

Supporting Mobile Service Usage through Physical Mobile Interaction

Gregor Broll¹, Sven Siorpaes¹, Enrico Rukzio², Massimo Paolucci³, John Hamard³, Matthias Wagner³, Albrecht Schmidt⁴

- ¹ Media Informatics Group, University of Munich, Germany
- ² Computing Department, Lancaster University, UK
- ³ DoCoMo Euro-Labs, Germany
- ⁴ Fraunhofer IAIS, Sankt Augustin and B-IT, University of Bonn, Germany

5th Annual IEEE International Conference on Pervasive Computing and Communications

White Plains, NY, USA, March 19-23, 2007

Motivation: Using Mobile Services

- Using Web Services in the mobile domain not as widespread and established as in desktop computing
- Mobile applications and services restricted by constraints of mobile devices:
 - Interaction (e.g. tiny keys, fiddly joysticks)
 - Presentation (e.g. small screens)
 - Usability (e.g. nested and glutted menus)
- Adds to general problem of adapting mobile applications and interfaces to different platforms
- Development of and interaction with mobile applications/services thus often tedious, intricate and inflexible

Motivation: Mobile Interaction with the Real World

 Everyday objects can be augmented and associated with additional information and services

LUDWIG-

MUNCHEN

- Technologies: visual marker recognition, RFID,NFC, laser pointer, IrDA, Bluetooth, GPS, ...
- Objects become electronically recognizable and get digital identities
- Powerful mobile devices for capturing, processing and using this information from the real world
- Both trends build the foundation for Physical Mobile Interaction

MÜNCHEN

Physical Mobile Interaction

- Extends mobile interaction to the interaction with real world objects
- More intuitive and more familiar access to information through interaction with associated objects
- Techniques:
 - Touching (e.g. NFC)
 - Pointing (e.g. visual marker)
 - Scanning (e.g. Bluetooth)
 - Location Based Selection (e.g. GPS)
 - ...
- Often only simple usage => gateway for traditional interaction

Approach and Agenda

- How to facilitate mobile interaction with Web Services through the interaction with physical objects?
- How to make complementary usage of Web Services and Physical Mobile Interaction?
- Focus of the PERCI project (PERvasive ServiCe Interaction): collaboration between LMU and DoCoMo Eurolabs
- Taking advantage of Physical Mobile Interaction for easier access to and usage of mobile services
- Taking advantage of Semantic Web Services to support more complex Physical Mobile Interactions
- Shift focus of interaction from mobile devices onto physical objects => ubiquitous interfaces

- Framework bridging the gap between the Web Service Domain and the Physical Mobile Interaction Domain
- A Universal Client running on a mobile device is interacting with Physical Objects, providing a technical connection to services
- Interaction Proxy (IAProxy) mediates between the two domains

- Automated generation of adaptable interfaces from extended Semantic Web Service descriptions to support Physical Mobile Interaction
- Different service descriptions and interface extensions as basis for interface generation, customization and rendering

Service Description Extensions

Service User Interface Annotation:

- Extensions of OWL-S service descriptions
- Describe additional interface elements
- E.g. labels, predefined value sets, image, ...

• Abstract Widget Type Model:

- Represents most common widget concepts in user interfaces
- Suggests application-specific rendering of abstract widgets
- E.g. Single select input => radio buttons

• Abstract Parameter Types:

- Abstract information typing system
- Associates service parameters and information captured through Physical Mobile Interaction

Multiple select

input

Free multiple

select input

Plain output

Sinale select

input

Direct input

Free single

select input

Option output

User Interface Rendering

8

 Public transport...

 Ticket type:

- XSLT transformation of different description sources to composed *Abstract UI Description* => basis for further transformations and ui rendering
- Two target platforms depending on the device profile:
 - Direct interpretation by J2ME runtime
 - Additional transformation to create HTML-interfaces for mobile web browsers

Linking Objects and Services through Abstract Parameter Types

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

<abstractType>http://perci.medien.ifi.lmu.de:8080/axis/domain/cinema/cinema.owl#MovieTitle</abstractType> <value>XMen 3</value> <label>XMen 3</label> <desc>The X-Men make a last stand in the war between humans and mutants.</desc>

</tag>

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Use Cases for Mobile Ticketing

• PERCI Transportation Tickets • Please follow the steps below in order to use this poster. To select an action Cor Assemble 1 Ticket an option ___, take a picture of its visual marker bi, type its number identifier or perso lang, unio, Nom, Ind 1 touch its NFC-symbol g with your NFC-enabled mobile phone. 2) On the poster, select the action 🖸 you want to accomplish. 4) Select the options
on the poster that are appropriate for your action. 1 Day 1 Horth 8 会社 8 M 1 Hill Bicycle 1 12 Befine Origin and Destination of your Journey by selecting the Areas, in which the appropriate Stations are 2000 L Te Zone 3 1 idi Te Zone 2 9 K To Zone 1 To Zore 2 To Zone 3 To 2000 4 Isar Gard Buy Ticket Day Ticket Tariff 1 Tariff 2 Tickets 1 iči 17 28 đ 1 25 Ø 16

Prototype-Implementation of Physical Mobile Interaction

 Prototype implemented with J2ME, the Nokia RFID & NFC SDK 1.0 and kXML

LUDWIG-

MUNCHEN

- Posters were augmented with NFC-tags and visual markers
- Development and testing with Nokia 3220 (plus NFC shell) and 6630 mobile phones
- **Touching:** reading object descriptions from NFC-tags
- **Pointing:** recognition of visual codes through phone cameras
- **Direct Input:** typing of number identifiers (e.g. in a HTML-browser)

User Study and Evaluation

- 10 participants, aged from 23 to 46 (average 30.7), 8 participants with technical background
- Process
 - User-Experiment: Accomplish to buy cinema tickets for given properties. Use all interaction techniques (Touching, Pointing, Direct Input).
 - Post-Survey: Quantitative rating of interaction techniques
- Results:
 - Good acceptance of the prototype in general, but strongly depending on the used interaction technique
 - Initial problems with the workflow of the interaction
 - Uncertainty about interaction order on the poster
 - Many participants wanted to use the interface directly for inputs although having been advised to use Touching or Pointing

- Generic framework for the combination of Physical Mobile Interactions and Semantic Web Services
 - Automatic user interface generation from service descriptions and annotations
 - Support for the complete Physical Mobile Interaction workflow
 - UI adaptation to J2ME runtime and XHTML browser
- J2ME client prototype supporting the interaction techniques Touching, Pointing and Direct Input
- Making Physical Mobile Interaction more usable and intuitive
- Extending the different service models
- Evolving Ubiquitous Interfaces
- Authoring support for creating physical mobile service applications

Questions? Thank You!

gregor.broll@ifi.lmu.de www.hcilab.org/projects/perci

18/18

