
User-Specific Touch Models in a Cross-Device Context
Daniel Buschek

University of Munich
Amalienstr. 17, 80333 Munich, Germany

buschek@cip.ifi.lmu.de

Simon Rogers, Roderick Murray-Smith
School of Computing Science

University of Glasgow
18 Lilybank Gardens, Glasgow, G12 8QQ, UK

{Simon.Rogers,
Roderick.Murray-Smith}@glasgow.ac.uk

ABSTRACT
We present a machine learning approach to train user-specific
offset models, which map actual to intended touch locations
to improve accuracy. We propose a flexible framework to
adapt and apply models trained on touch data from one de-
vice and user to others. This paper presents a study of the
first published experimental data from multiple devices per
user, and indicates that models not only improve accuracy be-
tween repeated sessions for the same user, but across devices
and users, too. Device-specific models outperform unadapted
user-specific models from different devices. However, with
both user- and device-specific data, we demonstrate that our
approach allows to combine this information to adapt models
to the targeted device resulting in significant improvement.
On average, adapted models improved accuracy by over 8%.
We show that models can be obtained from a small number of
touches (≈ 60). We also apply models to predict input-styles
and identify users.

Author Keywords
Touch; Machine Learning; Regression; Probabilistic
Modelling; User-Specific; Device-Specific

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Input
devices and strategies (e.g. mouse, touchscreen)

INTRODUCTION
It is desirable that devices adapt to the user, not the other way
round. Machine learning techniques can help touch devices to
adapt, using models of touch behaviour. In this context, mod-
elling so far mainly focussed on data from a single device per
user, more for practical than conceptual reasons. To examine
user- and device-specific touch influences, we present a mod-
elling approach with respect to data from multiple devices per
user. User-specific offset models are trained to map actual to
intended touch locations. We discuss concepts to adapt and
transfer these models across devices and users. We further

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MobileHCI ’13, August 27 - 30 2013, Munich, Germany
Copyright 2013 ACM 978-1-4503-2273-7/13/08 ... $15.00.

Figure 1. Touch offset. The user intended to hit a target to the upper left
of the actual touch location. The difference between both locations is
a two-dimensional offset vector. Given previously recorded touch data,
offset models can predict the target location for future touches to im-
prove the user’s touch accuracy.

utilise our transfer approach to examine user and device vari-
ability. In a practical application, we deploy these models to
improve touch accuracy and find that users benefit from their
models not only on the same device in one session, but across
devices and repeated sessions as well. Finally, we further ap-
ply offset models to predict input-styles and identify users.

Precise input on a touchscreen is hindered by several well-
known problems: The finger covers the relevant area of the
screen, so the target is no longer visible ([14], [7]). The screen
is flat and offers no tangible cues about the content. Users
might also visually target with a different part of their finger
than the one with which they actually touch the screen, see
for example [8]. These problems lead to an offset between the
intended and the actual touch location sensed by the device.
Figure 1 shows an example of this situation.

Related research shows that size and direction of touch offsets
depend on the screen location, the user and the device: Users
show different offsets at different positions on the screen [16],
which could in some way be attributed to the movement and
size of the finger, the input-style (e.g. one hand and thumb
[9]), and so on. Characteristics vary between users, which
suggests a user-specific approach [16]. Device-specific influ-
ences exist as well, like size and shape, the aspect ratio of the
screen or the resolution [6].

The remainder of this paper is structured as follows: First,
we describe a general method to model user-specific touch

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

382

offsets. Second, we present several approaches to transfer
models across devices and users, based on different assump-
tions. We then report results from our user study, in which
we applied these concepts to touch data. Here, we discuss
user-specificity, a comparison of user- and device-specific in-
fluences and performances when applied to improve touch ac-
curacy. We then apply offset models to two other tasks, input-
style prediction and user identification. Finally, we draw a
conclusion and show possibilities for future work.

RELATED WORK
A user-specific machine learning approach to model offsets
between intended and actual touch locations is presented in
[16]. The authors used Gaussian Process (GP; [10]) models
in a landscape orientation, two-thumbs input setting and re-
ported highly non-linear surfaces. They also demonstrated
the relevance of user-specific modelling. They mainly fo-
cussed on a single device per user.

In a larger study, offset functions were derived from touch
data collected via the android app market [6]. The authors
found an improvement in accuracy achieved with these func-
tions in a portrait orientation, one thumb setting, similar to
the setup we observe in this paper. For each user there is only
one phone in the dataset. In contrast, we collected data on
multiple phones per user.

Other approaches improve touch accuracy with rich informa-
tion about the finger: [7] inferred the pose with a fingerprint
reader. [12] used additional sensors and advanced Bayesian
techniques. Although these approaches are successful, they
require custom hardware or costly computations. Both [7]
and [12] reported noticeable differences between users, which
further suggests a user-specific approach for offset models.

Touch accuracy has also been improved with special input
methods. [13] proposed techniques with area of interest mag-
nification and magnetic pointers. [14] use callouts in ambi-
gious situations to avoid target occlusion. However, these
concepts require more effort per touch or change the touching
procedure. [2] and [3] model user-specific touch behaviour to
improve typing on software keyboards. They adapt key-target
sizes and key-layouts, but such improvements only apply to
this one task. We focus on a more abstract offset model, from
which users can benefit throughout all tasks and without ad-
ditional interface elements.

OFFSET MODELS
An offset model is defined as a function f that maps actual to
intended touch locations. Figure 2 shows examples. They are
derived from training examples using a machine learning ap-
proach. A training example is a tuple (a, t), where a denotes
the actual location (touch) and t the intended location (tar-
get). A model is user-specific, if it is trained on data from a
single user. It is device-specific, if training data comes from a
single device. In this paper, we mainly use a quadratic model,
i.e. a linear regression model with constant (bias), linear and
quadratic terms. This was motivated by the observation that
additional terms (e.g. cubic) did not have considerable influ-
ence. However, it is not the purpose of this paper to define

Figure 2. Four offset models. Each box represents the lower half of
the screen in portrait orientation. Arrows indicate size and direction of
offsets. They are scaled to better reveal the pattern.

the best possible model. We rather present model transfer
concepts which can be applied to any suitable model.

Training
We start with N training tuples x1, ..., xn, ..., xN with touch
and target locations (a1, t1),, (an, tn), ..., (aN , tN). Note
that both an and tn are 2D screen coordinates.

We define M basis functions Φ1,Φ2, ...,ΦM to model non-
linear surfaces with a linear (in parameters) model. For
a quadratic model, we set M = 5 with Φ1(x, y) = 1;
Φ2(x, y) = x and Φ3(x, y) = y; Φ4(x, y) = x2 and
Φ5(x, y) = y2.

We build the N ×M design matrix X with Xnm = Φm(xn),
the m-th basis function evaluated for the n-th training exam-
ple. Thus each row of X contains one training example and
each column contains one input dimension.

Let tx, ty denote vectors containing the x- and y-coordinates
of allN training targets tn, respectively. Using the maximum
likelihood solution, we arrive at two weight-vectors wx =
(XTX)−1XT tx and wy = (XTX)−1XT ty , which define
our model: fx(a) = wx

Ta and fy(a) = wy
Ta. Note, that

we model horizontal and vertical offsets as functions of both
x and y, in contrast to related research, see [6]. The models
in figure 2 clearly show that this additional flexibility should
not be omitted.

Prediction
For a new touch a = (x, y)T we build the vector a′ = Φ(a).
In our quadratic model we get a′ = (1, x, y, x2, y2)T . We
can predict t′ = (x′, y′)T , with x′ = fx(a′) and y′ = fy(a′).
Variances associated with these predictions can be computed
as well: σ′2 = σ̂2a′T (XTX)−1a′, where σ̂2 is the maximum
likelihood estimate for the dataset noise variance:

σ̂2 =
1

N

N∑
n=1

(tn − wTan)2

Predictive variance could be used as an indicator for uncertain
user intention for autonomy handover (“H-Metaphor”; [5]),
as shown in [11].

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

383

U1 U1
P1 P2

U1 U1
P1 P2

-

NN
P2P2

U1

NN
P2P2

U1

- NNU1

U1
P2P2

U1
P2P2

-U1

1

2

3

4

5

6

cross-device

with
transfer
function

with
transfer
function

with
transfer
function

cross-user
(NN)

cross-user
(pooled)

Figure 3. Visualised overview of model transfer approaches to derive a
model for userU1 on phone P2. Cross-device transfer (1 and 2) assumes
that a model of the same user from another device P1 will also work for
that user on P2. Adaptation is possible based on the differences of both
devices (2). Device-models are trained on data from all users to average
out user-specific effects and capture device-specific ones. On the other
hand, cross-user transfer (3-6) assumes that a model directly from P2
is a better choice, despite being trained on data from another user. In
approach 3 and 4, we rely on the nearest neighbour (NN) of U1 on P1,
assuming that both users will also be similar on P2. With data from that
user on P1, adaptation is possible by comparing users on that phone
and assuming similar differences on P2 as well (4). Instead of a single
similar user, the last two approaches use data from all users of P2, i.e.
device-models, assuming that users are similar on one device.

Collecting training data
Training data is a limitation in any practical application of
offset models. However, in this paper, we are primarily inter-
ested in the possibility of model transfer itself. This also helps
to improve our understanding of user- and device-specific ef-
fects on touch offsets, as well as possible relationships be-
tween them. In a deployed application, we could collect train-
ing data with a calibration phase or game [4]. Although in our
study, we collected 200 random training touches per user, we
show (in section Training set size) that modelling works well
with a small subset (≈ 60). This number could be further re-
duced with an appropriate choice of target locations, instead
of random ones. The user could also benefit from an existing
model. It could be related to another user on the same device
or to the same user on another device. Here, a model transfer
is needed, but no new data or effort from the user.

MODEL TRANSFER
We want to derive a model for user u on phone P . No training
data is available for this user and phone combination, but we
have data from u on another phone. We also have data from
other users on P . We have two options to derive the unknown
model for u on P :

• Cross-device transfer: We use a model from the same
user, but from a different device.

• Cross-user transfer: We use a model from a different user,
but from the same device.

Figure 3 presents possible approaches. Their performance de-
pends on the variability of users and devices: If offsets are
highly user-specific, then a cross-device approach is the bet-
ter choice because we stick to the same user. If the device
has greater influence on the offsets than the user, we should
prefer a cross-user approach, staying on the same device. We
present both options in more detail in the following sections.

Transferring models across devices
The task of model transfer for user u from phone P1 to an-
other phone P2 is defined as follows (see 1 in figure 3): A
user-specific model is trained on data from u on P1. This
model is then tested on data from u on P2. Therefore, we
refer to P1 as the training or original phone, and to P2 as the
testing or targeted phone.

We need to handle possible device differences, like differ-
ent algorithms for sensor data processing or physical dif-
ferences. We address these issues with a transfer function
f(x) = PM2(x) − PM1(x). This function is defined as the
difference of predictions from two phone models PM1 and
PM2. These models are trained on data from all (other) users
from phone P1 and P2, respectively (see 2 in figure 3). Pre-
dictions from the user’s own model are then altered using f .
Figure 4 shows some examples.

For example, let us assume the case of a certain user u. We
have data for that user on one phone P1, but now want to de-
rive a model for this user on another phone P2. First, a model
Mu is trained on that user’s data from P1. Then, both phone
models PM1 and PM2 are trained for the relevant devices
P1, P2 with data from all (other) users. Now we can define
the transfer function f(x) = PM2(x) − PM1(x). Finally,
the prediction for a new touch (a, t) from that user is given
by t′ = Mu(a)+f(a). Comparing t′ with t allows to evaluate
the quality of the prediction.

Transferring models across users
In a similar fashion, we can transfer models between users
instead of phones. This task is defined as follows: For a given
pair of phones P1, P2 and two users u, n a model is trained
on data from user nwith P2 and tested on data from user u on
that phone. This approach requires additional consideration,
since, in general, there are a lot more users than phones. This
raises the question which user n of phone P2 to choose to
train a model for u on that phone.

A possible approach (see 3 and 4 in figure 3) is to find the
nearest neighbour (NN) of u, using the Euclidean distance

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

384

Figure 4. Cross-device transfer functions. When transferring offset models from one device to another, these functions are evaluated and added to the
models’ predictions to counter device-specific differences between both phones. They are defined as the difference in predictions of two device models.
Device-specific models are trained on data from all users of that device to average out user-specific effects and capture only device-specific ones.

Figure 5. Virtual button accuracy (VBA) plots are cumulative histograms of offset vector lengths. The y-axis gives a user’s performance (% hits) if
targets in the experiment are treated like circular buttons of radius x. A steep slope indicates many small offsets and thus high accuracy. Subject 1 and
2, in the left and middle figures, show more experienced smartphone users, whereas subject 13 to the right owned no such device.

of the model parameter vectors for models from P1 as the
distance function. Here we assume that users who show sim-
ilar behaviour on one phone, will do so as well on another
phone. More subtly, this entails that users respond to new
devices in a similar fashion. A cross-user transfer function
f(x) = Mu(x) −Mn(x) can then be defined as the differ-
ence of predictions from two user modelsMu andMn. These
models are trained on data from P1 from user u and n, respec-
tively. To adapt the model of user n to be deployed for user u
on the targeted phone P2, its predictions are altered with f .

For example, let us assume again that we only have data for
u on one phone P1, but are interested in a model for another
phone P2. First, a model Mu is trained based on data of u
from P1. Then, we find the NN n of u on that phone. We train
the model M1n for P1 and M2n for P2. We also define the
transfer function f(x) = Mu(x)−M1n(x) as the difference
between both users on the original phone P1. Finally, the
prediction for a new touch (a, t) from u on the targeted phone
P2 is given by t′ = M2n(a) + f(a).

Instead of nearest neighbours we can train models on data
from all (other) users of the original phone (as M1n) and of
the targeted phone (as M2n), respectively (see 5 and 6 in
figure 3). Here, we assume small variance between users.

Comparison
We presented two different model transfer approaches: The
first one takes a model from the same user, but from another
device and transfers it across devices. To overcome device

differences, we proposed a transfer function based on the dif-
ferences of device-specific models, created from data of all
users. The second approach takes a model from the targeted
device, but from another user. We suggested to find the near-
est neighbour of the user in question, assuming both users
to be similar on the other device as well. Here, a transfer
function uses the differences between both users on the orig-
inal phone. Alternatively, we train models with data from all
users, assuming small variance between users on one phone.

EXPERIMENTAL SETUP
We implemented a web-app to collect touch data: Crosshairs
(two lines of 20 pixels length) are shown on the lower half
of the screen, one at a time. The lower half was chosen be-
cause it represents the usual keyboard area. Target locations
are determined using JavaScript’s Math.random() function to
pick random x and y coordinates for each target. The centre
of the target was at least 5 pixels away from the edges of the
input area. The task is to tap on the target. The next target is
then shown regardless of whether the user did actually hit the
target or not. No feedback is given about where or how the
user touched. Each participant touched 300 targets using the
phone with the right hand and thumb in portrait orientation.
They were asked to sit down and neither put emphasis on ac-
curacy nor speed, but rather tap “naturally”, like they would
do when typing a message. Thirty different users completed
the game on 13 different smartphones in total. Not every par-
ticipant used every phone. However, the most data was col-
lected for the Iphone 4 (25 users), Lumia 900 (22 users) and

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

385

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Average VBA without Model

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

A
v
e
ra

g
e
 i
m

p
ro

v
e
m

e
n
t

in
 V

B
A

Cross-device model transfer

Figure 6. Cross-device model transfer results. Each dot represents a
tuple (u, P1, P2), where u denotes the user, P1 the original phone, and
P2 the target phone. The x-axis gives the average value of the VBA-plot
for user u with phone P2 without any model. This indicates the baseline
accuracy. The y-axis then shows the improvement achieved with a model
transferred from P1. Improvement is the average difference between a
VBA-plot derived from the cross-device approach and the baseline plot.

Nokia N9 (24 users). Our analysis focuses on this data, but
also considers observations from other phones. Nine users
came back for a second session. All in all, we collected over
45000 touches.

RESULTS
We evaluated the performance of the model transfer ap-
proaches with the dataset described above. We also com-
pared user and device variability, as well as the variability
of one user between repeated sessions on the same phone.
Unless stated otherwise, we use relative coordinates, which
means that, say, a target in the upper right corner has the same
coordinates on every phone, regardless of the actual phys-
ical size of the device. Therefore, models are stretched or
shrunk when transferred across devices. Relative coordinates
are preferable, because not every application might have ac-
cess to physical device sizes. However, careful consideration
is needed regarding the influence of scaling effects.

Virtual button accuracy
Figure 5 presents a basic observation: The plots show cumu-
lative histograms of offset vector lengths for three users. The
y-axis shows a user’s performance if targets in the experiment
are treated like circular buttons of radius x. We therefore refer
to these histograms as virtual button accuracy (VBA) plots.
This choice of visualisation is useful to compare users: A
steep slope indicates many small offsets and thus high accu-
racy. When we refer to an improvement in VBA in the fol-
lowing sections, we mean the (average) difference between
two such VBA plots from different conditions: For example
one with model application, one without. This gives a conve-
nient measure of improvement with values between 0 and 1.
It also allows for better intuition regarding a possible appli-
cation with user interfaces, because we can refer to (virtual)

id approach units avg 2 mm 3 mm 4 mm

1 cross-device relative 5.25 15.17 11.56 5.77
mm 4.59 13.65 10.08 4.83

2 with relative 8.23 24.10 16.40 7.80
transfer function mm 8.16 24.09 16.19 7.46

3 cross-user relative 3.91 11.11 8.47 4.14
(NN) mm 3.25 9.41 6.99 3.49

4 with relative 6.20 17.59 13.32 6.64
transfer function mm 6.48 18.96 13.45 6.59

5 cross-user relative 6.16 18.06 12.60 6.14
(pooled) mm 6.16 18.04 12.61 6.14

6 with relative 8.12 23.76 16.20 7.70
transfer function mm 8.06 23.78 16.09 7.36

Table 1. Model transfer results (improvements in %)

buttons of specific sizes as well, by computing the difference
of two plots for a fixed value on the x-axis. We associate a
difference of 0.1 with 10% improvement in accuracy.

Model transfer
Figure 6 visualises the results of model transfer with the
cross-device approach, using the three devices Iphone 4, Lu-
mia 900 and N9. The shape of the distribution reveals that
users with a high baseline accuracy tend to benefit less from
their models, as there is less potential for improvement. In a
few cases, the models could not help. However, in the vast
majority of constellations the cross-device approach greatly
improved accuracy. Table 1 summarises the results. The av-
erage improvement is 8.23% with relative coordinates, aver-
aged over virtual buttons of a radius up to 8 mm. It is worth
noting the average improvements for specific smaller sizes as
well (2/3/4 mm). For comparison: Android’s recommended
width/height for touch targets is 7-10 mm (≈ 3.5-5 mm ra-
dius), including gaps [1]. We furthermore find that the cross-
device transfer functions add significant improvement (paired
t-test, p < 0.05). Therefore, we state that using such func-
tions is an appropriate way of adapting models across devices
in this context.

For cross-user transfer, the approach with offset models
trained on pooled data from all users outperformed the near-
est neighbour (NN) approach significantly (paired t-test, p <
0.05). Again, we also observed a significant positive ef-
fect of transfer functions. Comparing all results, we find
that the cross-device approach with transfer functions out-
performs both cross-user approaches significantly (paired t-
test, p < 0.05), although the difference to the cross-user ap-
proach with pooled models and transfer functions is relatively
small. Note, that these two approaches use the same data: The
user’s own model, and models from all users per device. In
conclusion, we find that if there is only device-specific data
(approach 5), this gives better models than only user-specific
data (approach 1). However, if we have both (2 and 6), then
user-specific models give better predictions (2) than device-
specific models (6). Table 1 further shows the results obtained
with physical coordinates (mm from bottom right corner of
the screen). The differences in the average cases with trans-
fer functions are not significant (paired t-test, p < 0.05).

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

386

Figure 7. Cross-user model application improvements. In each matrix, an entry eij shows the improvement achieved when the model of subject i is
applied to the data of subject j on the given phone. Along the diagonal (i = j), where models are applied to the same user, a 10-fold cross-validation
was used to avoid training on test data. In the top row we see the absolute improvements, while in the bottom row we see relative improvement, i.e. the
differences to the improvement achieved with the user’s own model. Thus, the diagonals contain zeros in the bottom row of matrices.

User-specificity
We further trained models from one user on one phone and
computed the improvement in VBA when applied to data
from another user on the same phone. Figure 7 presents the
results. Notice the red columns in the top row matrices: Some
users benefit not only from their own model, but also from
models of most other users. Some of these cases correspond
with less touch experience - users, who owned no touchscreen
device. This confirms our observations from model trans-
fer (see figure 6). Blue cells in the three top plots appear
when models had a negative influence on accuracy. The av-
erage improvements with models from the same user on the
same phone (diagonals) are: 10.2% (average), 30.4% (2 mm),
19.1% (3 mm) and 8.5% (4 mm). We can compare these val-
ues with table 1 to note performance costs of model transfer.

Looking at relative improvements (bottom row), we find a lot
of negative blue values, indicating less improvement than the
user’s own model. This shows the importance of user-specific
information: In most cases, the user’s own model is among
the best models or the top one. The light red cells show,
that in some cases the model of another user is slightly better.
However, in the majority of constellations, models from other
users turn out to be much worse. Notice the deep blue rows
in these plots, which indicate users with the most “specific”
behaviour: Their models don’t work well for any other user.

User and device variability
In the previous section, we compared models across users on
one phone and found that best results are achieved with the
user’s own model. It is of further interest whether this is still
the case after model transfer. This leads to the following anal-
ysis: For a given user u and two phones P1, P2, we trained
1000 models by subsampling 200 of the 300 touches from u
on the first phone P1. We then transferred these models to
the targeted phone P2, using our cross-device approach. We
computed the RMSE of these models, using the data from u
on P2. For each subsample, we also picked another user of
P2 at random and trained a model by subsampling in the same
way from that user’s data on P2. We computed their RMSE
when applied to the data of u on P2 as well. If user-specificity
transfers across devices, then the transferred models should
achieve better results on the targeted phone than the models
from other users, despite the fact that those are trained on
data from that phone. If it is the other way round, then the
device-specific information is more important.

Table 2 summarises the results of a paired t-test. The first and
second column give the phones P1, P2 used for training and
testing the model, respectively. The third column presents the
proportion of users for which the own model achieved a lower
RMSE Eu than the RMSE Ed of models from other users,
as indicated by the t-values. Finally, the rightmost column

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

387

S
0

,
Ip

h
o
n
e
4

S
0

,
Lu

m
ia

9
0

0

S
0

,
N

9

S
1

5
,

Ip
h
o
n
e
4

S
1

5
,

Lu
m

ia
9

0
0

S
1

5
,

N
9

S
1

9
,

Ip
h
o
n
e
4

S
1

9
,

Lu
m

ia
9

0
0

S
1

9
,

N
9

S
1

,
Ip

h
o
n
e
4

S
1

,
Lu

m
ia

9
0

0

S
1

,
N

9

S
2

3
,

Ip
h
o
n
e
4

S
2

3
,

Lu
m

ia
9

0
0

S
2

3
,

N
9

S
2

4
,

Ip
h
o
n
e
4

S
2

4
,

Lu
m

ia
9

0
0

S
2

4
,

N
9

S
2

,
Ip

h
o
n
e
4

S
2

,
Lu

m
ia

9
0

0

S
2

,
N

9

S
3

,
Ip

h
o
n
e
4

S
3

,
Lu

m
ia

9
0

0

S
3

,
N

9

S
6

,
Ip

h
o
n
e
4

S
6

,
Lu

m
ia

9
0

0

S
6

,
N

91.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
if
fe

re
n
ce

 i
n
 I
m

p
ro

v
e
m

e
n
t

o
f

R
M

S
E

Cross-Session and Cross-User Model Improvements

Figure 8. Cross-session and cross-user model improvements. Each Boxplot represents the differences in improvements between 1000 pairs of subsam-
pled models: A (cross-session) model from the same user from a previous session, and a (cross-user) model from another randomly chosen user. In 25 of
27 cases, the user’s own model from a previous session outperformed models from other users. This indicates that models stay similar between repeated
sessions for one user.

P1 P2 units Eu < Ed p < 0.05

Iphone 4 Lumia 900 relative 86% 86%
mm 82% 82%

Iphone 4 N9 relative 96% 96%
mm 91% 91%

Lumia 900 Iphone 4 relative 91% 91%
mm 91% 91%

Lumia 900 N9 relative 100% 100%
mm 100% 100%

N9 Iphone 4 relative 91% 91%
mm 91% 91%

N9 Lumia 900 relative 100% 100%
mm 100% 100%

Table 2. User and device variability results

shows the proportion of users for which this effect was signif-
icant (p < 0.05). We observed results in clear favour of the
user-specific information: In all phone combinations, trans-
ferred models from the same user performed significantly bet-
ter than models from another user from the targeted device
for more than 82% of the users. In conclusion, adapted mod-
els from the same user should be preferred over models from
(single) other users of the targeted phone.

In a second evaluation, we trained device-specific models on
data pooled from all users of the targeted phone P2. We then
compared these models to the transferred models. Table 3
summarises the results (paired t-test) like before. They are in
favour of user-specific information: In four of six phone com-
binations, the transferred and adapted models from the same
user performed significantly better than the pooled models
from the targeted device for more than 77% of the users.

Both cases targeting the Lumia 900 stand out with lower re-
sults from the perspective of the user-specific model. We
found that models are significantly more similar between
users on the Lumia 900 than on the two other phones (paired
t-test, p < 0.05). If users are similar anyway, user-specific

P1 P2 units Eu < Ed p < 0.05

Iphone 4 Lumia 900 relative 45% 45%
mm 45% 36%

Iphone 4 N9 relative 78% 78%
mm 70% 70%

Lumia 900 Iphone 4 relative 77% 77%
mm 77% 77%

Lumia 900 N9 relative 95% 95%
mm 95% 95%

N9 Iphone 4 relative 91% 91%
mm 82% 78%

N9 Lumia 900 relative 66% 66%
mm 71% 71%

Table 3. User and device variability results, pooled models

information is not so important, while the other models bene-
fit from being trained on the targeted phone. We repeated the
analysis with a physical coordinate system to exclude neg-
ative model scaling effects, since the Lumia is larger than
the other phones. Table 3 shows these results as well. They
shifted in favour of the user’s own models for “N9 to Lu-
mia 900”, but not for “Iphone 4 to Lumia 900”. In the other
cases, cross-device performance was the same or decreased.
The Lumia’s size might still be the reason for increased user
similarity, but this will need further evaluation.

Session variability
So far, we addressed user-specific and device-specific issues.
However, even the same user on the same device will not
show the exact same touch behaviour all the time. This ses-
sion variability is a potential source of problems for model
applications: Models should still be valid if the user picks
the phone up another time. Otherwise, they must be updated.
To find out how touch offsets change between sessions, we
asked participants to come back and repeat the experiment.
Nine users returned with a gap of at least one week. We
collected their touch data in the same way and on the same
phones again.

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

388

To measure session variability, we compared models between
sessions and users. Therefore, a user’s touch behaviour is
stable between two sessions on one phone if the models from
both sessions are more similar to each other than models from
this user compared to other users’ models. In the following,
the distance between models is defined as the euclidean dis-
tance of their weight-vectors.

For each user and phone, we trained 1000 models by sub-
sampling 200 of the 300 touches from the first session. We
computed the distances of these models to the model trained
on all 300 touches from the second session of that user on
the same phone. This gives distances related to session vari-
ability. For each subsample, we also picked another user at
random and trained a model by subsampling in the same way
from that user’s data on this phone. We then computed the
distance between both subsampled models. This gives a dis-
tance related to user variability. Applying a paired t-test on
these pairs of distances lead to the following results: In 22
of 27 cases, models were significantly more similar to each
other between sessions than between users (p < 0.05). In
the five other cases, models were more similar between users
than between sessions. Three of these five exceptions belong
to a single user.

We applied the same concept again to evaluate improvements
across sessions: Instead of model distances we measured the
reductions in root mean squared error (RMSE) achieved with
subsampled models (from the first session or from another
user) on the data of the new session. Figure 8 shows the dif-
ferences in improvements between cross-session and cross-
user models. In all but two cases, the cross-session models
from the same user outperformed models from other users
significantly (paired t-test, p < 0.05). These results indicate
that user-specific models are stable across sessions. Updates
might still become necessary because of reasons not covered
in this experiment, e.g. long-term changes or hand injury.

Training set size
Since we use a supervised learning task, we are interested in
training models with as little data as possible. We thus evalu-
ated model performances with varying training set sizes: For
each user and phone, we compared their RMSE with models
from fewer data to the one achieved with the maximum of
200 touches. With 60 randomly chosen training taps, mod-
els on average performed only 3.3% worse (i.e. their RMSE
was 3.3% higher) than the maximum on the Iphone 4, 3.5%
on the Lumia 900 and 3.4% on the N9. In conclusion, useful
offset models can be trained from a small number of touches,
probably less than an average message or e-mail requires.

APPLICATIONS
We have applied offset models to improve touch accuracy.
However, there are other potential application scenarios as
well. We present some of them in the following sections.

Input-style prediction
In our experiment, we also gathered a few sets of touches with
the left hand and thumb. Using this data, we demonstrate an
application of offset models to predict the input-style contin-
uously as the user interacts with the device. In general, we

t

a

t'1
t'2σ1

σ2

Figure 9. Input-style prediction. A touch location a is observed for the
target location t. Circles indicate two distributions with means t′1, t

′
2 and

standard deviations σ1, σ2, given by the predictions of the left and right
hand model for this touch a, respectively. In this particular case, the
likelihood of t is obviously higher given the distribution parametrised by
the prediction t′1, σ1 of the right hand model. In conclusion, we predict
that a is a touch with the right hand.

need a model for each input-style. We can train these models
on given data, from a calibration game or derive them from
existing models from another phone or user, as described in
this paper. We can then compute the likelihood of new inputs
given each model. An application could report these like-
lihoods, process them further or simply decide for the input-
style with the highest likelihood. In the following application,
we focus on the task of hand prediction in portrait orientation,
that means we want to predict whether the user is tapping with
the left or right thumb. However, the same concept is also ap-
plicable to any other input-style.

We define two classes C1 (right hand) and C2 (left hand).
and train a modelM1 on data from the right hand and another
model M2 on data from the left hand. Let xn = (an, tn) de-
note new inputs, with an representing the touch location and
tn the target location, as before. First, we compute the pre-
dictions t′1, t

′
2 and predictive variances σ2

1 , σ
2
2 with both mod-

els M1,M2, respectively. We then compute the likelihoods
P (xn|C1), P (xn|C2) of our observation, using Gaussian dis-
tributions with these predictions as their parameters:

P (xn|C1) = p(tn|t′1, σ2
1) = N (t′1, σ

2
1)

P (xn|C2) = p(tn|t′2, σ2
2) = N (t′2, σ

2
2)

This concept is presented in figure 9. We further define two
priors P (C1), P (C2). In the simplest case we set both to 0.5.
Predictions are then given by Bayes’ Theorem as follows:

P (C1|xn) =
P (xn|C1)P (C1)

P (xn|C1)P (C1) + P (xn|C2)P (C2)

P (C2|xn) =
P (xn|C2)P (C2)

P (xn|C1)P (C1) + P (xn|C2)P (C2)

For a simple decision we report “right” if P (C1|xn) >
P (C2|xn), and “left” in the other case. In the example of fig-
ure 9, the observation xn = (a, t) is much more likely given
the right hand model, thus we predict a right hand touch.

In an evaluation with seven subjects on the Iphone 4, this ap-
proach achieved an average accuracy of 84% in predicting
the correct hand for the current touch, using only 30 ran-
domly chosen taps per class as training examples. Possible
extensions to this approach could consider users to be less
likely to switch than to stick to the current input-style. This

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

389

t # training s = 25 s = 50 s = 100 s = 200

1 30 69 69 69 69
100 71 71 71 71

5 30 73 75 77 77
100 75 78 79 80

10 30 69 74 77 79
100 71 76 79 81

Table 4. User identification results (accuracy in %)

can be included as prior knowledge by adjusting the priors
P (C1), P (C2). Furthermore, we can treat successive touches
as a joint distribution instead of single observations and/or
average over the last t observations for each class. This in-
creases stability so that the prediction will not switch in-
stantly, but only if enough evidence has been accumulated
over the last touches. Finally, the approach presented here
is perfectly capable of handling additional features besides
touch offsets, like accelerometer sensor values. These could
further increase the accuracy of the prediction or allow for
richer observations, like a walking condition.

Readers are invited to try our demo application with their
smartphones. It is available as a web-app using HTML 5 and
JavaScript at: http://www.dcs.gla.ac.uk/taps/demos/

The demo shows that training and prediction are feasible to
perform in a web browser. This might be interesting for re-
sponsive mobile web design. Layouts could be adapted de-
pending on the input-style to help users reach important ele-
ments or to avoid occlusion of content by the fingers.

User identification
For user identification, we utilise user-specificity and the ob-
servation that users are more similar to their own data from
previous sessions than to other users. In the same way we
predicted left or right handed input, we can predict which of
two users is currently tapping. Table 4 shows the results for
300 pairs of users on an Iphone 4. The first column denotes
the number of last taps t, which are used for prediction as a
joint distribution. The second column contains the number of
randomly chosen training examples. The remaining columns
present the average accuracy in percent, when we feed test ex-
amples alternating between both users in packs of size s, i.e.
assuming users would hand over the phone every s touches.
These results show the benefit of considering more than just
the last touch and great potential for user identification with
offset models, using a small set of training examples.

Interface elements as targets
Both applications described above require target locations to
compute offsets. In practice, it is unlikely to have only one
point-like target on the screen. However, interface elements
can be used to derive target locations as well. Let us consider
a set of buttons: For a given touch, we do not know which
button the user wanted to hit, but we can assume that they
wanted to hit something, i.e. the touch has intention. There-
fore, we can use a Gaussian mixture model, with a Gaussian
distribution centred on each button (see figure 10). We com-
pute the predictions of each class and their likelihoods given

1 2 3

4 5 6

a
t'1 t'2

Figure 10. A Gaussian mixture model for an interface: For the touch
location a and the predictions t′1 (right), t′2 (left), we compute the mix-
ture model likelihood of the predicted points for each model (right and
left) and normalise these to give a probability for each model. In this
case, a is more likely to be a right hand touch aiming for button 1, than
a left hand touch aiming for button 2. Therefore, we can predict the
input-style without a given target location.

t # training s = 25 s = 50 s = 100 s = 200

1 30 69 69 69 69
100 70 70 70 70

5 30 74 77 75 75
100 77 79 80 80

10 30 69 76 76 75
100 71 78 80 79

Table 5. Input-style prediction results, using buttons (accuracy in %)

the mixture model. We evaluated this idea for the input-style
prediction task on an interface with 3×2 squared buttons with
seven users on an Iphone 4. Table 5 presents the results. We
observed average accuracies of up to 80%. In conclusion, we
find potential for inference with interface elements as well.

CONCLUSIONS AND FUTURE WORK
We presented a machine learning approach to model user-
specific touch offsets. We proposed transfer functions to
adapt these models to other devices or users. This modelling
approach can handle data from multiple devices per user
without changing individual user- or device-specific models
themselves. Thus we can easily adapt predictions to any
user and device combination. Our approach models devices
in terms of touch behaviour as well, so no detailed device-
specific information like shape, sensors or internal algorithms
is needed. In conclusion, this provides a flexible foundation
to work with user-specific touch models in a cross-device
context. Our framework can easily be extended to handle
richer models as well. They could include additional features,
like sensor data, which offers a broad range of possibilities for
future work.

Our specific offset model is a linear regression model with
quadratic terms. This choice is based on general observations
and clearly limits the possible complexity of behaviour which
can be modelled. However, the transfer framework can be
applied to any offset model.

We demonstrated that useful models can be obtained from a
small number of training examples (≈ 60 in a portrait, one
thumb setting). This could possibly be reduced even further
with sparse modelling approaches and an analysis of where
to best sample touches on the screen, as shown in [15].

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

390

http://www.dcs.gla.ac.uk/taps/demos/

We evaluated these concepts in a user study. Here, we applied
our modelling approach to improve touch accuracy. With-
out transfer functions, we found that average device models
outperform a user’s own model from a different device sig-
nificantly with average improvements in touch accuracy of
6.16% (device-specific) against 5.25% (user-specific). With
both user- and device-specific data, we can combine this in-
formation using transfer functions. Adapting user-specific
models with device-specific ones resulted in an average im-
provement of 8.23%. For specific virtual button sizes we ob-
served 24.10% for 2 mm, 16.40% for 3 mm, and 7.80% for
4 mm. Adapting device-specific models with user-specific
ones achieved 6.20% with nearest-neighbours and 8.12%
with pooled models. In conclusion, device-specific informa-
tion can leverage user-specific data in our approach: Each
on their own, device-specific models outperform user-specific
models (from a different device). If however both are avail-
able, then user-specific models should be preferred for pre-
diction and device-specific models for adaptation.

Our study has some limitations: First, due to the lack of feed-
back, concentration could have degraded over the course of
the trial. Thus, observed targeting performances might have
to be considered pessimistic. Second, the task only involved
interaction with abstract targets (crosshairs). Therefore, an
interesting direction for future research is to compare offsets
between different actual interface elements and UI styles.

We further examined user-specificity on one phone. Here we
found that the user’s own model outperforms models from
other users in most cases. Transferred and adapted models
also outperformed models from other users trained directly
on the targeted device. We observed the same tendency when
transferred models are compared to device-specific models
trained on multiple users, with the exception of one targeted
phone. These results support a user-specific approach for
modelling touch offsets and give rise to application ideas,
which make use of the variability between users, e.g. user
identification.

On the Lumia 900, the largest of the phones in our study, we
found users to be more similar to each other. Large screens
could diminish the benefit of user-specific information. This
should be further explored, also with other larger devices, e.g.
tablets.

We evaluated how stable touch offset patterns stay between
repeated sessions for a given user and device. We found that
users benefit more from their own model from a previous ses-
sion than from other users’ models. Therefore, we suggest
that applications do not need to recalibrate offset models in
each session.

Finally, we presented an application which uses offset models
to predict the current input-style. We implemented this con-
cept to predict left- or right-handed interaction on a mobile
website, also demonstrating the feasibility of our approach
in a web-context. We observed an average accuracy of 84%.
We also presented a task of user identification, where we pre-
dicted which of two users is currently tapping with an aver-
age accuracy of up to 81%. Utilising input- or user-specific

aspects and session-stability of offset models is a promising
approach for inference based on continuous touch input.

ACKNOWLEDGEMENTS
Nokia provided equipment and funding to support this re-
search.

REFERENCES
1. Metrics and Grids - Android Developers. Retrieved May 09, 2013,

from: http://developer.android.com/design/style/metrics-grids.html.

2. Baldwin, T., and Chai, J. Towards online adaptation and personalization
of key-target resizing for mobile devices. In Proceedings of the 2012
ACM international conference on Intelligent User Interfaces, ACM
(2012), 11–20.

3. Findlater, L., and Wobbrock, J. Personalized input: Improving
ten-finger touchscreen typing through automatic adaptation. In
Proceedings of the 2012 ACM annual conference on Human Factors in
Computing Systems, ACM (2012), 815–824.

4. Flatla, D., Gutwin, C., Nacke, L., Bateman, S., and Mandryk, R.
Calibration games: making calibration tasks enjoyable by adding
motivating game elements. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, ACM (2011),
403–412.

5. Flemisch, F., Adams, C., Conway, S., Goodrich, K., Palmer, M., and
Schutte, P. The h-metaphor as a guideline for vehicle automation and
interaction. Tech. rep., NASA/TM-2003-212672, 2003.

6. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps: analysis and
improvement of touch performance in the large. In Proceedings of the
13th International Conference on Human Computer Interaction with
Mobile Devices and Services, ACM (2011), 133–142.

7. Holz, C., and Baudisch, P. The generalized perceived input point model
and how to double touch accuracy by extracting fingerprints. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2010), 581–590.

8. Holz, C., and Baudisch, P. Understanding touch. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ACM
(2011), 2501–2510.

9. Parhi, P., Karlson, A., and Bederson, B. Target size study for
one-handed thumb use on small touchscreen devices. In Proceedings of
the 8th conference on Human-computer interaction with mobile devices
and services, ACM (2006), 203–210.

10. Rasmussen, C., and Williams, C. Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006.

11. Rogers, S., Williamson, J., Stewart, C., and Murray-Smith, R.
Fingercloud: uncertainty and autonomy handover incapacitive sensing.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2010), 577–580.

12. Rogers, S., Williamson, J., Stewart, C., and Murray-Smith, R.
Anglepose: robust, precise capacitive touch tracking via 3d orientation
estimation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2011), 2575–2584.

13. Roudaut, A., Huot, S., and Lecolinet, E. Taptap and magstick:
improving one-handed target acquisition on small touch-screens. In
Proceedings of the working conference on Advanced visual interfaces,
ACM (2008), 146–153.

14. Vogel, D., and Baudisch, P. Shift: a technique for operating pen-based
interfaces using touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, vol. 28, Citeseer (2007),
657–666.

15. Weir, D., Buschek, D., and Rogers, S. Sparse selection of training data
for touch correction systems. To appear in MobileHCI 2013.

16. Weir, D., Rogers, S., Murray-Smith, R., and Löchtefeld, M. A
user-specific machine learning approach for improving touch accuracy
on mobile devices. In Proceedings of the 25th annual ACM symposium
on User interface software and technology, UIST ’12, ACM (2012),
465–476.

MOBILE HCI 2013 – STUDIES AUGUST 30th, 2013 – MUNICH, GERMANY

391

	Introduction
	Related Work
	Offset Models
	Training
	Prediction
	Collecting training data

	Model Transfer
	Transferring models across devices
	Transferring models across users
	Comparison

	Experimental Setup
	Results
	Virtual button accuracy
	Model transfer
	User-specificity
	User and device variability
	Session variability
	Training set size

	Applications
	Input-style prediction
	User identification
	Interface elements as targets

	Conclusions and future work
	Acknowledgements
	REFERENCES

