

DoCoMo Euro-Labs

Comparing Techniques for Mobile Interaction with Objects from the Real World

Gregor Broll¹, Sven Siorpaes¹, Enrico Rukzio², Massimo Paolucci³, John Hamard³, Matthias Wagner³, Albrecht Schmidt⁴

- ¹ Media Informatics Group, University of Munich, Germany
- ² Computing Department, Lancaster University, UK
- ³ DoCoMo Euro-Labs, Germany
- ⁴ Fraunhofer IAIS, Sankt Augustin and B-IT, University of Bonn, Germany

3rd International Workshop on Pervasive Mobile Interaction Devices (PERMID 2007)

Toronto, Ontario, Canada May 13th, 2007

Motivation: Mobile Interaction with the Real World

 Everyday objects can be augmented and associated with additional information and services

LUDWIG-

MÜNCHEN

- Technologies: visual marker recognition, RFID,NFC, laser pointer, IrDA, Bluetooth, GPS, ...
- Objects become electronically recognizable and get digital identities
- Powerful mobile devices for capturing, processing and using this information from the real world
- Both trends build the foundation for Physical Mobile Interaction

Physical Mobile Interaction

- Extends mobile interaction to the interaction with real world objects
- More intuitive and more familiar access to information through interaction with associated objects
- Techniques:
 - Touching (e.g. NFC)
 - Pointing (e.g. visual marker)
 - Scanning (e.g. Bluetooth)
 - Location Based Selection (e.g. GPS)
 - ...
- Often only simple usage => gateway for traditional interaction

Motivation and Approach

- Approach of PERCI (PERvasive ServiCe Interaction): Collaboration between NTT Docomo Eurolabs and LMU
- Taking advantage of Physical Mobile Interaction for better mobile interaction with (Semantic) Web Services
- Physical Mobile Interaction to make mobile interaction with people, places, things easier and more intuitive
- Touching or Pointing instead of complex menus
- Outbalancing constraints of traditional mobile interaction
- Shift focus of interaction from mobile devices onto physical objects => ubiquitous interfaces
- Explore the potential of more complex techniques for Physical Mobile Interaction

- Framework bridging the gap between the Web Service Domain and the Physical Mobile Interaction Domain
- A Universal Client running on a mobile device is interacting with Physical Objects, providing a technical connection to services
- Interaction Proxy (IAProxy) mediates between the two domains

User Interface Generation Process

- Automated generation of adaptable interfaces from extended Semantic Web Service descriptions to support Physical Mobile Interaction
- Different service descriptions and interface extensions as basis for interface generation, customization and rendering
- XSLT transformation of different description sources to composed Abstract UI Description => basis for further transformations and ui rendering

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Use Cases for Mobile Ticketing

Prototype-Implementation of Physical Mobile Interaction

 Prototype implemented with J2ME, the Nokia RFID & NFC SDK 1.0 and kXML

LUDWIG-

- Posters were augmented with NFC-tags and visual markers
- Development and testing with Nokia 3220 (plus NFC shell) and 6630 mobile phones
- Typing of tags: actions and parameters
- **Touching:** reading object descriptions from NFC-tags
- **Pointing:** recognition of visual codes through phone cameras
- **Direct Input:** typing of number identifiers (e.g. in a HTML-browser)

User Study and Evaluation

- 17 participants, aged from 23 to 46, 4 female, 13 male
- Process
 - Preliminary interview
 - Carrying out a task (buying a movie ticket) with all 3 interaction techniques
 - Touching and Pointing tested with Java ME clients
 - Direct Input was tested with a mobile HTML-browser (Opera)
 - Order of the techniques was changed with every user
- General Results and Issues:
 - Subjects often did not know how to start the interaction; expected workflow
 - Lack of predefined interaction sequence confused them
 - Most subjects ignored instructions on the poster or did not appreciate them
 - Concept of action/parameter tags was often not understood at first
 - Subjects learned how to use them after the initial problems

Comparison between Touching, Pointing and Direct Input

- Direct input suffered from problems with the HTML-browser
- Pointing suffered from the delay when taking a picture of a visual marker
- Touching was by far considered to be the fastest (13/12 subjects before/after the study) and most favourite (13/13 subjects before/after the study) interaction technique
- Touching:
 - best overall results
 - most reliable, enjoyable, innovative and easiest to handle
- Pointing:
 - overall bad results
 - more innovative and reliable than Direct Input
- Direct Input:
 - reliable and easy to handle
 - neither innovative nor enjoyable

- Generic framework for the combination of Physical Mobile Interactions and Semantic Web Services
- J2ME client prototype supporting the interaction techniques Touching, Pointing and Direct Input
- Evaluation showed overall acceptance and potential of more complex techniques for Physical Mobile Interaction
- Still constraints and limitations => need for usability design guidelines

Questions? Thank You!

gregor.broll@ifi.lmu.de www.hcilab.org/projects/perci

