
Supporting Mobile Service Usage through Physical Mobile Interaction

Gregor Broll1, Sven Siorpaes1, Enrico Rukzio2, Massimo Paolucci3,
John Hamard3, Matthias Wagner3, Albrecht Schmidt4

1 Media Informatics Group, University of Munich, Germany
gregor.broll@ifi.lmu.de, sven@hcilab.org

2 Computing Department, Lancaster University, UK
rukzio@comp.lancs.ac.uk

3 DoCoMo Euro-Labs, Germany
{paolucci, hamard, wagner}@docomolab-euro.com

4 Fraunhofer IAIS, Sankt Augustin and B-IT, University of Bonn, Germany
albrecht.schmidt@ifi.lmu.de

Abstract

Although mobile services can be used ubiquitously,
their employment and the interaction with them are
still restricted by the constraints of mobile devices. In
order to facilitate and leverage mobile interaction with
services, we present a generic framework that
combines Semantic Web Service technology and
Physical Mobile Interaction. This interaction
paradigm uses mobile devices to extract information
from augmented physical objects and use it for a more
intuitive and convenient invocation of associated
services. For that purpose, the presented framework
exploits Web Service descriptions for the automatic
and dynamic generation of customizable user
interfaces that support and facilitate Physical Mobile
Interaction. This generic approach to mobile
interaction with services through the interaction with
physical objects promises to meet the complementary
development of the Internet of Things. A user study
with a prototype application for mobile ticketing
confirms our concept and shows its limits.

1. Introduction

The usage of Web Services in the mobile domain is
still not as advanced, widespread and established as in
Desktop Computing. Despite the technical progress in
Mobile Computing, most of its devices – particularly
PDAs and mobile phones - only provide inadequate
means for the interaction with Web Services and the

presentation of their contents, which constrains the
mobile usage of Web Services and the usability of
applications based on them. Mobile service interaction
has to rely on built-in browsers or proprietary service-
clients and becomes tedious, intricate and inflexible as
it suffers from small screens, fiddly keys and joysticks
as well as narrow and glutted menus. This adds to the
general problem of adapting mobile application
interfaces to different devices, platforms and their
individual properties and constraints.

In this context, we present a generic approach that
takes advantage of Physical Mobile Interaction [15] as
a means for supporting and facilitating mobile
interaction with services through the interaction with
physical objects.

Physical Mobile Interaction is an interaction
paradigm that is based on two recent developments in
Mobile Computing: On the one hand, physical objects
can be increasingly augmented and associated with
digital information and on the other hand, mobile
devices provide increasing capabilities to ubiquitously
acquire and process this information. These
developments converge into Physical Mobile
Interaction which uses mobile devices to extract
information from augmented physical objects and to
apply it for a more intuitive and convenient interaction
with associated services. Instead of browsing nested
and glutted mobile application menus, users can
simply touch or point at items or information they want
to select or interact with. They can take pictures of
visual markers [13] in magazines or on posters and use
this information for the automatic invocation of
associated services [14]. In combination with wireless

technologies like RFID [16] or NFC [10], Physical
Mobile Interaction is increasingly gaining importance:
It reduces mobile payment, identification or access
control to simply swiping a mobile phone over a
reader. NTT DoCoMo’s i-mode FeliCa service for
example combines mobile phones with built-in NFC-
chips and a service framework based on i-mode [3].

In our approach, we apply the Physical Mobile
Interaction paradigm to mobile service interaction in
order to transfer the simplicity of interacting with
physical objects to the interaction with associated
services and thus make it more convenient and
intuitive. In the process, we shift the focus of
interaction by pushing features and options off mobile
phone menus, mapping them to real world objects (e.g.
service options on a poster) and thus turning them into
rich ubiquitous interfaces for new and more complex
Physical Mobile Interaction techniques.

In order to combine and leverage Physical Mobile
Interaction and Web Services for their mutual benefit,
we developed a generic framework that exploits
Semantic Web Service descriptions for the dynamic
and automatic generation of adaptable interfaces that
support and facilitate Physical Mobile Interaction. This
approach provides a powerful foundation for realizing
more complex and flexible interaction techniques that
benefit from the interoperability, extendibility and
expressiveness of Semantic Web Service technologies.
On the other hand, mobile services benefit from the
seamless integration with Physical Mobile Interaction.
It provides a more natural and intuitive way of
interacting with services, which could leverage their
usage, dissemination and availability. Our approach
merges both technologies into an independent service
framework that can be adapted to and used across
different services, interaction techniques, platforms
and devices.

The next chapter provides an overview of different
work that is related to our approach. Chapter 3
introduces the architecture of our framework, while
chapters 4 and 5 give details about the generation of
interfaces for mobile service interaction and the
implementation of Physical Mobile Interaction.
Chapter 6 presents a prototype application for mobile
ticketing as well as a user study that was conducted in
order to test and evaluate our approach. The
conclusion in chapter 7 summarizes our work and
gives an outlook to future issues.

2. Background and Related Work

Our research is inspired and outlined by similarities
and differences with related work in various areas,

especially about the description and automatic
generation of interfaces as well as Physical Mobile
Interaction.

User interface description languages (UIDL)
provide the basis for interface generation. Concrete
UIDLs such as XUL [8] comprise a vast set of detailed
widgets for building rich application interfaces, but are
less suitable for the generation of interfaces from Web
Service descriptions. More abstract UIDLs like UIML
[1] on the other hand have been designed to describe
and create generic user interfaces for applications on
different devices and platforms. Due to differences in
the vocabularies of interface rendering engines, single
UIML descriptions still have to be tailored to their
syntax and can’t be used for the derivation of multiple
interfaces for different target platforms. Like most
UIDLs, UIML neither supports the generation of
mobile user interfaces nor connections to Web
Services in particular.

The Personal Universal Controller (PUC) [9]
utilizes mobile devices as “remote controls” for the
interaction with common electrical appliances (e.g.
stereo sets or VCRs) which provide abstract
descriptions of their functionalities. Mobile devices
can download these specifications and use them for the
automatic generation of user interfaces for controlling
the corresponding appliances. While this approach to
generating mobile interfaces is similar to ours, it does
not support the interaction with mobile services.

In [5], Khushraj and Lassila use descriptions from
the OWL-S Service Profile and Process Model of
Semantic Web Services as the basis for the generation
of dynamic form-based user interfaces. As some
interface properties can not be derived from these
descriptions, they are extended with additional OWL-S
annotations about labels, preferred widget types or the
grouping of fields and sub-fields. Although this
procedure only supports the creation and customization
of simple form-based interfaces, it inspires our own
approach which extends the presented idea to
interfaces for different platforms and to the generic
support of Physical Mobile Interaction.

Riekki, Salminen and Alakarppa [12] developed a
framework for requesting services by touching RFID
tags, including a middleware and tags with different
functions that is very close to our own approach
although we put a stronger focus on Web Services,
generic interface generation and Physical Mobile
Interaction.

The development of Physical Mobile Interaction is
met and advanced by the dissemination of another
related technology: The Internet of Things [7], in
which everyday objects are uniquely identified through
wireless markers and have individual network

references for easier recognition, identification and
monitoring. Physical Mobile Interaction could
establish itself as a natural complement to the Internet
of Things, as it facilitates the interaction of its objects
with associated information and services.

3. Framework Architecture

The approach to mobile interaction with services
through the interaction with physical objects is
reflected in the architecture of our framework as it
integrates Web Services and Physical Mobile
Interaction into a coherent system. Different
requirements influenced its design:
• Abstract description and extension of services in

order to generate generic, customizable interfaces
• Reuse of single service descriptions for generating

multiple user interfaces
• Automatic and dynamic adaptation of interfaces to

different mobile devices, target platforms, user
profiles and interaction designs instead of being
dependent on them

• Strong technical and functional relation between
physical objects and mobile services

• Support for different interaction techniques

These and other requirements were considered

during the development of the framework, whose
architecture is divided into 3 major components
(Figure 1): The Physical Mobile Interaction Domain
comprises mobile devices and client applications that
interact with physical objects. These objects are
augmented with different technologies (e.g. NFC tags,
visual markers or Bluetooth) in order to provide

information that can be used as input for the invocation
of services that are associated with them.

These services are part of the Web Service Domain
and represent the backend logic in the architecture.
They are exchangeable and can be easily replaced in
order to provide Physical Mobile Interaction for other
Web Services, e.g. offered by Amazon. The
descriptions of service functionalities, along with
different extensions and annotations provide the basis
for the generation of interfaces for Physical Mobile
Interaction.

The Interaction Proxy mediates between Web
Services and client applications as it bridges the gap
between both domains. In order to increase the
efficiency of the interface generation process, it is
intended to adopt and centralize common
functionalities that can be outsourced from the Web
Service Domain (e.g. interface generation) and
constrained mobile devices (e.g. resource-demanding
transformation processes). That way, the Interaction
Proxy ties the two separate domains together while
retaining their independence from each other. It also
keeps the framework generic enough for the future
integration and support of additional Web Services,
client technologies and physical objects. Depending on
the technical performance of mobile client devices, the
Interaction Proxy can be either partially or fully
implemented and executed on these devices or on a
separate server.

Consequently, the Interaction Proxy assists the
Universal Client application in the Physical Mobile
Interaction Domain and provides complete interfaces
(e.g. HTML) or compact interface descriptions for
client side rendering. The Universal Client is an

Figure 1. Architecture of the generic service framework, that takes advantage of
Physical Mobile Interaction for the invocation of Web Services

application on a mobile device that acts as a mediator
between the Interaction Proxy and different physical
objects. Its Service Client-component provides an
interface for the communication with the Interaction
Proxy while the Interaction Client-component
manages and abstracts different technologies for
Physical Mobile Interaction with everyday objects. In
addition, the Universal Client represents the generic
application logic that renders, displays and uses
interfaces for this interaction and the mobile invocation
of Web Services.

4. Service Annotation and Interface
Generation

The main requirement of the presented framework
is providing the means to leverage the automatic
generation of interfaces for physical, mobile service
interaction and their dynamic adaptation to different
contextual constraints. In order to meet this and other
requirements (see chapter 3), the framework exploits
the expressiveness and flexibility of (Semantic) Web
Service technology for the embodiment of service
descriptions and different service extensions (see
Figure 2). The latter are extendable, reusable
ontologies that help implement general, independent
concepts and bridge the gap between Web Services
and Physical Mobile Interaction.

The Web Services that are part of the framework
use the Web Services Description Language (WSDL)
[4] for the deployment and invocation of Web Services
as well as for the definition of service parameters and
message formats. Since the merely functional WSDL
service descriptions do not provide sufficient
information for generating user interfaces, the
framework uses them as the grounding for semantic
OWL-S [6] service descriptions (see Figure 2). These

OWL-S service ontologies build the basis for the
interface generation process as they provide a higher
level of expressiveness and allow the specification of
more complex interaction sequences.

In order to provide additional information for the
generation and rendering of user interfaces that go
beyond the still functional OWL-S service
descriptions, the framework extends them with the
Service User Interface Annotation (SUIA) ontology
(see Figure 2). Its main class AbstractUIMapModel
(see Figure 3) serves as a collection bag for several
parameter mappings represented by instances of the
class ParamterMap which are attached by the property
hasParameterMap. The information encapsulated in a
ParameterMap complements the description of a
specific input or output parameter in the OWL-S
service ontology which is indicated by the object
property hasServiceParameterRef. The remaining
properties in the ParameterMap express information
that is needed for rendering the interfaces and
increasing their usability:
• hasAbstractWidgetType: abstract specification of

the type of widget that the target platform should
map to a parameter

• hasLabel: readable label to increase the
expressiveness and usability of interfaces

• hasDescription: additional description of a
parameter

• hasImageRef: optional definition of a URL to
associate an image with the parameter

• hasParameterValueSet: predefined sets of values
that are valid for an input parameter type

The ParameterMap-property hasAbstractWidget-

Type refers to the Abstract Widget Type Model that
describes different abstract widget types in a general
way independent from target device characteristics

Figure 2. Service descriptions and extensions as the basis for
interface generation, customization and rendering

such as rendering platform and language specific user
interface concepts. Its information is interpreted by the
interface rendering mechanism of the Universal Client
and mapped to the concrete user interface widgets of a
target platform. Figure 4 depicts the hierarchy and the
different widget types of the Abstract Widget Type
Model that is specified in a self-contained OWL-S
ontology and shared as a general concept between the
domains of Web Services and Physical Mobile
Interaction (see Figure 2).

The Abstract Widget Type Model represents the
most common widget concepts in user interfaces and
can be extended with additional components. The
general class WidgetType distinguishes between
subclasses for inputs (InputWidgetType) and outputs
(OutputWidgetType) depending on the type of service

parameter to be augmented. Depending on the target
platform and programming language, these generic
interface identifiers serve as hints for their rendering as
concrete interface widgets. Different applications
might display them as input fields, checkboxes, option
menus, radio buttons, hidden fields or any widget that
fits the denounced generic widget type.

Apart from the service extensions, OWL-S
ontologies are also used for the definition and
assignment of Abstract Parameter Types, an abstract
information typing model within the framework that
expresses the functional correlation between physical
objects and Web Services (see Figure 2). Just as
objects are associated with certain services (see Figure
1), this model types and associates information on
these objects (e.g. options on a movie poster) with

Figure 3. The AbstractUIMapModel of the Service User Interface Annotation
ontology containing information for rendering usable interfaces

Figure 4. The Abstract Widget Type Model for specifying
the rendering of individual interface widgets

equally typed input parameters of the corresponding
services (e.g. for purchasing movie tickets). The
Abstract Parameter Type Model is another general
concept in the architecture that is defined
independently from its other components in order to
stay extendible and reusable.

Figure 5 provides an overview of the interface
generation process within the Interaction Proxy. In
order to be efficient and flexible, it tries to accomplish
the generic support for different target platforms,
interaction techniques, user preferences and other
contextual constraints with the least effort and greatest
reuse of resources. The first step is the composition of

the basic OWL-S Web Service descriptions, their
extensions and other ontologies (SUIA, Abstract
Parameter Type Model and Abstract Widget Type
Model) into the Abstract User Interface (UI)
Description that serves as the basis for the further
creation and customization of mobile service
interfaces. Additional input may be provided by the
service implementation itself, e.g. the output of a
previous interaction step.

The Interaction Proxy gathers these descriptions
and forwards them to an integrated instance of Cocoon
[2], an XML-framework for multi-channel publishing
that implements the generation and transformation of

Figure 5. The multichannel interface generation and transformation process

Figure 6. An Abstract User Interface Description and how its
different elements are rendered into a concrete interface

interfaces. Cocoon aggregates the different
descriptions, applies appropriate XSLT-stylesheets and
derives the Abstract UI Description according to its
transformation rules (see Figure 5). This new and
abstract service description is a summary of the
previous descriptions and contains all necessary
information for further interface generation while
being more concise and easier to interpret (see Figure
6). Basically, it lists abstract descriptions of widgets
that collect input values for the different parameters of
a service.

After the Abstract UI Description has been
generated, it is rendered into a concrete user interface
by either the Interaction Proxy itself or the Universal
Client, depending on the interaction design, supported
platforms, interaction techniques or user preferences.
The current implementation of the Interaction Proxy
supports HTML and Java ME interfaces. It recognizes
information about the target platform from client
requests and has Cocoon use this information for
choosing different branches in its multi-channel
publishing process (see Figure 5). If the system
recognizes a HTML user agent header, another XSLT-
transformation translates the Abstract UI Description
into a HTML-document that is returned to the
Universal Client and displayed by its HTML-browser.
In case the Universal Client recognizes appointed
Http-request properties that indicate the usage of a
Java ME client-midlet, the Abstract UI Description
itself is returned and rendered by the Java ME runtime
environment of the Universal Client according to its
own rules. Figure 6 shows how the different
information in an Abstract UI Description is rendered
into different parts of a Java ME interface.

5. Supporting Physical Mobile Interaction

As the last major component in the framework, the
Universal Client embodies the concept of a generic
client platform for Physical Mobile Interaction with
services. Its actual implementation and range of
capabilities are dependent on the platform (e.g.
Symbian, Windows Mobile, EPOC, etc.), supported
technologies (e.g. Bluetooth, NFC, GPS, camera, etc.)
and programming languages (e.g. HTML, Java ME,
etc.) provided by different mobile devices. Therefore,
Universal Clients for different platforms vary in the
complexity of their functionalities and can range from
a simple (mobile) Web-browser to a specialized client
for different interaction techniques. According to their
specific implementation, they either receive complete
interfaces (e.g. HTML) from the Interaction Proxy and
display them for service interaction or generate them

from the Abstract UI Description themselves. Either
way, these interfaces support and visualize the mobile
interaction between the Universal Client and physical
objects.

Depending on its technical abilities, a Universal
Client implements different Physical Mobile
Interaction techniques and manages them through its
Interaction Client-component. That way, the Universal
Client can interact with physical objects, collect their
information and use it for the invocation of services in
a generic way while staying independent from any of
them. Examples for interaction techniques and the
technologies behind them are:
• For Touching (Figure 7a) physical objects are

augmented with NFC or RFID tags that store
information, e.g. for identification or service
invocation. Users select these tags by touching
and reading them e.g. with their mobile phones.

• For Pointing (Figure 7b) physical objects are
augmented with visual markers that can be
captured with mobile phone cameras and
interpreted by image recognition algorithms.

a) b)

c) d)

Figure 7. Different techniques for the

mobile interaction with physical objects

• Location Based Object Selection (Figure 7c) uses
external GPS devices via Bluetooth in order to
measure the proximity to physical objects and to
interact with them accordingly, e.g. when a user
moves within the vicinity of an object.

• Scanning (Figure 7d) uses the Bluetooth
capabilities of mobile phones in order to search

for, connect to and interact with other devices and
augmented objects in their vicinity.

Since many mobile devices don’t possess the

technical equipment for the previous interaction
techniques, Direct Input can also be considered for
Physical Mobile Interaction. It simply uses the
standard widgets of its client platform in order to
provide an application with information.

The interfaces that are generated within the
framework support Physical Mobile Interaction to an
extent that is determined by the technological
equipment of the corresponding client platform.
Devices with HTML-browsers can only support the
direct input of values through HTML-forms. Java ME-
enabled mobile phones on the other hand can
implement several of the presented interaction
techniques, provided that they possess the necessary
hardware, e.g. digital cameras or built-in NFC-readers.

6. Prototype Implementation and
Evaluation

In order to visualize, test and evaluate our approach
to mobile service interaction, we developed two use-
case-scenarios for mobile ticketing using augmented
posters and implemented a Universal Client prototype
for Physical Mobile Interaction with the corresponding
services.

The current implementation of the framework
returns complete HTML-interfaces (see Figure 8a) or
Abstract UI Descriptions for individual interface
generation. Any (mobile) device with an HTML-
browser can use it as a Universal Client to display the
HTML-interfaces. Although mobile service interaction
benefits from the familiarity of using HTML and its
wide dissemination, common browsers are hard to
extend in order to support any Physical Mobile
Interaction techniques other than Direct Input through
HTML’s form-based input-widgets.

In order to take more efficient advantage of
Physical Mobile Interaction, a Java ME prototype
client was developed, that implements Touching
through NFC, Pointing through visual marker
recognition and Direct Input through standard input-
widgets. The prototype client implementation uses the
Physical Mobile Interaction Framework (PMIF) [15]
for the generic integration and easy exchange of
different interaction techniques.

During the interface generation process, the Service
Client-component of the prototype receives the
Abstract UI Description of a service from the
Interaction Proxy. The client derives a suitable Java

ME-widget from each abstract widget description,
whose assignment is suggested in the Abstract UI
Description (see Figure 6) and is ultimately decided by
the interaction design of the prototype implementation
(see Figure 8b). That way, an abstract widget
description denoted as SingleSelectInput could be
rendered as a list of radio buttons for Direct Input or as
a read-only text-field that forces users to use Touching
or Pointing in order to pick parameter-values from
physical objects and place them into the interface.

a) b)

Figure 8. Interfaces for service interaction

through different mobile clients

During Physical Mobile Interaction, the content of

the rendered widgets is updated with the acquired
values, which have been specified using the Abstract
Parameter Type Model. After all necessary values have
been collected and displayed in the interface for visual
feedback, they are extracted from their widgets and
serve as request-parameters for the invocation of the
corresponding service. Both HTML- and Java-
interfaces use the Abstract Parameter Type Model in
order to associate the information acquired from
physical objects with the corresponding interface
widget and thus service input parameters of the same
type.

Apart from the Universal Clients for HTML- and
Java ME–interfaces, the prototype implementation also
comprises 2 posters that were used as physical objects
in the context of 2 use-case scenarios for mobile
ticketing. The first poster allows users to purchase
movie tickets and offers appropriate options (movie
title, cinema name, number of tickets and preferred
timeslot) together with a selection of values (see
Figure 9). The second poster implements a simplified
way to buy tickets for a public transportation system
(see Figure 10). Instead of having to understand a
complicated ticketing system, inexperienced users only
have to select options for the station they want to start

their journey from, their destination, the number of
passengers as well as the duration of the ticket in order
to have appropriate tickets suggested.

Figure 9. Use case poster for
mobile ticketing (cinema)

The posters and the prototype client implementation

use different action- and parameter-tags which are
logically mapped to different services and their
parameters. Action-tags contain the URLs of different
services while parameter-tags provide parameter-
values for their invocation. That way, a poster can
support the invocation of different services that use the
same (sub)set of parameters. Although both tags are
independent from each other, the contents of
parameter-tags can be associated with the input-
parameters of services through the commonly applied
Abstract Parameter Type Model. On the posters, each
tag is mapped to its own option and stores its
information through the augmentation with NFC-tags,
visual markers and a human readable identifier.

In order to evaluate our approach, we conducted 2
user studies, for which subjects (10 per study) had to
use the prototype client application and interact with
the posters. While the first study only used paper-
prototyping to estimate the overall concept and
acceptance of our approach, the second study was

conducted with the implemented framework and
evaluated Physical Mobile Interaction using a mobile
HTML-browser and the Java ME Universal Client-
implementation.

Figure 10. Use case poster for mobile
ticketing (transportation)

Both user studies confirmed our approach to mobile

service interaction through Physical Mobile
Interaction: The whole system and especially the usage
of Physical Mobile Interaction was generally very well
received, despite an initial inhibition level due to the
unfamiliar concept of different action- and parameter-
tags and the new type of interaction in general.
Concerning the different Physical Mobile Interaction
techniques, Touching was the clear favorite regarding
usability, innovation and reliability. Pointing on the
other hand was perceived as the exact opposite: more
complicated to use, less reliable and less convenient –
disadvantages that can be accredited to the additional
effort of using a mobile phone camera. Direct Input
benefited from its easy handling and great reliability
but was not considered to be innovative or interesting.
Despite the generally great acceptance of Physical
Mobile Interaction, it also became evident that the
potential of Physical Mobile Interaction is not yet fully
exploited and needs more support. This showed

especially as subjects did not use the poster and the
application as intuitively and naturally as expected.

7. Conclusion and Outlook

We presented an approach to make mobile
interaction with services easier and more convenient. It
dodges the constraints of mobile devices and leverages
their otherwise restricted means of interaction. For that
purpose we developed a generic framework that
combines services and Physical Mobile Interaction for
their mutual benefit. Its implementation provides basic
support for the dynamic and automatic generation of
interfaces from extended service descriptions. Thus it
enables and facilitates the development of more
complex mobile interactions with physical objects and
their associated services. For that purpose, it uses
abstract type systems for service parameters and
interface widgets in order to link physical objects with
services and adapt interfaces to different client
platforms while staying independent from them. We
conducted two user studies with 10 participants each,
to evaluate the implementation of the framework and a
mobile client prototype, which confirmed our approach
but also showed its limits.

Currently implementing the generic integration of
different services and Physical Mobile Interaction
techniques, the framework can be extended and
improved in several ways: It could adapt interfaces to a
wider range of client platforms and add support for
additional interaction techniques. The differentiation
between action- and parameter-tags could be extended
to other, more convenient and intuitive interaction
designs. Tags could be used across multiple posters or
serve as input for search engine queries that point to
services that can be invoked with the poster’s tags.
Authoring tools for the framework could abstract and
facilitate the different steps that are needed for setting
up services and connecting them to physical objects.
Finally, all these efforts could evolve Physical Mobile
Interaction for better integration with other, compatible
technologies like the Internet of Things.

8. Acknowledgement

The presented approach to the combination of Web

Services and Physical Mobile Interaction was
developed within the PERCI-project (PERvasive
ServiCe Interaction) [11], a collaboration of the
University of Munich and NTT DoCoMo Euro-Labs
that is funded by the latter.

9. References

[1] Abrams, M. and C. Phanouriou. “UIML: An XML
Language for Building Device-Independent User Interfaces”.
XML '99, Philadelphia, 1999.
[2] Apache Cocoon Project. http://cocoon.apache.org/.
[3] Boyd, J. “Here Comes The Wallet Phone”. IEEE
Spectrum Online. Nov 2005.
www.spectrum.ieee.org/nov05/2150
[4] Christensen, E., F. Curbera, G. Meredith, and S.
Weerawarana. “Web Service Description Lanaguage
(WSDL) Homepage”. 2001. http://www.w3.org/TR/wsdl.
[5] Khushraj, D. and O. Lassila: “Ontological Approach to
Generating Personalized User Interfaces for Web Services”.
International Semantic Web Conference 2005, 2005.
[6] Martin, D., M. Burstein, J. Hobbs, O. Lassila, D.
McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B.
Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara.
“OWL-S: Semantic Markup for Web Services”. 19.06.2006.
http://www.daml.org/services/owl-s/1.1/overview/.
[7] Meloan, S. “Toward a Global ‘Internet of Things’”.
11.11.2003. http://java.sun.com/developer/technicalArticles/
Ecommerce/rfid/.
[8] Mozilla.org. XML User Interface Language (XUL).
03.07.2006. http://www.mozilla.org/projects/xul/.
[9] Nichols, J. “Automatically Generating User Interfaces for
Appliances”. In: UIST 2004 Conference Companion, Santa
Fe, NM, 2004.
[10] NFC Forum. http://www.nfc-forum.org/.
[11] Perci homepage. http://www.hcilab.org/projects/perci/
[12] Riekki, J., T. Salminen, and I. Alakarppa. “Requesting
Pervasive Services by Touching RFID Tags”. IEEE
Pervasive Computing 5, Jan. 2006.
[13] Rohs, M. and B. Gfeller. “Using Camera-Equipped
Mobile Phones for Interacting with Real-World Objects”. In:
Ferscha, A., H. Hoertner, and G. Kotsis (Eds.): Advances in
Pervasive Computing. Austrian Computer Society (OCG),
Vienna, Austria, 2004.
[14] Rukzio, E., A. Schmidt, and H. Hussmann. „Physical
Posters as Gateways to Context-aware Services for Mobile
Devices”. Sixth IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2004), English Lake
District, UK, 2004.
[15] Rukzio, E., S. Wetzstein, and A. Schmidt. „A
Framework for Mobile Interactions with the Physical
World”. Wireless Personal Multimedia Communication
(WPMC'05). Aalborg, Denmark, 2005.
[16] Want, R. “An Introduction to RFID Technology”. IEEE
Pervasive Computing, vol. 5, pp. 25-33, 2006.

