are lots of different tracking methods which can be categorized in two groups. 
Some of them are able to track the position of an object, while others additionally can recognize 
its position. They can also be classified with the parameters they observe during tracking. 
Before I describe the most common techniques in detail, Table 5.1 will summarize the discussed 
methods and rank them. 
 

Position method Observable Measured by 

Proximity sensing Cell-ID, coordinates Coverage range of sensor 

Lateration Range 
 
Range difference 

Traveling time of emitted signal 
Attenuation 
Traveling time difference of emitted signal 
Difference of attenuation 

Angulation Angle Receiver arrays 

Dead reckoning Position 
Direction of motion 
Velocity 
Distance 

Any other positioning method 
Gyroscope 
Accelerometer 
Odometer 

Pattern matching Visual images (markers) 
Fingerprint 

Camera 
Received signal strength 

Table 5.1: Summary of positioning and tracking methods [22]
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Every tracking method has advantages as well as disadvantages regarding the costs to build 
and/or operate them, their accuracy and their detection speed. Thus, it is necessary to define the 
requirements of a tracking system and its results, respectively. In mobile communication 
systems such as GSM it is not important to know the exact position of the user (i.e. a cell phone) 
while airplanes with GPS navigation systems need a high accuracy. 

The requirements of the built system are high accuracy as well as nearly real-time processing 
of information. Another important attribute is that the user will not be equipped with any 
sensors or additional markers. Thus, the only assumption that can be made is that s/he acts as a 
light emitter. With this in mind, it is obvious to use either the direction or the distance of the 
emitter which results in a decision between lateration and angulation. I will describe both 
methods in detail and match them with the technical limitations as well as the desired properties 
of the system. 

 

5.1.1 Lateration 
This method is a common technique in positioning objects. The most popular tracking and 
positioning system that uses lateration is GPS. The basic idea is to measure the distance or 
distance difference between the object and at least three receivers. It can be subdivided in two 
different strategies – circular lateration (distance measurements) and hyperbolic lateration 
(distance difference measurements) – to gather the position of an object. 

Given the distance between the object and three receivers as used in circular lateration, the 
process of calculating the position mathematically in two-dimensional space is as follows: First, 
create a circle around the receiver with its distance from the emitter. Second, intersect those 
circles and get the object’s position. Figure 5.1 shows the basic procedure of circular lateration. 
 
 

 
Figure 5.1: Circular lateration (2D): (a) shows only one receiver and thus a circle of the possible position. 
(b) illustrates two receivers and therefore two possible positions. (c) uses the third receiver to get the 
exact position of the emitter. [22]

 

Hyperbolic lateration does not use the absolute distance between the object and a receiver 
but the distance difference of a pair of receivers. These distances result in a hyperbola of a 
point’s position. Using a third receiver, all the hyperbolas (of every pair of two receivers) 
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intersect in one point and thus give the object’s position. Figure 5.2 demonstrates the basic 
procedure of hyperbolic lateration. 
 

 
Figure 5.2: Hyperbolic lateration (2D): (a) shows the hyperbola for two receivers. (b) demonstrates a 
second hyperbola to calculate the emitter’s exact position. [22]
 

Of course, both methods suffer from measurement errors caused by physical impacts such as 
multipath propagation, velocity of propagation in different media or signal strength. These 
errors can be corrected using Taylor series as described in [22]. In general, lateration is also 
known as ToA (Time of Arrival). 

 

5.1.2 Angulation 
This method is another technique to gather the position of an object. In difference to lateration it 
uses the incoming angle of the received signal and not the object’s distance. With the known 
coordinates of the receivers, the system only needs two of them to recognize an object’s 
position (see Figure 5.3).  
 

 
Figure 5.3: The basic principle of angulation (2D) with two receivers. The positions Xi, Yi are known 
before the measurement of the angles [22]
 

It is not widely used in mobile communication systems, since either the base stations or the 
mobile terminals have to be equipped with sectorized antenna arrays. It also suffers from 
detection errors which can be solved using Taylor series [22]. In general, angulation is also 
known as AoA (Angle of Arrival) or DoA (Direction of Arrival). 

Given these two methods, lateration seems to be the easier choice. Looking at the 
requirements and limitations it is not possible to use it in this system because objects (e.g. 
fingers) are not able to determine the time when they emit light. Also it is not possible to emit 
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light only at discrete points of time since it is a continuous physical emission. Thus, I decided to 
use angulation as tracking technique. The described antenna arrays are implemented within the 
used webcams as I can use every pixel in the captured image as a single antenna. In the 
following two sections I will describe the calculation of angles with captured images (section 
5.2) and the subsequent calculation of positions with those parameters (section 5.3). 

5.2 Calculating Angles from Live-Captured Images  

To calculate the final positions of fingers on the wall it is necessary to gather the angles from 
each finger to the receivers. To accomplish this, the system is equipped with four cameras, 
which are able to capture live images. These images need to be analyzed by the system to get 
the relevant information (e.g. the fingers) within them. I examined several ways to do this step 
resulting in a final solution for this prototype. 

It is important that the system will not detect non-existent objects (false positives) as well as 
letting existent objects be undetected (false negatives). As described in section 3.2, the four 
cameras of the system capture a small stripe over the wall’s surface. With this knowledge it is 
possible to create the assumption that the image’s background (white wall) as well as the 
fingers’ color (other than white) will not change over time. Thus, I used simple frame 
differencing in the first iteration. Image differencing is the difference of each pixel p(x, y) of 
two images I1 and I2. Mathematically it can be described as follows: 
 

( ) ( ) ( ) ( )( ) ( )( ) ;,,,:,,, 1212212211 IIyxpRGByxpRGByxpIyxpIyxp −∈−=∈∈∀  
 

This solution worked fine until I switched on the displays (e.g. the projectors) on the wall. 
The background and the finger turned into the display’s color which made differencing 
impossible. Figure 5.4 shows the results with and without having the displays turned on. 
 

 
Figure 5.4: Left shows the detection using differencing without having the displays turned on. Right 
shows the same method while the displays are producing color radiation. 
 

Another solution exists with the usage of HSL filtering5. The basic idea is to replace pixels 
with a single predefined color (e.g. black) that are not of interest to the system (see Figure 5.5). 
This filtering method takes all three HSL components into consideration which means that it 
                                                 
5 HSL (Hue, Saturation, Luminance): Color model representing each pixel in these three components 
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only allows pixels that are within the predefined hue (0 through 360), saturation (0.0 through 
1.0) and luminance (0.0 through 1.0) range. This assumes that the fingers’ color will not change 
during runtime and will be in a given color spectrum respectively. As described above, the color 
changes due to the displays’ radiation. Thus the system does not know which color spectrum it 
needs to use for detection. Figure 5.5 summarizes the results with and without having the 
displays turned on. 
 

 
Figure 5.5: Left shows the detection using HSL filtering without having the displays turned on. Right 
shows the same method while the displays are producing color radiation. 
 

In the third solution I used differencing again, because this is a fairly fast procedure. Thus, I 
needed to avoid the errors the system made in the first iteration. The basic problem was the 
changing background color of the image to the color of radiation produced by the displays. To 
get a unified background I mounted black velvet onto the part of the wall which is covered by 
the cameras (see section 6.1). Black velvet has the characteristic of a very low reflection of light 
(lower than 5% [53]) and will therefore appear as a black background independent of the 
displays’ color of radiation at any time. With this technique the fingers’ color can change as 
long as it is not black. This will not even happen if the projected image is black because the 
addition of a finger’s color and black is still the finger’s color. Figure 5.6 shows the results I 
achieved with this method. 

After evaluating these methods, it is clear that the third solution to recognize fingers in the 
captured image is the most suitable. Additionally this procedure has further advantages: First, it 
does not detect shadows caused by fingers on the wall because a thrown shadow on a black 
surface does not affect the surface’s color. Also, it avoids noise in the background because a 
black surface will not cause background noise (assuming the camera has a high contrast value).  

Finally, I am able to skip the process of differencing because a subtraction of the color black 
is not necessary (it has the color value of 0). An additional threshold filter provides a binary 
image with only two colors, black (background) and white (finger). It uses a predefined level of 
luminance to decide whether the beheld pixel is part of the background (low luminance) or part 
of the finger (high luminance). This binary image can be searched for blobs, which are a 
minimum bounding box (rectangle) for a detected finger. 
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Figure 5.6: Left shows the detection with black velvet mounted on the wall with no display radiation. 
Right shows the same setting with having the displays turned on resulting in radiation. 
 

Once we have the blob’s position within the image, it is possible to compute the “Angle of 
Arrival” of this received signal. For this, two parameters are needed, such as the camera’s angle 
of aperture α and the width w of the image. The calculated angle β will be the angle between the 
camera’s normal and a virtual line from the camera’s origin to the detected point. Figure 5.7 
illustrates the mathematical background of calculating the angle. 
 

 
Figure 5.7: Geometrical illustration of the calculation of images captured by a camera. 
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Given these parameters, the calculation of β can be done with the computed Δx, which is the 
blob’s distance from the center of the image. The parameter dp (virtual distance from the 
projection plane to the center of projection) can be calculated with the angle of aperture α: 
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The parameter Δx can be calculated with the processed images shown in Figure 5.7. Since every 
horizontal pixel value within the image will result in a different angle, one can say that every 
vertical line of pixels is one element of the array of receivers used for angulation. Furthermore, 
the width w of the captured image gives the tracking resolution and is therefore a significant 
identification of the system’s quality. 

5.3 Process of Triangulation 

As mentioned before, the principle of triangulation assumes two fixed receivers that detect the 
arriving angle of signals by the emitter. In this case, the emitter is a finger, which reflects 
incoming light rays while the receivers are the cameras. The used tracking algorithm is called 
“Angle of Arrival” (AoA, see Figure 5.3) and is used – for some parts – in mobile 
communication having sectorized antennas.  

The idea of triangulation is to create two virtual lines g and h from each of the receivers A 
and B with the known angles of arrival α and β. These lines can be intersected, and the 
intersection gives the emitter’s position P. If more than two receivers are used, the system gets 
more robust by reducing inaccuracies of the calculated angles. Figure 5.8 will give an 
impression of how triangulation works with four receivers. 
 

 
Figure 5.8: The positioning using angulation with four receivers. The magnification illustrates the error 
potential for a single position. Small circles indicate intersections of a pair of lines from two receivers. 
 
As shown in Figure 5.8, four of those lines do not necessarily intersect in one point. For this, I 
made assumptions to calculate the position. At first, the intersections of all lines are very close 
to each other, which leads to the fact that an intersection of two lines must be within a given 



CHAPTER 5: FINGER RECOGNITION 
 

 
26 

radius from an intersection of a different pair of lines. If an intersection is not within this radius, 
the calculated point can either be noise or another point on the wall. 

As noted before, triangulation is the calculation of a point by intersecting two virtual lines. 
Mathematically, these lines can be constructed by transforming the normalized line nc 
(representing the camera’s normal) which is given as follows: 
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Since the received angle is the deviation of the camera’s normal, we need to rotate nc about this 
angle with the camera’s center of projection (cop) as the rotation center. This leads to the 
following representation of a new line gi: 
 

;
cossin
sincos

cossin
sincos

: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅
⋅−⋅

⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

iyix

iyix

y

x

y

x

ii

ii

y

x
i

ii

ii

i

i

i

i

i

i

uu
uu

p
p

u
u

c
c

xg
αα
αα

λ
αα
αα

λ  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

i

i

i

i

y

x

y

x

v
v

c
c

xg λ:1 , with  ;
cossin
sincos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅
⋅−⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

iyix

iyix

y

x

ii

ii

i

i

uu
uu

v
v

αα
αα

 
Given another line g2 with parameters of another camera (including another calculated angle α2), 
it is easy to calculate the intersection S of both lines using determinants in the resolving linear 
system of equations. This leads to the following representation of S: 
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As mentioned above it is necessary to verify the calculated intersection, which is only possible 
if another camera also has detected a finger. To proof this intersection as a valid point, the 
distance between this point and a line from a third or fourth camera needs to be calculated. To 
calculate this, we need to use the normalized form of a line gi: 
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For every point on the line this equation equals 0. For all other points it is equal to the point’s 
distance from the line. This needs to be done for every detected finger (e.g. stripe in the image). 

As shown above, only two receivers are needed to calculate the position of one emitter. 
Unfortunately, this is only valid for one emitter, but this system needs to be capable of detecting 
up to four fingers (two persons with two hands each). Thus, using two receivers for recognizing 
two emitters will fail (see Figure 5.9) and the two further receivers are needed for calculation of 
positions of multiple fingers. 
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Figure 5.9: Detection of two emitters with two receivers. The real positions cannot be determined and the 
result will thus be four positions. 
 

 
Figure 5.10: Detection of a position where it is not known to the receivers if this position exists. This can 
only be solved with lateration methods 
 
However, using four receivers only avoids this problem in the case that emitters are not 
occluded by other emitters. This results from the use of light as signal. Figure 5.10 illustrates the 
problem of detecting too many positions with four receivers. To avoid these problems I created 
further criteria regarding a detected intersection. The set of restrictions an intersection must 
fulfill to be an accepted position is: 
 

• Clearness of involved lines: An intersection must provide at least three lines without 
having a pair of them nearly parallel. This means that involved lines must not have an 
inner angle of less than a certain angle. Otherwise, the two lines will become one 
involved line regarding this intersection. 
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• Unambiguousness of mapping lines to intersections: Two intersections must not have 
the same lines involved (at least three lines must be different). If this happens the more 
accurate intersection will be taken while ignoring the other one. It is important to let 
them have one line together due to occluding problems. 

 
Given the second criteria, it is obvious that tracking will not work in the center region of the 
observed surface. This can be compensated by using another tracking technique such as more 
receivers only capturing this area.  

5.4 Continuity of Finger Movement 

The system is now able to detect positions on the wall but it does not know which finger caused 
the position information. This would not be necessary if the system is restricted to detect 
positions for clicking operations such as “finger down” and/or “finger up”. Since it needs to 
capture movement of fingers as well, it needs a clear association between measured positions 
and previously detected fingers. 

In practice, there are several ways to accomplish this task. One method, for example, would 
be using a Kalman [56] filter. The Kalman filter provides a statistical state estimation for 
dynamic systems while minimizing the least square error. Since it is an iterative process it is 
predestinated for real-time applications such as this system. This filter is used in airplane 
navigation where inertial sensors measure acceleration and orientation of the aircraft. These 
measurements need to be merged with GPS positioning data to get the best possible estimation 
of its orientation and position.  

Due to time constraints it was not possible to use the Kalman filter. Instead I used a simple 
method called “Dead Reckoning” (Deduced Reckoning) [22]. This is not a motion prediction 
filter but another position detection method. It assumes that – in addition to the last known 
position – either the velocity or the distance to the next point is known. Having one of these two 
parameters given automatically results in the other variable. Since the system does not know 
both of the parameters, they need to be estimated. For this, it assumes that the orientation and 
speed will not change until the next position is detected by the system. The only time the 
orientation and velocity are not known is the first detection of a finger. In a simple version of 
this filter, even the velocity does not need to be known. I will describe in detail how the system 
uses “Dead Reckoning” combined with the estimation of orientation. 

Whenever a position is recognized by the system for the first time the orientation (vector) 
will be set to its zero value. As soon as the system associates a newly detected position Pi+1 with 
a previously recognized finger’s position Pi, it replaces the orientation vi with a new one vi+1: 
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To associate a newly detected position with an already recognized one, it is necessary that the 
new position satisfies several criteria: 
 

• It is within a given range of the estimated position (see Figure 5.11 (a)) 
• It is the best possible position out of all recognized positions for the old finger 
• It is not closer to an estimated position of another finger (see Figure 5.11 (b)) 

 

Once a position satisfies all these criteria, the system will store it as a new position and also 
change the orientation vector for the next prediction. Mathematically, the distance d of a newly 
recognized position Pi+1 to an estimated one Ei+1 is computed as follows: 
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Figure 5.11 (a) demonstrates the function of the prediction, while Figure 5.11 (b) illustrates a 
violation of the third criteria during associating two positions to two fingers though the first and 
second criteria are fulfilled. 
 

 
Figure 5.11: (a) shows a correct association of the next finger’s position. Figure (b) shows an incorrect 
association of fingers (red) if only the best match for an old position would be considered. The green lines 
demonstrate the association considering not only the best match. 
 

Using this mathematical background, I will describe in 7.4 how the steps discussed in the 
previous sections are implemented in the system. I will also discuss how different components 
of the system interact with each other to accomplish the complex task of tracking fingers and 
converting them into virtual mouse positions. 

5.5 Calibration Issues 

To use all the explained methods it is necessary that the system has calibration that can handle 
different settings. These include a different wall setup (e.g. different size and/or different 
display alignment) and various light conditions of the room. I divided the calibration into two 
parts: camera calibration and system calibration. I will start with the camera calibration. 

 

5.5.1 Camera Calibration 
The camera calibration is the first step that needs to be done to ensure a stable operation of the 
system. Before the cameras can be calibrated in the system, they need to be adjusted with their 
company-dependent software from Logitech [24]. This includes settings such as brightness, 
contrast and saturation. Additionally the cameras have global settings such as sharpness, 
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backlight compensation and white balance. While the mentioned parameters affect the direct 
manipulation of the image, the software provides more settings for the camera’s hardware. 
These include shutter speed, gain and anti-flicker values (50 Hz for Europe, 60 Hz for USA, 
resulting from different frequencies in their power systems). Setting values to get the desired 
results must be performed with testing those under real conditions. Table 5.2 shows the different 
parameters of the manufacturer and notes if they are global or camera-dependent.  
 

Parameter Values Effects 

Brightness (individual) [0, …, 10000] Increases or decreases the brightness in the 
captured image 

Contrast (individual) [0, …, 10000] Increases or decreases the contrast in the 
captured image 

Saturation (individual) [0, …, 10000] Increases or decreases the saturation in the 
captured image 

Sharpness [0, …, 10000] Setting for the sharpness of the image. Low 
sharpness means a slight blur effect 

White Balance [0, …, 10000] Sensitizes the camera to the color 
temperature at the scenario to be captured 

Gamma Correction [0, 1100, 2220] Improves the balance between the 
separated color channels 

Backlight Compensation [0, 1, 2] Indicates whether captured objects will 
have a glooming effect surrounding them 
or not 

Exposure [1/100 Hz, 1 Hz] Shutter speed of the camera 

Gain [0, …, 10000] Mean ratio of signal output to signal input. 
It indicates whether the image colors will 
be amplified or not 

Anti-Flicker 50 Hz (Europe) 
60 Hz (USA) 
off 

Setting for reduction of flickering due to 
artificial lights in the captured scene. These 
flickers result from different frequencies 
used in the power system 

Table 5.2: Shows a summary of the camera’s settings provided by the manufacturer. The keyword 
“individual” indicates that the setting can be different for each camera attached to the system 
 

Once this step is done, the cameras can be calibrated within the system. The system uses several 
parameters to calibrate its cameras individually. I will give an overview of the different 
attributes, as well as how they serve together as one calibration: 
 

• Height: The height of the rectangle that is to be captured by the system. It is the stripe 
over the wall’s surface where fingers can be recognized and thus gives the distance 
from the wall where positions can be detected. 
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• Calibration image: This parameter is optional, since the system actually does not need 
a calibrated image assuming perfect light conditions. However, light conditions might 
change and a previously captured image can be used to reduce noise in an actually 
captured image by using a differencing filter (see 5.2). 

 
• Camera position: It holds the actual position of the camera and can have four values in 

the system’s case: top left, top right, bottom left and bottom right. Associated to these 
values are the position and the orientation of each camera. 

 
• Filter threshold: This value indicates the luminance level L of the used threshold filter. 

If a pixel’s luminance is below the threshold it will colored black. Otherwise it will be 
colored white. This provides binary images where blobs can be detected. 

 
These values need to be set by the user before the system can work properly. They can be re-
calibrated if the system does not run in a correct mode or if it has been transported to a different 
place. 

 

5.5.2 System Calibration 
Besides the cameras, the system also needs a calibration. This can be done once the cameras are 
capturing useful images and thus recognize positions correctly. One reason for another 
calibration step is that the physical display size or its resolution might change over time due to 
better display technologies or different setups. 

The basic idea is to match up raw wall positions (given in millimeters) to two-dimensional 
display coordinates (given in (x, y)-values). Thus, the system needs a transformation matrix to 
be able to calculate every screen coordinate out of the recognized positions. Assuming that there 
is only one display embedded in the wall, the calibration takes only one transformation matrix. 
If there are more displays the system needs to have such a matrix for every display since they 
will never be aligned perfectly. First, I will describe how to get one transformation matrix. 

The first step is to get an association between world coordinates and the corresponding 
screen coordinates to perform a basis transformation. Since we want to use a single 
transformation matrix, we need to transform all two-dimensional vectors into homogeneous 
coordinates by adding a third component with the value 1. The linear mapping can then be 
written as a multiplication with a 3x3 matrix A: 
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The resulting linear system of equations has three equations and nine unknown variables and is 
thus not solvable. Since the equation must be true for every point, we can take three arbitrary, 
linearly independent points into consideration to compute the matrix with the following 
equation: 
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This linear system of equations is solvable as it has nine equations and nine unknown 
parameters. To get the transformation matrix A, we need to transform the equation: 
 

1'' −⋅=⇒⋅= XXAXAX ;  

X-1:  inverse matrix, given as: 
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Xadj: adjoint matrix of X, given as ; 
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Once we have the transformation matrix A, we can start calibrating the system. This is done 
with using four points including their known (x, y)-coordinates on the display. As mentioned 
above, the calibration only needs three points to work properly. The reason of using a fourth 
point is to minimize the errors of detection during calibration. Therefore, the system computes 
four transformation matrices using paired dissimilar sets of three points. It then calculates the 
mean value of each component of the matrix with the four temporary created matrices: 
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; Aijk: calculated transformation matrix of pi, pj and pk; 

i, j, k ∈ [1, …, n]; 
n: number of calibration points; 

 
As mentioned above, the system should also be capable of handling multiple displays. 
Therefore, this procedure needs to be done for every display using four calibration points on 
every display. The resulting matrices will not be merged together in a matrix with average 
components but need to be used separately in the system. The system needs to determine which 
matrix is the best to use as a starting point for transformations during runtime. This can be done 
by getting the resulting mean error of the transformation for every display.  

I will briefly describe how the system makes use of the lead matrix. Whenever a new 
position has been recognized by the system, it first takes the lead matrix to transform it into 
pixel coordinates. If the pixel is within the display the matrix is associated with, the calculation 
will stop. If the calculated pixel must be inside another display, the system will take this matrix 
instead and recalculate the recognized position. 

In this system’s case I skipped the calculation of the lead matrix due to time constraints, 
assuming that the center display (out of three displays) will give the best transformation matrix. 
The procedure for selecting the final transformation matrix is still the same as described above. 
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Chapter 6  

System Setup 

One of the major challenges in building the system is the hardware setup. This involves the wall 
with multiple displays and the cameras attached to the wall to detect the fingers of users. To 
give an overview of the camera setup an explanation of the wall is needed and will thus be given 
in the next section. Finally, the complete system setup will be presented. 

6.1 The Display Wall 

The display wall is a large wall with multiple (in this case three) embedded displays. The 
displays have been implemented as back projected ones with a DLP projector behind the wall 
for every display. Figure 6.1 will give an idea of how the wall has been set up. 
 

 
Figure 6.1: Wall setup and display arrangement. Unit of measurement is millimeter. 
 
The center screen is a highly interactive (e.g. touch sensitive) smartboard [41] and will serve as 
the focus display. The two displays on the left and on the right respectively are “simple” screens 
which are currently not touch sensitive and will thus serve as context displays. Each of these 
two displays consists of a back projection foil and Perspex for robustness. 
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As shown in Figure 6.1 the aspect ratio of both context displays is not the standardized 4:3. 
Therefore, some of the information given on the screen needs to be cut off in order to get 
undistorted images. Since I didn’t want to lose too much information, the three screens have 
been combined to one major screen with a continuous region. This means that parts of the cut 
off information is between the screens and thus is not visible for the user in reality. This gives 
an advantage that if a user drags an object from one screen to another, the dragged object will 
not jump between the edges of the screens. Figure 6.2 shows different views of the display wall 
as it has been built in the instrumented room. 
 

  

  

Figure 6.2: Top left shows the left display, top right shows the center display (smartboard), bottom left 
shows the right display and bottom right shows the complete wall (including the black velvet) 
 

Besides the three displays on the wall, the system will have another display. The fourth 
display is provided by a steerable projector mounted on the ceiling in front of the display wall. 
This projector is able to project onto any surface in the room which turns all walls, the surface 
and the ceiling into one large display. Applications using the system will be able to move the 
projector with pan and tilt values, increase or decrease the zoom factor as well as the focus 
parameter. It is thus an extension to the three displays embedded in the wall. 

Finally, I added black velvet to the side walls of the display wall to achieve the results 
discussed in section 5.2. It had to have a width of at least 200 millimeters to ensure that the 
cameras do not capture an additional white stripe of the wall. 
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6.2 Camera-based Tracking System 

To track users (i.e. their fingers), the display wall has been equipped with four cameras from 
Logitech [24]. This is a non-trivial task, because several requirements needed to be matched. 
First, I wanted to have at least two cameras viewing every sub-area of the wall. Second, most of 
the wall should be covered by the cameras. Third, the coverage area of three or four cameras 
should be maximized. 

With these three requirements, several setups have been examined to find the setting which 
fits best. Figure 6.3 shows four possibilities of the camera positions and orientations. Finally, 
setting (c) has been chosen. 

 
Figure 6.3: (a) shows the angle of aperture of each camera centered (at 45°), (b) visualizes the cameras 
aligned to one side of the wall (every camera to a different side), (c) shows the four cameras aligned to 
the bottom and top side of the wall respectively and (d) represents all cameras aligned to the left and right 
side of the wall respectively. Green areas represent the coverage of all four cameras while yellow areas 
show the coverage of at least three cameras. 
 
Ideally, the cameras are lowered in the wall so that the captured image is black in one half. I 
have developed a setting with mirrors to avoid placing cameras in the wall which will be 
described in detail in the following. 

With all cameras in the corners of the wall and the same orientation of both opposite cameras 
I only had to develop two different camera fixations. I will start with the fixation for the camera 
in the bottom right and for the camera in the top left respectively. I decided to use a mirror with 
its longest edge l on the wall to make corrections possible due to variations in the production 
process of the fixations. The different parts of the fixation will be built using wood plates. In the 
following, I will first introduce the mathematical background that is needed to calculate the 
mirror’s size as well as its position in the fixation. After that, I will give a brief insight of how 
the fixations have been constructed, including a design drawing. 

In the first place, I had to decide on the mirror’s shape. It will be a simple triangle instead of 
a trapeze to preserve a long edge touching the wall. This enables readjusting the camera’s 
position after construction, without being limited to the mirror’s size at all. Figure 6.4 shows the 
desired shape and orientation of the mirror in 3-dimensional space. Corner A is in the origin of 
the coordinate system, corners B and C need to be calculated. 
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Figure 6.4: The mirror (red surface) in 3-dimensional space with the reflection of a ray of light (green 
line). 

 
Calculation of point B: 
As shown in Figure 6.4 the angle of aperture β of the used camera needs to be known to 
calculate the position of point B and the camera’s orientation. To give a shorter version of this 
point, we need the angle of inclination α of the line AB: 
 

;
2

90 βα −°=  ;lAB = ( );sin|cos|0 αα ⋅⋅⇒ llB  

 
Calculation of point C: 
This calculation is a little bit more complicated since we need to arrange the mirror in a way so 
that the camera is “looking” parallel to the wall surface. If the camera is pointing directly 
towards the wall (90° between its normal and the wall surface), the angle between the mirror’s 
normal and the camera’s orientation needs to be 45° to ensure the law of “Angle of incidence 
equals angle of reflection”. Therefore I set the coordinates of point C to the following: 
 

( );0|cos|1 α⋅lxC  
The coordinate x1 is the only coordinate we need to calculate. First I calculate the normal of the 
plane of ABC with the vector product of two of the plane’s orientation vectors AB and AC: 
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Since this normal is dependent of x1 it is easy to compute this coordinate by forming an angle of 
45° between n0 and the camera’s orientation vector which is parallel to (1/0/0). This calculation 
can be done with the scalar product and normalized vectors:  
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In this case the positive solution for x1 is the desired one. Thus, the triangle describing the 
mirror’s plane with the corners A, B and C is well defined. The next step in calculating the 
camera’s position is the determination of the camera’s center of projection (cop). For this step I 
need to add two more parameters to the calculation. First, I need the distance d of the camera’s 
orientation (after the reflection) to the wall (see Figure 6.4). The second parameter is the point a 
(line from A to D in Figure 6.4) on the edge AB where the camera points at if d equals 0. Both 
parameters are shown in Figure 6.5. 
 

 
 

Figure 6.5: x2x3-plane projection of the mirror with parameter dc indicating the distance of the virtual cop 
from point E (center of the captured image). 
 
To get the coordinates of the cop we need two equations, one for the line g and one for the 
mirror’s plane M, which are given as follows: 
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The intersection S of g and M can be computed by replacing x, y and z in the plane’s coordinate 
equation with the three parameterized coordinates xg, yg and zg of g. Once we get λ, we are able 
to calculate the intersection S: 
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( )( );sin/tancos/1tancos 33
2

3 xaxaxS −⋅⋅+⋅+⋅⋅ ααααα  
 
The first coordinate of S needs to match the chosen distance d. With this equation it is possible 
to calculate the parameter x3, which is: 
 

;cos3 α⋅= dx  ( );cossin|sincos| αααα ⋅−⋅⋅+⋅⇒ dadadS  
 
To get the final position of the camera, the parameter a needs to be calculated. Figure 6.5 shows 
the sketch to get the dependencies of l and a. Another parameter dc (distance from the virtual 
cop to the intersection S) needs to be introduced. It will be used to get the real distance of the 
mirrored cop. The other parameter h characterizes the height from the bottom to the virtual cop 
and thus gives the height of the region which will not be covered by this camera. 
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With all these parameters calculated, it is possible to give the exact position P of the camera in 
3-dimensional space. 
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While the position has been calculated, we need to get the angle of rotation of the camera with 
the camera’s optical axis as the axis of rotation. The maximum angle of aperture is only possible 
within the diagonal of the camera. Thus, the diagonal must be parallel to the edge of the mirror 
attached to the wall. This edge has an inclination of α and does not match the angle ε between 
the camera’s diagonal and the shorter side of the camera’s projection plane. With the given 
aspect ratio of 4:3, the angle ϕ can be calculated as follows: 
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Figure 6.6: Different views of the fixation for one camera. Left and center show the fixation without the 
black foamed rubber on it. Right shows the final fixation attached to the wall. 
 

Now all the camera’s parameters have been defined. The calculation of the parameters of the 
other two cameras can be done in analogy. Given all the parameters and measurements, I 
constructed two 3-dimensional models in 3D Studio Max [1] to produce very exact fixations for 
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both, the cameras and the mirrors (see Figure 6.7). After evaluation of those constructions, I 
built them with wood and fit in the mirror using hot-melt adhesive. Additionally, I attached 
black foamed rubber to avoid the cameras capturing too much light. The final fixations are 
shown in Figure 6.6. 
 

 
Figure 6.7: Design drawing of the fixation for one camera. Unit of measurement is millimeter. 

6.3 Complete System Overview 

As I have now described all components separately, I will give a short overview of the complete 
system setup. This section will show how the different input and output technologies are 
attached to several computers and how they interact with each other. The reason for having 
multiple PCs involved has been explained in section 4.1. Additionally, the system needs 
processing components located on those machines to process multiple input or output. The 
system uses three computers to serve all I/O components, the display wall PC, the tracking PC 
and the projector PC. Table 6.1 outlines the different components and which PC they are 
connected to. For communication, all PCs are connected to each other using a 100 MBit 
Ethernet LAN. The system uses the Event Heap infrastructure [18] to send and/or receive 
events. 
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Component Attached to 

Display Wall: 
• DViT Smartboard 
• Projection screens 

 
Display wall PC 
Display wall PC 

Camera-based tracking system Tracking PC 

Steerable projector Projector PC 

Table 6.1: Summary of all system components 
 
To understand how the single components of the system work together, one needs to know what 
designation every component has. For the input side, there will be two computers, one for the 
smartboard and one for the finger recognition on the remaining wall surface. Thus, both 
components are running on different machines but need to give merged input information to one 
application. This is why I needed to introduce another component – the so-called “Input Layer”. 
This layer will merge position data received from the smartboard and from the tracking system. 
It will further associate detected positions with previously recognized fingers. This information 
will be sent to all running applications that are registered for receiving input events. 
 

 
Figure 6.8: Basic setting of the system in the instrumented room (Image sources: [39][25][11][40]) 
 

For the output side there might be an arbitrary number of components involved as this room 
should handle mobile devices as well. In this prototype setting there will be two output devices, 
the display wall (with projectors) and the steerable projector on the ceiling. These will be 
registered to receive input events, process them and generate the correct output. Figure 6.8 will 
illustrate the deployment setting for this preliminary model. 

As mentioned above, the system will communicate through the Event Heap infrastructure. It 
provides a tuple space which can be used by an application is able to send and/or receive events. 
Events have several definable parameters as listed in Table 6.2. 
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Parameter Description 

Event type Name of the event to be sent and/or received 

Event fields List of field names included in the event 

Event values List of values connected to the event fields (only important, if an 
event has to be sent) 

Event class types List of class types indicating the type of a specific value 

Time to live The time an event will reside on the server 

Table 6.2: Most important definable parameters of events used in the Event Heap infrastructure 
 

If a component wants to send an event, it will connect to the Event Heap server and submit 
its newly created event. To receive events, a component needs to register for a specific event 
beforehand to let the server know that it wants to get events that match this template. Multiple 
components are allowed to register for the same events at any time. Once the server receives an 
event from a component, it immediately pushes it to all registered components. 

It is important to know which events will be fired during runtime. Thus, they need to be 
designed carefully to avoid other running applications being flooded by those events. Figure 6.9 
will give a short overview of the different events created during runtime and which event an 
application has to be registered for to use the input produced by the display wall. 
 

 
Figure 6.9: This shows the different components of the system (green), the Event Heap (yellow) and 
additional applications using the display wall (red). The tracking system runs on a separate machine 
whereas all other components can be together on a single computer. 
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The shown model is the basic operation for two different machines (steerable projector has 
been left out) but is easily extensible to more components and/or devices. As I have illustrated 
how the different technologies are able to work together, I will describe how those interact with 
each other on implementation level. 
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Chapter 7  

Implementation 

In this chapter I will describe the implementation of the concepts explained in chapters 5 and 6 
in increased detail. First, I will give a short overview of the tracking system including a detailed 
description of the events used within. I will continue with the two calibration methods. 
Subsequently, the position recognition using captured images will be demonstrated followed by 
a description of how positions are associated to finger positions. 

7.1 System Overview 

As described in section 6.3 the complete system is distributed to several machines using the 
Event Heap as communication infrastructure. Thus, in this section I will describe the 
implementation of the basic detection engine as well as the network communication. I will start 
with the local process of recognizing positions. Subsequently, I will describe in detail how the 
network communication takes place. 

 

7.1.1 The Tracking Engine 
 
To understand the process of detecting positions, I will first show the involved components used 
for this task. The basic detection engine is separated in four packages (see Figure 7.1). I will not 
describe the implementation of the graphical user interface in this section as it will be added to 
this model in the following section. The main package is Control and it contains only one 
class, ApplicationControl, which serves as the controller for the engine. 

Another package called Devices includes several classes needed for the tasks of handling 
the attached webcams and for capturing raw images from their image stream. It contains three 
classes used for creating capture devices and handling them. The DeviceManager is the first 
class that will be created after the system’s startup. It immediately creates four instances of the 
class CaptureDevice using the DeviceFactory class. The creation includes loading the 
calibration data (if available) or creating default ones. The device will then calculate an array 
with detected lines to make the detection faster during runtime. This list contains a line for each 
possible position of a blob within the captured image. After this is done, the main task of 
capturing images will be created using the DirectShow6 architecture which gives the ability to 
start or stop the device, as well as grab images from its capture stream. Grabbing images is 
provided by using a callback method which reads the image directly from main memory. After 
the image has been captured, it needs to be rotated and cropped since the cameras’ diagonal is 
observing the stripe over the wall’s surface. This will be described in section 7.3 in detail. 
                                                 
6 DirectShow is part of the DirectX SDK extras package developed by Microsoft  
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The third package is called Detection. It is comprised of all classes used for the detection 
and calculation of positions. It provides an interface called IDetector for image 
manipulation which allows interchangeable detectors using different filters during image 
processing. The only implementing class at this stage is the DifferenceDetector, which 
uses the methods described in section 5.2 to gather relevant data (e.g. blobs) in the captured 
image. This class also provides methods to change the filters’ attributes such as the threshold 
value or the difference image. The basic class for detecting positions is the Analyzer. It runs 
within a separate thread and uses the detected lines from the cameras to calculate the 
intersections found on the wall as described in section 5.3. Two further classes provide 
structures for recognized positions on the wall to ensure a correct detection. One is 
DetectedLine which comprises a virtual line (including its normalized form) calculated by a 
capture device combined with an identification number for uniqueness. The other one is 
DetectedIntersection which holds up to four detected lines as well as a position on the 
wall. It also contains a value of inaccuracy telling the engine whether this is a possibly good 
intersection or not. The process of calculating positions in the system will be described in 
section 7.3. 
 

 
Figure 7.1: Basic detection engine implemented in the tracking system 
 

The last package is the Calibration package. It comprises managing classes for both the 
devices and the system as well as a data class to load and/or store calibration data. The system 
itself does not need a data class since it only has the transformation matrices which can be 
stored in the SystemCalibrationManager. The procedure of calibration will be described 
in section 7.2 in more detail. 

Now that I have described all components of the tracking system, I will briefly demonstrate 
how they act together during runtime. The basic principle used is the event system provided by 
the .NET Framework7 from Microsoft [29]. The two base classes EventArgs and 
EventHandler have been extended since they originally did not contain any information and 
thus work as a notification for a registered component. The overridden events for the displaying 
components already contain the images to be drawn, whereas the events for the analyzing 

                                                 
7 Version 2.0 has been used for implementation and runtime 
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engine are only comprised of the detected lines of the cameras. The notified components are 
aware of the events they receive and can thus use the contained information directly. Figure 7.2 
shows the components sending and receiving events and characterizes the structure of the 
different events being used. 
 

 
Figure 7.2: Shows the basic event system used for the main tracking system. The components shown on 
the left send events and the ones on the right receive them. 
 

With the described model it is possible to track objects (e.g. fingers) on the wall’s surface. 
Since more components will be involved in the complete system, I will describe the network 
communication model being used in the complete application in the following section. 

 

7.1.2 Network Communication 
As mentioned before, the tracking system needs to communicate with other applications running 
on different machines. I used the Event Heap as communication infrastructure since it already is 
being used in the current setting. The major problem I had is that it is a Java implementation. 
Thus, I needed to create a bridge between the tracking engine written in C# and the Event Heap. 
To accomplish this, I added another package called Network containing all relevant classes for 
the described task. Figure 7.3 shows the package and the corresponding Java packages in detail. 

The basic idea is that the tracking system first initiates a Java virtual machine through the 
class ProxyConnection using the Process class of the .NET Framework. Once the JVM 
has been started, it creates a socket to communicate with the host application. Whenever the 
tracking system wants to send data to the Event Heap, it basically sends the data to the Event 
Heap proxy in a certain way. The proxy itself converts the data into events and forwards them to 
the Event Heap, where other applications might be registered to receive these. The 
communication between the ProxyConnection class (implemented in C#) and the 
EventHeapProxy class (implemented in Java) is realized by using string objects, which can 
be easily sent through input and output streams of sockets in both implementations. 
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Figure 7.3: Detailed class diagram of the network package. Green packages, red classes and the Event 
Heap have been implemented in Java, the other ones in C#.  
 
There are two types of events the tracking system wants to send to other applications. One is the 
PositionData event, which includes raw position information of four points currently 
detected on the wall. It also contains additional information, such as screen coordinates, 
inaccuracies and region identifications for each point. The structure of the string to be sent is as 
follows: 
 

for each i ∈ [1, …, 4]: 
WallPositionX[i]=[value : double]& 
WallPositionY[i]=[value : double]& 
PositionX[i]=[value : double]& 
PositionY[i]=[value : double]& 
Inaccuracy[i]=[value : double]& 
RegionID[i]=[value : int] 

 

Another event is called the CalibrationData event. It only contains three commands for 
the calibration procedure. These commands are explained in detail in section 7.2.2. The 
structure of the string being sent to the Event Heap proxy is as follows: 
 

Command=[value : string] where [value] must be: 
- ′StartCalibration′ or 
- ′StopCalibration′ or 
- ′NextCalibrationPoint′ 
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The Event Heap proxy parses the commands and (if valid) sends them to the Event Heap as a 
specific event. The type of this event is dependent on the type of command arriving at the 
proxy. I have created two types of events that can be received by different applications. Those 
are listed in Table 7.1. 
 

Event type Fields Class types Time to live [ms] 

DisplayWallPositionSet WallPositionX1 
WallPositionY1 
PositionX1 
PositionY1 
Inaccuracy1 
RegionID1 
WallPositionX2 
… 
RegionID4 

String 
String 
String 
String 
String 
String 
String 

… 
String 

100 

CalibrationEventSet Command String 100 

Table 7.1: Listing of the two events used by the tracking engine 
 

Since the tracking system should operate as close to real-time as possible, the value for an 
event’s lifetime on the Event Heap server needs to be very small. I decided to use 100 
milliseconds to avoid having events being sent which are not close to the current action on the 
wall. This value is the highest possible delay where an application still seems to be real-time to 
the user [2]. For the processing engine it is not important if two positions are consecutive, or if a 
position event has been left out.  

The model of communication will be extended in the following sections as more components 
for processing input will be added. I will go on with the calibration procedure used to ensure a 
high performance of the system regarding execution speed and accuracy. 

 

7.2 Calibration 

There are two calibration procedures implemented in the system. One only affects the attached 
devices and calibrates the offline parameters. The other one calibrates the online parameters of 
the system and thus needs the display wall as well. First, I need to exemplify the graphical user 
interface of the tracking system which provides the user with tools for calibration. With this, 
s/he can also observe the system’s performance during runtime. Figure 7.4 summarizes the 
implementation of the graphical user interface used in the tracking system.  

The important part for the camera calibration procedure is the CameraConfigWindow, 
which gives the user all controls to calibrate one of the cameras at a time. It holds an 
ICaptureDevicePanel, which receives events from a CaptureDevice, including the 
image to be drawn. Thus, the user also sees the currently captured image to decide whether the 
camera is adjusted correctly or not. The user then is able to customize the parameters described 
in section 5.5.1.  

For the interactive system calibration, communication with the display wall component is 
required to show the calibration screen on the wall. This will be described in section 7.2.2 in 
detail. I will start with a description of the camera calibration. 
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Figure 7.4: Basic illustration of the graphical user interface of the tracking system 

 

7.2.1 Camera Calibration 
As described in section 5.5.1 the user needs to configure the cameras before s/he can start using 
the system. This is done manually for every camera attached to the tracking system. The 
calibration of a capture device can be started using the main menu of the application screen by 
selecting the camera which needs to be calibrated. Once the user has chosen the desired capture 
device, a window (see Figure 7.5) will appear, where s/he can adjust all relevant parameters, as 
well as calculate the image used for differencing. 

After the user has set the parameters to his or her desired values, s/he can start the calibration 
by clicking on the “Start Calibration” button. This will immediately create and start the 
DeviceCalibrationManager which will also receive image events from the capture 
device connected to the window. Once started, it will capture a predefined number of frames 
and calculate the resulting average image as the calibration bitmap. Using more frames reduces 
noise in the calibration bitmap at single pixels, since noise does not occur throughout all pixels 
within one frame. The calibration image will be shown immediately after the calibration process 
has finished and can thus be used to configure the filter for recognition.  

After the calibration is done, the user is able to configure the filter settings for the detection. 
For this, another window is shown with live captured images as well as a color slider for the 
threshold used during runtime (see Figure 7.5). The user can set the value interactively by using 
trial and error. After this is done, the user can quit the calibration for this device and go on with 
the next one. After closing the configuration window, the system stores all adjusted data 
permanently into an XML based file. All calibration files will be loaded whenever the system 
starts and thus the cameras do not need to be adjusted again. If the system does not run correctly 
anymore, the user can re-calibrate the cameras, resulting in new calibration files. An example of 
one of those files is given in the following. 
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<?xml version="1.0" encoding="utf-8" standalone="no"?> 
<Calibration date="2006-2-7" time="13:33:24"> 

<Device id="0" /> 
<Position relative="TOP_LEFT_CORNER" /> 
<Path>calibration/device_0.bmp</Path> 
<RectPositionY>190</RectPositionY> 
<Rectangle> 

<Width>400</Width> 
<Height>4</Height> 

</Rectangle> 
<Filter minThreshold="50" maxThreshold="255" /> 

</Calibration> 

 

 
Figure 7.5: Screenshot of the device configuration window and the filter configuration window. Both 
give the user all necessary controls to calibrate and adjust device related data. 
 

Once the calibration has been done for all attached capture devices, the user can start using 
the basic function of the system which is the detection of real-world coordinates on the wall. As 
s/he wants to interact with an application running on the display wall, the system needs an 
interactive calibration which ensures that the system is able to determine the screen coordinates 
of a detected position. This will be described in the next section. 
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7.2.2 Interactive System Calibration 
This calibration step is the first action that needs more than just the tracking system. The basic 
idea is that a user points on predefined visual points projected directly on the wall. The system 
needs to recognize the positions and then calculates the transformation matrix as described in 
section 5.5.2. 
 

 

Figure 7.6: Top shows a sketch of the calibration screen (projected onto all three displays) with the first 
point as active point. Unit of measurement is pixel. Bottom left shows the calibration screen projected 
onto the displays and bottom right demonstrates a user calibrating the system. 
 

If a user wants to start the system calibration, s/he is able to do this by selecting it from the 
main menu of the application screen. A second application needs to run on the computer 
managing the display wall (e.g. the projectors). This is a permanently running application 
listening for events to start the calibration. Whenever the user selects the system calibration to 
be started, the tracking system sends an event to the Event Heap, indicating that the calibration 
screen needs to be shown on the display wall. Figure 7.6 exemplifies this screen directly after 
starting the calibration and shows a person using the calibration interactively. 

The screen coordinates of the points (see Figure 7.6) need to be known to both the 
calibration screen and the tracking system. Once the calibration procedure has been started the 
tracking system initializes a new instance of the SystemCalibrationManager, which 
handles the main part of the calibration. It registers itself for receiving events from the 
Analyzer, each of them containing a DetectedIntersection. After gathering a 
predefined number of intersections, the system will compute an average point to reduce errors 
during the detection. It then sends another event through the Event Heap, telling the calibration 
application to set the next calibration point as the active one. The user needs to iterate this 
procedure until the last point has been processed. 

After completing the interactive part of the calibration, the system sends a final event to the 
display wall to hide the screen. Internally, the transformation matrices are calculated as 
described in section 5.5.2. This is done with a mathematical library containing vectors, lines and 
points in both, two and three dimensions. It also comprises methods for matrix manipulation 
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and geometrical calculations. Figure 7.7 shows a class diagram of how the mathematical library 
has been implemented. 
 

 
Figure 7.7: Class diagram of the math library used to process all geometrical calculations 
 
Once all the calculations are done, the system stores the final results permanently in an XML 
file. In the same way as with the camera calibration, this file will be overwritten whenever the 
user re-calibrates the system. An example of such a file is given below (the field “id” indicates 
to which display the matrix is associated to): 
 

<?xml version="1.0" encoding="utf-8" standalone="no"?> 
<Calibration date="2006-2-7" time="13:33:24"> 

<MatrixElement id=”0” row=”0” column=”0” value=”1,0” /> 
<MatrixElement id=”0” row=”0” column=”1” value=”0,0” /> 
<MatrixElement id=”0” row=”0” column=”2” value=”0,0” /> 
<MatrixElement id=”0” row=”1” column=”0” value=”0,0” /> 
<MatrixElement id=”0” row=”1” column=”1” value=”1,0” /> 
<MatrixElement id=”0” row=”1” column=”2” value=”0,0” /> 
<MatrixElement id=”0” row=”2” column=”0” value=”0,0” /> 
<MatrixElement id=”0” row=”2” column=”1” value=”0,0” /> 
<MatrixElement id=”0” row=”2” column=”2” value=”1,0” /> 

 … 
</Calibration> 
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Together with the camera and the system calibration, the system is now fully functional. In the 
next section I will describe how the system uses the calibration data during runtime to enable a 
completely interactive wall. 

7.3 Position Recognition 

In this section I will describe how the tracking system actually works in runtime. I will start 
with the position recognition (including the image rotation and cropping) and continue with the 
mapping of positions to fingers in the next section. The detection of intersection has been 
implemented according to the requirements and concepts described in chapter 5.3. 

Once the system has been activated by pressing the “Start System” button on the main 
application screen, the DeviceManager will initialize all devices sequentially. The reason for 
not starting them all at once is that the devices consume a high bandwidth of the USB bus 
during activation. Thus, after starting one device, the device manager waits until it has been 
initialized completely before activating the next one. During this process, the user receives 
visual feedback of the system’s current state indicated by virtual lamps in the application screen. 
Once all lamps have turned green, the system is fully operational and thus able to detect 
positions. 

After a capture device has been started, its frame grabber automatically gets each frame the 
camera captures. As mentioned in section 7.1.1, the captured image needs to be rotated and 
cropped. The reason for this is that the cameras’ diagonals capture the desired stripes over the 
wall’s surface. This is also done by the frame grabber since every attached component only uses 
the transformed images. The first step is to rotate the captured image. After this, the image 
needs to be cropped to get a stripe which is as high as the specified height in the calibration 
data. After cropping, the image has objectionable blank spots on the left and right side. The 
system eliminates this by spreading up the corner pixels of the image on each side. This 
spreading is done in the first place by extending each side of the original captured frame. Figure 
7.8 shows everything, the extension, the rotation and the cropping to get the final image. 
 

 
Figure 7.8: This shows the already extended and rotated image. The magnification illustrates how the 
corners of the resulting image are spread using an extension of each side of the original image. The red 
bar indicates the portion of the rotated image that will be used for recognition 
 

During runtime, the user gets further feedback using the DetectionWindow by selecting 
it from the application’s main menu. This window shows the currently captured frames as well 
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as (if selected) the detected blobs in real-time for every connected camera. Figure 7.9 shows a 
screenshot of the detection window. Additionally, s/he can use the option of showing the 
detected lines for each camera which is also done in real-time (see Figure 7.9). 
 

 
Figure 7.9: Screenshot of the main application window and the detection window. In the detection 
window, the user is able to see currently detected objects which will be drawn as lines in the main 
application window. 
 

As soon as the system is in running mode, a capture device uses the last captured frame to 
detect objects (e.g. fingers) on the observed stripe over the wall’s surface. After recognizing the 
positions in the image using its detector, it immediately gets lines for all corresponding blobs 
and stores them into an array. This is done by every webcam as soon as a new frame is received 
by the frame grabber. Another thread – the Analyzer – runs separately taking those lines 
during every cycle. After receiving them, the calculation of intersections can be started. 

The first step in calculating the positions is pairing up two cameras to intersect the lines they 
recognized. Because the system restricts having a maximum number of two fingers on the left 
and the right side of the wall it is sufficient to use the two left capture devices and the two right 
capture devices respectively as camera pair. By definition, the system will start with the left 
camera pair and calculate all possible intersections. This means it intersects all lines from one 
camera with all lines of the other one. Usually, this gives a higher number of intersections than 
actually exist on the wall. Thus, the system needs to filter out impossible positions. The first 
step in accomplishing this is to find out, if the intersection is on the right or on the left side of 
the wall. Since the left camera is able to observe the complete right side, it can skip all positions 
found on the left. The next step is to find out which camera of the right pair needs to recognize 
this point as well. According to the region, the point has been detected in (see Figure 7.10), the 
system is quickly able to determine this.  
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Figure 7.10: Sketch of the different regions and their observing cameras noted in parentheses. 
 

Every calculated intersection will now be tested according to the methods that have been 
described in section 5.3. Depending on the region, an intersection needs to have two, three or 
even four lines from different capture devices that will be in short distance of it. After this is 
done, the system checks the number of intersections found. If still more than two positions exist, 
it needs to use a third filter step. This includes deleting positions on the far right side since only 
two cameras can detect these, leading to high inaccuracies. If still more than two points exist, 
the system simply takes the best matches (e.g. the two intersections with lowest inaccuracy) as 
final positions on the right side. Subsequently, the right side will be evaluated in analogy. 
Finally all detected intersections will be merged into one list which will be sent to the input 
layer running on a different machine. Now, the analyzer is in its beginning state again, and is 
thus able to calculate the next intersections. Figure 7.11 summarizes the basic steps in 
calculating positions on the wall’s surface. 
 

 
Figure 7.11: Flow chart illustrating the basic steps needed to be done for the calculation of intersections 
using detected lines from capture devices 
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All these steps are still done within the basic tracking system, without having other 
components involved. As I have described how the system calculates positions, I will continue 
with an explanation of how positions and fingers can be connected using the input layer in the 
following section.  

7.4 Connecting Positions and Fingers 

To connect calculated positions to their corresponding fingers on the wall by using a simple 
motion prediction, as described in section 5.4, the positions need to be sent to the input layer. 
This abstract layer does not only use the input from the wall’s tracking system, but also takes 
the smartboard’s input in the center region into consideration. The basic task is to combine 
inputs from both components and merge them together to give application developers a unique 
input structure. Figure 7.12 illustrates the design of the InputLayer. 
 

 
Figure 7.12: Basic design of the input layer component. Packages in green, classes in red and 
components in yellow are third party components used in the system. 
 

The input layer permanently receives events from the wall’s main tracking system through 
the Event Heap as described in section 7.1.2. Before the positions are sent to the Input Layer, 
the tracking system needs to convert them into screen coordinates. This is done by using the 
transformation matrices calculated during the interactive system calibration. As mentioned in 
section 5.5.2, the system first uses the lead matrix to determine the relative screen position of 
the detected intersection. In this case, the lead matrix is the transformation matrix calculated for 
the center screen. If the transformed position is in the left third of the complete screen, the 
system transforms the detected position again using the transformation matrix for the left 
display. If it is in the right third of the complete screen, it will use the matrix calibrated for the 
right display. If none of these two conditions are correct, the previously transformed point (with 
the transformation matrix of the center screen) will be taken. Figure 7.13 shows a flow chart 
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describing the usage of the transformation matrices. The newly calculated coordinates will be 
added to the event for each point before it will be sent to the input layer. 
 

 
Figure 7.13: Flow chart illustrating the transformation of raw coordinates with the correct transformation 
matrix that has been calibrated previously 
 

After receiving a new position event, each of the contained positions are immediately stored 
as a DetectedIntersection in a vector. Additionally, the input layer obtains positions 
from the smartboard embedded in the wall as center display. The smartboard is able to track two 
positions simultaneously on its surface resulting in more points that need to be evaluated. For 
this reason, a class named SmartBoardModel has been created implementing the 
SBSDKListener interface provided by the smartboard’s SDK. The listener provides several 
methods for positioning events. I will briefly describe the most important ones: 
 

• onXYDown(int x, int y, int z, int iPointerID) 
This method will be called when the first touch on the smartboard occurs. The 
parameters x and y indicate the position (in the smartboard’s coordinate system) and z 
gives the pressure (only for non camera-based boards). The iPointerID is an 
identifier whether it is the first or second pointer found on the board. These parameters 
are the same for every positioning method. 

 
• onXYMove(int x, int y, int z, int iPointerID) 

This method will be called when a previously recognized pointer moves on the board 
without releasing it from the board. 

 
• onXYUp(int x, int y, int z, int iPointerID) 

When a pointer has been released from the board this method will be called. The pointer 
usually caused a “down” and optionally several “move” events before. 

 

Additionally, three further methods for the non-projected mode of the smartboard are given. 
These methods are named onXYNonProjectedDown, onXYNonProjectedMove and 
onXYNonProjectedDown. It depends on the use of the smartboard whether the projected 
methods or the non-projected methods will be called. The projected mode is the projection of a 
computer display onto the smartboard while manipulating the operating system’s mouse pointer 
directly by touching the screen. In non-projected mode, the smartboard serves as projection 
plane where the mouse pointer is not manipulated through the generated position events. In this 
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implementation I decided to use the non-projected mode since it is not necessary to affect the 
system’s mouse pointer. 

Whenever a position event arrives from the smartboard, the SmartBoardModel constructs 
a DetectedSmartBoardPosition and adds it to its queue of detected fingers. Due to 
restrictions in the smartboard SDK the queue’s length is limited to two. The pointer identifier of 
an event helps the model to associate consecutively detected positions. Additionally, the action 
of the finger will be set according to the type of event occurred from the smartboard. 

Now that I have described how the different input events are gathered by the input layer, I 
will now explain how the major task – the connection of positions to fingers – is accomplished. 
In analogy to the tracking system, I created a separate thread called Analyzer. This class 
holds an array of four detected fingers. Each finger contains its current position, the amount of 
time it has been inactive, its movement vector (see section 5.4), an integer representing its 
current action and another integer indicating the finger’s unique number. The reason for using a 
value of inactive time is that a finger might not be detected at all during one cycle of the 
tracking system although it is still on the wall. This happens if the finger moves too fast or is 
occluded by another one in certain situations. If a finger is inactive for a predefined amount of 
time, it gets cleared out of the array indicating that the finger has truly left the wall. In the 
following, I will describe in detail which steps need to be done within one cycle of the 
analyzing thread. 

In the beginning state, the thread updates all previously recognized fingers. This is done by 
increasing the inactive time indicator by one. If the finger’s value equals the predefined value, 
its action will be automatically set to FINGER_UP indicating that the finger might leave the 
wall in the next cycle. If the value is above the threshold, its position will be set to null telling 
the application that the finger finally has left the wall. After this is done for each finger of the 
system, the thread collects all detected intersections including the detected intersections from 
the wall and the detected positions from the smartboard. This list will then be evaluated as 
described in section 5.4. If the system associates a position to a finger, the finger’s movement 
vector and its position will be updated. Furthermore, the finger’s value of inactive time will be 
set to -1 indicating that this is a newly detected position. Additionally, the action will be set 
either to FINGER_DOWN (finger has been detected for the first time) or FINGER_MOVE (finger 
has been on the wall and is moving). 

Finally, the system takes the list of fingers and encapsulates them into an event. This event 
will be sent to the Event Heap again, where applications running on the display wall are able to 
receive and process the finger positions to use them as input events. The structure of an event 
generated by the input layer component is shown in Table 7.2. 
 

Event type Fields Class types Time to live [ms] 

NewPositions FingerID 
Action 
PositionX 
PositionY 
WallPositionX 
WallPositionY 

String 
String 
String 
String 
String 
String 

100 

Table 7.2: Structure of an event sent by the input layer to listening applications 
 
With the knowledge of this event structure, a programmer has the ability to write an application 
which connects to the Event Heap and registers for these events. Thus, s/he can use the inputs 
from the wall as well as from the smartboard as input for the application. An example of how 
these input events can be used will be given in the next chapter. 
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7.5 The Steerable Projector 

The last component of the display wall is the steerable projector mounted on the ceiling in front 
of the wall. It uses the events generated by the input layer component to change the position of 
the projected display. The projector can be operated with a DMX8 controller connected to a 
computer using a USB to DMX interface. This comes off-the-shelf with a precompiled C++ 
DLL which takes DMX commands (see Table 7.3) to steer the projector. Thus, I needed to write 
a JNI interface to connect the projector to a Java application. 
 

Channel Name DMX Function 

0 Pan (rough) 0 
127 
255 

Horizontal -170° 
Horizontal 0° 

Horizontal +170° 

1 Pan (fine) 0 
127 
255 

Horizontal -0.5° 
Horizontal 0° 

Horizontal +0.5° 

2 Tilt (Rough) 0 
127 
255 

Vertical -135° 
Vertical 0° 

Vertical +135° 

3 Tilt (Fine) 0 
127 
255 

Vertical -0.5° 
Vertical 0° 

Vertical +0.5° 

4 Focus 0 
127 
255 

0 Volt 
+5 Volt 

+10 Volt 

5 Zoom 0 
127 
255 

0 Volt 
+5 Volt 

+10 Volt 

6 Signal source 0…84 
85…169 

170…255 

Slot 1 select 
Slot 2 select 
Slot 3 select 

7 Image reversal / 
rear projection 

0…63 
64…127 

128…191 
192…255 

off / off 
off / on 
on / off 
on / on 

8 Trapeze adjustment 
up / down 

0 
1…30 

31 
32…62 

63 
64…255 

100% 
Linear change 

0% 
Linear change 

-100% 
No change 

9 Trapeze adjustment 
left / right 

0 
1…13 

14 

100% 
Linear change 

0% 

                                                 
8 DMX (Digital Multiplex): Communications protocol used to controls stage lighting [52] 
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15…27 
28 

29…255 

Linear change 
-100% 

No change 

10 Picture mute / 
shutter 

0…127 
128…255 

Video mute ON 
Video mute OFF 

11 Hyperband channel 0…99 
100 

101…199 
200 
201 
202 
203 

204…255 

No change 
Power on 

No change 
Power off 
No change 

RESET (pan / tilt) 
RESET (trapeze) 

No change 

Table 7.3: DMX values used to control the steerable projector from an application [34]
 

Due to time constraints, the projector has not been calibrated in detail. Instead, I measured 
points on the desired positions on the wall’s surface with the tracking system and put them into 
the projector’s control. If the control receives a position event, it interpolates between those 
points to position itself using pan and tilt values.  

For this prototype I only have two positions the projector can display at. Thus, I have 
predefined pairs of pan, tilt, focus and zoom values. I used the projected images using these 
values to gather the corners’ positions of it to determine whether the recognized finger is inside 
or outside a projected image. A detailed description of the projector’s usage will be given in the 
next chapter, where I will demonstrate the system’s operation in a demo application called 
WallDraw. 
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Chapter 8  

WallDraw: A Demo Application 

In this chapter, I will describe a small demo that has been implemented to demonstrate the 
capabilities of the system. This demo uses all components: The tracking system, the display 
wall (including input from the smartboard) and the steerable projector (see Figure 8.1). First, I 
will describe a simple task the user is able to accomplish with the system. After that, I will 
explain which steps are needed to be done in the system to perform the user’s input. I will also 
show how the system will give visual feedback to the user. 
 

 
Figure 8.1: Two persons using the WallDraw demo application simultaneously 

 

8.1 The User’s Perspective 

The demo application provides a simple drawing tool to the user. S/he is able to draw on 
each of the three displays as well as drawing strokes across all of them. There is also a tool 
palette displayed onto the wall’s surface next to the displays using the steerable projector. This 
allows selecting different tools such as drawing freehand, drawing a line or a rectangle as well 
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as an eraser to delete previous drawings (see Figure 8.2). Different colors for each stroke result 
from different fingers detected on the wall. Drawing lines and rectangles is done by giving the 
user a preview function (e.g. a thin black line or rectangle) to let him or her be aware of the 
shape’s final size. 
 

 
Figure 8.2: Schematic view of the tool palette with the rectangle tool being selected. This palette will be 
projected onto the wall’s surface with black background 
 

I will explain a simple task of the user to demonstrate how the system works. First the user 
needs to start all components of the system. The order is not important, since all components 
will communicate over the Event Heap and not directly. An example of starting the system 
would be to first run the tracking system. After this, the input layer can be started. Finally, the 
WallDraw application needs to be launched on two machines – one on the display wall and one 
on the computer controlling the steerable projector. The tool palette is not shown directly after 
startup but a black image (invisible) will be projected above the center screen. 

The user now is able to draw on the wall. To show a more difficult task, I will explain this 
with having two users using the system. Each of them will start on one side, which means that 
user A will be on the left and user B on the right. The task for user A is to draw an arbitrary 
shape across the three displays, while user B only needs to draw a rectangle onto the display on 
the right side of the wall. User A first selects the tool palette by “clicking” on the wall’s surface 
above the left display with his or her hand. The tool palette then will be displayed immediately 
after the touch at the point the user hits the wall. S/he is then able to select the desired tool 
which is the line tool in this case. This can be done by simply “pushing” the “Line” button 
displayed on the wall. In the beginning state of the system, the freehand tool is selected for both 
users and is thus highlighted in green color. Once user A has selected the line tool, it gets 
highlighted to indicate the newly chosen tool. S/he is now able to draw the line with which s/he 
will immediately start with. In the mean time, user B wants to select another tool as well. S/he 
calls the tool palette in the same way user A did by touching the wall above the right display. 
Once the tool palette displayed at the desired place, user B selects the rectangle tool by 
“clicking” on the displayed “Rectangle” symbol, which automatically gets highlighted. Now 
s/he is also able to start drawing. Meanwhile, user A has already started drawing the line and 
reached the center screen with the more accurate smartboard, where s/he can continue drawing 
as if it was the same input device. User B has also started to draw the rectangle on the right 
screen, which will have another color than the line drawn by user A. S/he draws a square on the 
display and releases the finger once the rectangle has the desired dimension. User A is still 
drawing his or her line entering the right display at this time. Once s/he is satisfied with the line 
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drawn, s/he will release his or her finger which finally draws the line on the screen. Figure 8.3 
shows important snapshots over time of the user’s different steps.  
 

  

  

  

  

  

Figure 8.3: Important steps in a dual user scenario using the WallDraw demo application with the 
implemented tracking system and all of its components 
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Assuming that the system already had been started for the users they will not be aware of the 
different technologies and machines used. The display wall appears as one large display with a 
tracking system as input device. Having described the user’s perspective of this system, I will 
continue with the system’s perspective to explain what the system needs to accomplish to 
perform the users’ tasks. 

8.2 The System’s Perspective 

In this section, the system’s performance to accomplish the users’ task will be described. Before 
I can start with this, I need to explain how the demo application has been embedded in the 
infrastructure of the tracking system. Figure 8.4 shows the basic design of WallDraw. 

 

 
Figure 8.4: Basic design of the WallDraw demo showing how it has been embedded in the system. 

 
This demo application needs to be distributed on two machines - one for the wall’s displays and 
one for the steerable projector’s control. These parts will also use the Event Heap to send and/or 
receive events. As shown in this figure, the system needs to use another event indicating a 
change of a selected tool by the user. Thus, I created a new event called “NewDrawingTool”, 
which is shown in detail in Table 8.1. 
 

Event type Fields Class types Time to live [ms] 

NewDrawingTool ToolID 
WallSide 

String 
String 

100 

Table 8.1: Structure of an event sent by the projector control to listening applications (e.g. the display 
wall) 
 
Assuming that the Event Heap, the tracking system and the input layer are already running, the 
following steps are done while launching up the demo application. I will start with the part on 
the display wall. After execution, the application immediately connects to the Event Heap. This 
also includes a registration for two events the application wants to receive – the 
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NewPositions event from the input layer and the NewDrawingTool event sent by the 
projector’s control. Once this is done, the application initializes its drawing surface. This 
window will use the full-screen exclusive mode and has a white background resulting in a 
completely white window covering the three displays. At this stage, WallDraw is fully 
functional and able to receive events and process the input commands. 

The only component left is the projector’s control. This is an optional task since the 
application does not need to have different tools and will initially use the freehand tool. Once 
the ToolControl has been executed, it connects to the Event Heap letting it know that it also 
wants to receive the NewPositions events from the input layer. After this is done, the 
application will initialize its tool window which is also running in full-screen exclusive mode. 
In the beginning state, no tool palette is shown while the projector points on the surface above 
the center screen. Finally both applications are running and the users are able to make use of 
them to accomplish their tasks described in the previous section. 

As described above, user A first wants to have another tool. The tap performed above the left 
display is recognized by the tracking system and the calculated position is sent to the input layer 
component. This transforms the position into a detected finger by adding a finger identifier and 
sends it to all listening applications. In this demo, there are only two of them – the projector’s 
control and the display wall’s drawing surface. Both will evaluate the received position and 
decide whether this is a valid one for them or not. There are three types of possible positions the 
system needs to distinguish: 
 

• The position is inside one of the screens of the display wall, or 
• the position is inside one of the two possible positions of the tool palette, or 
• the position is somewhere else on the wall’s surface. 

 

Since the received position is not inside one of the screens, the display wall’s application 
will not perform any further steps. At the same time, the projector’s control will evaluate the 
received position. As mentioned in section 7.5 the corner points of the tool palette have been 
entered directly into the projector’s control. Figure 8.5 shows the determination whether a point 
is inside the tool palette’s position or not. 
 

 
Figure 8.5: Distorted image (above left display) and the corresponding measured positions on the wall. 
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This evaluation needs to be done for both, the left and the right tool palette’s position. 
Additionally, the application needs to check whether the tool palette is already being displayed 
at this side or not. If so, the projector does not need to be moved and the system needs to figure 
out which of the four tools have been touched by the user’s finger. If the projector needs to be 
moved, it will also exchange the visible tool palette since it has a unique tool palette for every 
side of the wall. As mentioned before, the tool panel is not visible in the beginning and it is 
“projected” above the center screen. Thus, the projector moves and displays the left side’s panel 
above the left display immediately after recognizing a touch on the wall’s surface. 

After moving to the left position, user A touches the wall again inside the line tool icon this 
time. The process in determining the action is the same as described above. Since the projector 
is above the left display, it knows that the user selected the line tool by evaluating the newly 
received event from the input layer. Immediately, the tool palette changes the active tool to the 
selected one by highlighting it with the green color. Additionally the old selected tool will be 
deactivated. Internally, a NewDrawingTool event will be sent to the wall’s drawing surface 
application to let it know that the user has selected a new tool. The drawing application will 
then know that it has to start drawing a line, when the user touches the wall inside the displays 
(on the left side). 

User A now touches the wall inside the left display to start drawing the line. The system 
recognizes the new position and again sends it to the two applications. This time the position is 
not of interest for the projector’s control and thus will be ignored. The drawing application also 
receives the NewPositions event. This includes the action FINGER_DOWN, indicating the 
start of a drawing function. The application now creates a new Line object using this position 
as starting point. As the user starts moving the finger, new events will arrive from the input 
layer including the action FINGER_MOVE. They also contain a new position and the same 
finger identifier as the first event, letting the application know that the new position belongs to 
the started line. After every event, the preview will be updated to show the user how the line 
will look like if s/he releases the finger. 

Although user A is currently drawing the line with his or her finger on the wall’s surface, 
user B is still able to select the tool palette. Internally, two events will be sent from the input 
layer to the two processes. Because both will have unique finger identifiers, the system will not 
get confused. The line of user A can still be drawn using positions with the identifier used at the 
start point. The second position event in the beginning is outside the displays again starting the 
procedure for selecting a new tool as described above. 

Now user B also has selected his or her desired tool (the rectangle tool) s/he is also able to 
start drawing. With the NewDrawingTool event sent by the projector’s control, the drawing 
application now knows that every shape started on the right side of the wall will be a rectangle. 
User B now touches the wall inside the right display to start drawing the rectangle. As noted 
before, the system can clearly distinguish between both recognized positions on the wall by 
comparing the unique finger identifiers. Thus, the system knows whether a received position 
belongs to the line of user A or the rectangle of user B. 

Even when user A enters the smartboard region, resulting in a high accuracy of tracking, the 
system will not end the started line and start a new one. Since it still receives the input from the 
input layer (which also controls the smartboard), it is not aware of the change of the tracking 
system. Also, the user does not notice that s/he is tracked by another component. The same 
happens if the user gets on one of the side displays. 

User A has now finished drawing the line on the right display. Thus, s/he releases the finger 
which results in a NewPositions event with the action FINGER_UP. Now the system knows 
that the user has stopped drawing his or her shape and immediately draws it in the finger’s 
associated color. The same will happen as soon as user B releases his or her finger. Figure 8.6 
will summarize the users’ interaction with the system, including the tasks the application needs 
to perform. 
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Figure 8.6: Shows a use-case diagram illustrating the interaction a user can have with the system and 
what steps are done within the application if one of the users touches the wall 
 

Now that I have described a first demo application using the components currently available 
in the system, I have shown that the wall can serve as one large display in the user’s 
perspective. Unfortunately, there are several problems with having multiple positions on the 
wall. Those will be discussed and evaluated in the next chapter. 
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Chapter 9  

Conclusions 

The implementation of this system was more difficult than I first thought. Handling four capture 
devices to build an application running nearly in real-time is a complicated task. Additionally, 
there were several hardware and software problems I encountered during the phase of 
implementation. In this chapter I will give a summary of the problems I had building this 
system. I will start with the time management of the project continued by a description of 
technical lessons I have learned. After that, I will illustrate the performance the system currently 
has. Additionally, I will show possibilities to fix some of those. 

9.1 Time Flow of the Project 

One of the most important problems was the time management. Managing a project as large as 
this one by oneself is rather difficult. This was a totally new experience for me. Additionally, 
the technical problems encountered during the work were discouraging from time to time. I ran 
into several dead ends during the implementation phase, which might have been avoided using a 
more theoretical approach to the problem. 
 

Phase Planned Realized 

Study of related work One month Three weeks 

Planning the system Three weeks Two weeks 

Hardware setup Two weeks Five weeks 

Implementation (System & demo) One month One and a half months 

Writing Four weeks Four weeks 

Table 9.1: Summary of the time planned and actually used to build the system 
 

The planning phase was accomplished in a short amount of time, which led to the mentioned 
implementation problems. Rearranging time resources might have solved this issue, but since I 
have never realized such a project, I did not know this in the beginning. During the 
implementation phase I was often frustrated due to unsolvable technical issues. It was also 
important to deal with these problems and to figure out solutions quickly to avoid being stuck. 
At some points, this problem led to a high amount of work. 

Another part of the social lessons I have learned has been my own autonomy. While 
studying at a university still gives a high amount of supervision, I had to create ideas on my own 
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to solve the problem stated in the beginning. However, as soon as I came up with a new idea, I 
discussed this with other people in the project which helped modify or discard it. 

Finally, Table 9.1 gives an insight of how I distributed the time before the project. It also 
shows how I tried to keep those milestones during the thesis. In the end I have to say that it was 
a great time as well as a great experience for me. 
 

9.2 Technical Lessons 

 
During this work, I learned a lot regarding technical issues as well as social impacts. I had to 
deal with many new situations and problems resulting from hardware and software issues. 
Additionally, I had to manage the planning and implementation in a short period of time which 
has probably been the most difficult task throughout the whole project. Nevertheless, I was 
impressed with the results I achieved with relatively inexpensive hardware.  

Immediately after starting my work on this system, I encountered several technical issues. 
This included dealing with multiple capture devices, which is not possible with Java 
applications. Thus, I had to learn a new programming language (C#) as well as the DirectX 
framework. I enjoyed learning this because it was a challenge and a chance to see how concepts 
from one programming language can be transferred or modified into another. Additionally, it 
was the first time I had to manage with multiple capture devices. Since I like to deal with video 
data, this was an exciting task to accomplish during this thesis. 

There were many more difficulties regarding the technical aspect. First, I had to adopt 
several input techniques such as the smartboard. Furthermore, I needed to create a concept for 
the steerable projector and how it might be used in a demo application. This also included 
connecting this new product to my own system using additional technologies such as the DMX 
to USB interface. 

Other lessons included the construction of the fixation for the cameras. The first approach 
was the design in 3D Studio Max. This design was sent to an industrial manufacturer who was 
able to print the fixations three-dimensionally. Unfortunately, those printouts had one tenth of 
the desired size and were thus not applicable for the system. After this disappointment and 
several costs, I decided to produce those fixations with simple wooden boards, resulting in 
sufficient products. Additionally, this method was far more inexpensive, compared to the three-
dimensional printouts. 

Furthermore, the evaluations and decisions regarding the used hardware were very time-
consuming. This particularly included the choice of the cameras and their extension cables to 
connect them to a single computer. In the beginning I had to deal with erroneous cables as they 
were designed for USB 2.0 but only transferred data with USB 1.1. Finally, those cables did not 
work at all at some point and thus needed to be replaced by others. 

All in all, this work has been a big challenge for me and other people involved in the 
technical point of view. It turned out to be extremely interesting because of all the new and 
advanced technologies that have been assembled together in this system. 
 
 
 
 
 
 
 

 



CHAPTER 9: CONCLUSIONS 
 

 
71 

9.3 Performance and Possible Improvements of the System 

 
In this section I will describe the performance the system has after implementation. It also 
includes solutions for some of the failures, which have not been implemented due to time 
constraints but are applicable after completing this work. 

One major problem has been the amount of jitter produced by the tracking system. This 
results from the sequential capturing of frames, which means that the simultaneously evaluated 
four frames have not been captured at exactly the same time. Figure 9.1 exemplifies the jitter 
occurring from the system using the WallDraw application. 
 

 
Figure 9.1: Jitter occurring while running the WallDraw demo. Left shows two line ends with high jitter 
for one. Right shows a circle’s segment increasing its jitter at the bottom. 
 

As mentioned above, the reason for getting this jitter is the subsequent capturing of frames 
by the cameras and the application. With this knowledge, it is possible to reduce the amount of 
jitter by capturing multiple frames with their corresponding time stamps. Whenever the 
Analyzer evaluates a set of frames, it will first create a virtual time stamp which lies in 
between two captured frames of each camera. The system then interpolates between a pair of 
frames to get the estimated position of the recognized object at the given virtual time stamp. 
This should give positions as close as possible to the correct ones assuming that the cameras do 
not need different periods of time transferring the data to the computer. Figure 9.2 shows an 
example of the jitter occurrence before and after the possible modification. 

Another problem is, that the cameras are not able to cover the whole wall due to their angle 
of aperture. This results in having regions where only two or three cameras are able to observe 
objects. As mentioned in section 5.3, having one object in a region with two cameras does not 
affect the process of triangulation. Unfortunately, the case that two fingers are in such an area 
might occur, which results in only one finger being tracked. This problem can be solved using 
either more cameras or devices with a higher angle of aperture (at least 90 degrees). Both 
methods would be sufficient, but using more than four capture devices results in a higher 
amount of processing power, and is thus not the appropriate solution. 
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Figure 9.2: Example of a detection process. Top shows the currently used method whereas bottom is 
showing the interpolated method. The numbers represent the time stamps of each line. 
 

Furthermore, the system suffers from using visual tracking, as it is not able to track occluded 
fingers. This also results in detection errors as shown in section 5.3. There are lots of cases 
where occluding is a big problem. Most of them are only solvable using more capture devices in 
a specific setup on the wall. As mentioned above, this would result in a higher latency of the 
system which is not applicable at all as it has to give immediate feedback to the user. Even 
industrial solutions such as the smartboard have these occlusion problems. 
 

 
Figure 9.3: This shows two positions on the wall where only one will be detected. The upper 
magnification shows the detection error due to a too large distance of the calculated position from other 
lines. The lower one shows the correct detection of the second point on the wall. 
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The next error the system produces is, if two fingers get too close to each other. This is 
mainly caused by the resolution of the cameras. Each camera captures an image which has a 
width of 400 pixels due to performance reasons. Capturing larger images slows down the 
tracking system a lot and is thus not applicable. Whenever the distance in the captured image of 
two fingers is small, the cameras will detect only one line. This has multiple impacts on the 
tracking system. For example, the system might not detect a position on the wall due to 
measurement errors. Figure 9.3 shows one example of the described problem. 

Besides leaving a valid intersection undetected, the system can also merge multiple 
intersections into one intersection. This leads to inaccuracies of the detected position as well as 
a position not being detected at all (see Figure 9.4). This case is basically a special case of the 
first issue. If the system detects both intersections, there are still problems if they are close too 
each other. Those include inaccuracies for both positions as well as complications in 
determining which position belongs to which finger (see Figure 9.5). In some cases this may 
lead to wrong associations of intersections to fingers, leading to points that hop between 
different positions. This problem is not of interest as long as the application is designed for 
clicking operations. As soon as drag and drop needs to be used, it might frustrate the user 
because of some non-comprehensible actions the system executes. This is only solvable for 
some cases by using cameras with a much higher resolution but it will still fail for some 
situations. 
 

 
Figure 9.4: This shows the inaccuracy as two intersections existing on the wall are merged into one 
detected intersection, causing jitter over a given time span. 
 

 
Figure 9.5: This shows an incorrect association of detected intersections to points if they are close to 
each other. The dashed red lines show that the positions will be associated to the wrong finger resulting in 
incorrect movement detected on the wall. 
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Regarding the performance aspect of execution speed, the system is acceptable as it takes 
about 100 milliseconds to calculate the positions and the association to fingers. Also, the system 
is robust and will only fail in the case a camera gets detached from the system. This would be 
solvable by listening to the USB attach and detach events produced by the operating system. If a 
detach event occurs, the tracking system could, for example, stop and give a warning to the user 
that s/he needs to reconnect the device. 

Overall, this system shows that it is possible to implement an inexpensive wall-sized focus 
and context display, with a tracking system providing the user with the ability to interact with it. 
This also involves having a multi-user bimodal interaction space which might be extended with 
further displays in the instrumented room. While it is fast enough for interactions that require 
clicking, it still needs to get faster for moving and/or dragging operations as shown in the 
WallDraw demo application. To solve this, the system could be equipped with more cameras or 
with cameras that have a higher resolution. If this is to be done, the processing power of the 
computer needs to be increased to ensure a fast detection.  

Additionally, with this system, it has been shown that it is possible to combine more input 
and output technologies to have an interactive display across the complete wall. This display is 
a single one to the user, who does not need to know what components and input and output 
technologies are involved, while s/he interacts with it. In the next chapter, I will give an 
overview of the steps that will be done to improve the system. 
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Chapter 10  

Future Work 

In this chapter I will discuss parts of the system that have been designed in theory and practice 
but have not been implemented yet. This also includes several components which were not part 
of the basic system described in this work. I will start with the improvements regarding the 
tracking system. Subsequently, I will discuss ideas to improve the image equalization of 
projected images being distorted by the steerable projector. Finally, the demo application 
Brainstorm will be introduced as it is a first demo using the instrumented room. 

 

10.1 Improvement of the Tracking System 

One of the most important parts that need to be done is the improvement of the tracking system, 
which includes several steps. Besides the avoidance of jitter as shown in section 9.3, the system 
needs to get faster and more accurate. This affects the main tracking system running locally on 
the machine with the attached cameras. 

Additionally, it is desirable to avoid using black velvet on the wall. This may be 
accomplished by using other image analysis techniques such as improved HSL filtering, edge 
detection and/or region growing. For this task, it may be necessary to change the imaging 
library from AForge [48] to OpenCV [17]. Besides using other computer vision techniques, the 
cameras’ settings for captured images can be adjusted in different ways using different values 
for saturation, brightness and contrast. 

Furthermore, the input layer needs to be updated. The most important part of this will be the 
association of fingers. This includes using another motion prediction as the currently 
implemented one does not perform well enough for this system. As mentioned in section 5.4, 
the application of a Kalman filter is highly desired, because it will give an accurate motion 
prediction, which avoids wrong associations in most cases. 

Another point I want to update is the limitation of four fingers being detected by the system. 
This needs to be changed to at least six positions, so there can be a person in front of each 
screen. This results in three persons and – if they are all working with both hands – in six 
detectable positions. 

Finally, the system needs to match real-world coordinates as the room will be extended to a 
three-dimensional information space where information can be displayed not just on the large 
display wall. In the next section I will discuss this more detailed, as I will describe image 
equalization techniques for the steerable projector. 
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10.2 Image Equalization for the Steerable Projector 

One major problem shown in the WallDraw demo has been the distortion of the projected image 
(e.g. the tool palette in the demo’s case). This basically has been described and done in [44] and 
may be improved in the future for real-time applications. 

The basic idea is, that the room will be given as virtual space within the system including the 
projectors position. This enables the projector to display a non-distorted image everywhere in 
the room on every wall with the usage of the method shown in Figure 10.1. 
 

 
Figure 10.1: Mutual obliteration of projection distortion and camera distortion [44]
 

This solution demonstrates a virtual camera mounted in the virtual room at the projectors 
position and with the projector’s orientation. It captures the projected image on the wall. If this 
captured image is projected using the same orientation and distance again with the projector in 
the real world, the image will be undistorted. Another possibility is to calculate transformation 
matrices for each pixel. These need to be evaluated first especially regarding the execution 
speed of the calculation and transformation. 

With the possibility to display everywhere, the complete system needs to be extended with a 
display component. This component should also handle the equalization described above. 
Furthermore, it should be possible to add new displays into the environment such as interactive 
tables, PDAs and cell phones, which means that the component needs a simple calibration and 
tracking procedure to retrieve the displays’ initial and current positions. Visual markers might 
be one solution for this problem, using the steerable projector as calibration device. 

All improvements regarding the steerable projector are of high interest to FLUIDUM and me 
personally. For this reason, parts of my research will focus on this component in the 
instrumented room to design and implement the steps described above. 

10.3 Brainstorm: Demo of the Instrumented Room 

The project FLUIDUM started to design a demo application using the display wall as well as an 
interactive table in the instrumented room. The goal of this application is to support the 
collaborative creation of mind maps. In this section, I will discuss the demo’s status at this point 
of time regarding the design. 

First of all, I will identify the components being used within the demo application. Besides 
the display wall (including its tracking system as well as the smartboard), an interactive table, 
which is being produced at the moment, will be used in Brainstorm. This table is an LCD TV 
equipped with a DViT overlay as used with the wall’s smartboard. Thus, it is an interactive 
screen supporting two fingers simultaneously. 

The demo is divided into three general phases. The first phase is the creation of notes (e.g. 
Post-Its) on the interactive table. The reason for accomplishing this assignment on the table is 
that users can sit comfortably around it. For this task, the users can touch an empty space on the 
surface which results in the creation of a new note. In there, they can write down their ideas like 
it is done on Post-its in the physical world. Every created note has one raised corner indicating 
that the note may be flipped. Once it has been reversed, the user is able to edit, to copy or to 
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delete the note. After the creation of basic ideas has been done, the notes may be moved to the 
wall either by wiping them or by putting them into a proxy for the wall. 

The second phase is the generation of groups and clusters on the display wall. This is the 
first step where the display wall resulting from this work will be used. The reason for grouping 
and clustering them on the wall is that it has a much larger screen size and resolution. Post-its 
can be moved on the wall to put them into virtual groups. Once they have been grouped 
spatially, the users can draw a line around the post-its using their fingers on the wall. This 
indicates a cluster. These clusters can be merged by dragging one cluster onto another one. Two 
further methods regarding clusters have been designed. These are dissolving one by ripping 
apart the surrounding line of the cluster and deleting one by crossing it out. Once the clusters 
are created, they can be moved the same way as the notes to arrange them spatially. 

The third phase is the consolidation into a mind map. Thus, the users need to decide on a 
root for it. Once finished, they can draw lines to logically connect the clusters into the desired 
mind map. The only step left is the ordering inside the clusters on the wall. This will be done on 
the smartboard for one cluster, whereas all other (inactive) clusters will be displayed on the two 
side displays as contextual information. Whenever the users want to activate another cluster, 
they are able to drag the desired one onto the center screen. 

This demo is currently being implemented by the members of the FLUIDUM project. As 
shown, there is no thought for using the steerable projector in this demo, but this might be 
changed in the future. 
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