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ABSTRACT
Users’ individual differences in their mobile touch behaviour
can help to continuously verify identity and protect personal
data. However, little is known about the influence of GUI el-
ements and hand postures on such touch biometrics. Thus,
we present a metric to measure the amount of user-revealing
information that can be extracted from touch targeting inter-
actions and apply it in eight targeting tasks with over 150,000
touches from 24 users in two sessions. We compare touch-to-
target offset patterns for four target types and two hand pos-
tures. Our analyses reveal that small, compactly shaped tar-
gets near screen edges yield the most descriptive touch target-
ing patterns. Moreover, our results show that thumb touches
are more individual than index finger ones. We conclude that
touch-based user identification systems should analyse GUI
layouts and infer hand postures. We also describe a frame-
work to estimate the usefulness of GUIs for touch biometrics.
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INTRODUCTION
Observing touch behaviour can yield important information
about the user. This attractive data has been widely used in
recent HCI research to personalise interfaces and to recog-
nise individuals. Related work observed touches to tailor key-
boards to the individual typist [3, 16, 20, 24, 45], to person-
alise fonts [14], to add an implicit layer to authentication (e.g.
for unlock patterns [1, 18]), or to create new authentication
methods based on touch biometrics [38]. Targeting personal-
isation, privacy and security, these applications demonstrate
the usefulness and importance of extracting and recognising
user-specific information in mobile touch behaviour.

Related work has mostly targeted specific applications of
touch biometrics, for example pattern unlock screens [18].
Recently, features for touch biometrics have also been studied
across a greater range of tasks [44]. Improving our knowledge
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Figure 1. To inform applications of behavioural touch biometrics, we
evaluate how characteristically and consistently users touch at (a) four
target types with thumb and index finger. We measure user-revealing in-
formation via (b) touch-to-target offset patterns, and describe a method
to evaluate GUIs accordingly: (c) In this illustrative example, touches of
two users ( ) are less individually distributed at the search bar than
at the app-icons. Such insights help applications relying on user-specific
behaviour to focus on the most individual and thus prolific interactions.

of what to observe (i.e. touch features) is important. On the
other hand, to develop robust touch-based behavioural bio-
metrics, we also need to investigate what influences the de-
gree to which users will exhibit individual touch behaviour.
We also lack a formal metric for such individuality.
Hence, to facilitate research and applications that use touch
biometrics, we contribute: 1) an approach for measuring user-
revealing information in targeting behaviour; 2) insights into
influences of interface targets and hand postures on this indi-
viduality; and 3) an evaluation framework to estimate the ex-
pected amount of user-revealing information in touch interac-
tions with given interfaces. Our insights inform applications
of touch biometrics – focus on characteristic interactions and
ignore those revealed as less individual (Figure 1).

APPLICATION CONTEXT
To illustrate the kind of application we aim to facilitate with
our analytical contributions in this paper, consider that a user
accidentally leaves behind a phone in a bar after unlocking it.
A stranger, or a nosey friend, picks it up to read emails, view
pictures and so on, thus compromising privacy and security.

This threat can be addressed with continuous implicit authen-
tication [44]. If the observed touch behaviour deviates from
the legitimate user’s characteristic behaviour, the phone raises
alarm, locks itself, or blocks access to sensitive data and apps.

For such a system, it is vital to know which touch interac-
tions consistently yield characteristic information about the
user – and which ones are generally not very individual. For
example, we will see that large buttons lead to little individ-
ual information compared to smaller ones. Hence, the system
described above could mitigate the risk of false user rejec-
tions and false attacker acceptances by taking into account
that touches at large buttons should not be used to determine
whether the legitimate user is interacting.



RELATED WORK
We relate our work to 1) research that shows why and how
touch targeting behaviour varies between users; and to 2) sys-
tems which use such implicit individual touch information.

Variations in Touch Behaviour
Related research found sources for variations in touch be-
haviour and models to describe it, such as Fitts’ Law [21] and
its refined version for touch input [9]. Furthermore, research
showed that finger angles affect touch contact areas on table-
tops [22, 40]; touch-to-target distances and directions depend
on the finger’s pitch, roll and yaw, as well as head position
[27]; fingers occlude the target [5], and users rely on different
visual features of the finger tip to align it with the target [26].

Other related work examined how touch behaviour is influ-
enced by target size [34], location [35], and hand postures
[43], but without deriving individual user models. Targeting
errors (i.e. offsets) were compensated with polynomial func-
tions derived from touches of many users [25]. This was im-
proved with flexible models trained on user-specific touch
data for thumb input aiming at cross-hair targets [15, 41, 42].
In this paper, we also employ offset models, but for repre-
senting and recognising users touching at four different target
shapes and with two hand postures.

In summary, we can expect individual touch behaviour due to
variations in targeting, perception and anatomy. Without spe-
cial hardware or expensive computations [37], features like
finger angles or head locations remain hard to assess in prac-
tice. Hence, to develop an applicable measuring approach and
evaluation framework, we consider such influences based on
how they reflect in users’ targeting error patterns. These can
be captured with offset models on any off-the-shelf mobile
touchscreen device.

Utilising Individual Touch Behaviour
Many systems utilise individual touch behaviour: on-screen
keyboards adapt to the typist’s touch behaviour to decrease
error rates [2, 3, 45]; users can be identified by typing rhythm
[32], and strokes on gesture keyboards [10]; pattern unlock
can be enhanced with an implicit authentication layer using
touch sequences [1, 7, 18]; other work proposed touch bio-
metrics to replace passwords or patterns entirely [38].

Further work distinguished users on rear-projected tabletops
based on typing touches [31] and fingerprints [28]. Identifica-
tion with offset models has been tested for pairs of users with
thumb input and cross-hairs [15]. In general, a wide range of
touch features is used to infer or verify user identity: acceler-
ation, pressure, size or timing [1, 7, 47], as well as gestures
for zooming and scrolling [23, 46]. Xu et al. [44] have re-
cently evaluated touch features for implicit authentication in
four such tasks, including on-screen writing with the finger.

In conclusion, individual touch behaviour has been success-
fully utilised to improve usability and security of mobile
interactions. However, behavioural observations were either
interface-agnostic (e.g. scrolling [23, 46]) or tailored to spe-
cific interfaces (e.g. keyboard [2, 3, 45], unlock screens [1, 7,
18, 47]). These interfaces were mostly assumed to yield char-
acteristic behaviour without further comparisons. We lack
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Figure 2. Measuring characteristic and consistent information (“individ-
uality”) in touch targeting behaviour: (1) Based on observed behaviour,
we derive (2) targeting models to represent individual users. (3) These
models recognise how well behavioural patterns in new data match each
user. Hence, we gain implicit information about which user is likely
touching. (4) This can reduce uncertainty about the identity of the truly
interacting user, and this reduction quantifies individual information.

an understanding of the interface’s influence on user-specific
touch information. To inform applications of touch biomet-
rics, possibly across different apps and interfaces, we eval-
uate how interface targets and hand postures influence indi-
viduality of touch behaviour. Our insights allow applications
of touch biometrics to optimise user observation schemes by
focusing on the most individual interactions.

Recent work [8] has simulated touches to evaluate keyboards
(e.g. error rates). We present a framework to simulate touch
behaviour, not restricted to keyboards, to predict expected in-
dividuality of user behaviour with given interfaces. This helps
applications of touch biometrics to gain useful expectations
and to favour – during runtime or UI design – those interfaces
that provoke highly individual touch behaviour.

MEASURING TOUCH INDIVIDUALITY
We present an information-theoretic measure for individual-
ity of touch targeting behaviour, computing an “index of in-
dividuality” I . We define individuality as behavioural infor-
mation (i.e. patterns), which is characteristic (varies between
users) and consistent (stays similar for a user over time).

Rationale: Intuitively, our metric considers behaviour indi-
vidual if it allows an observer to recognise individual users.
Note that we do not aim to create a running identification ap-
plication, but a concept to analyse collected touch targeting
data. This only hypothetically includes recognising users to
measure how characteristically and consistently they touch.
More precisely, we compute an “index of individuality” I
(in bits) by measuring reduction in uncertainty about a user’s
identity, achieved by analysing this user’s touch data.

Overview: The remainder of this section develops our mea-
surement process. Figure 2 shows this, from left to right:

1. Observing touch targeting behaviour in a study with two
sessions per user yields touch data for different tasks.

2. Gaussian Process regression applied to data from the first
session captures users’ targeting error patterns. Figure 2
shows an example contour plot of a user’s horizontal errors.

3. Matching patterns with touch data from the second session
results in probabilities indicating how likely each user is
responsible for the analysed touches.

4. Individuality of user behaviour is quantified by the extent
to which the uncertainty of user identity can be reduced
with this extracted implicit user information.



Hence, the metric considers users’ individual characteristics
(user-specific modelling in step two) and consistency (recog-
nition of users’ patterns across two sessions in step three). We
next describe modelling, matching, and measuring in detail.

Representing Users
To represent and recognise users’ individual targeting be-
haviour, we adopt touch-to-target offset models, originally
proposed to correct sensed touches to improve accuracy [42].

Model: We use Gaussian Processes (GPs) [36] following Weir
et al. [42], a method shown to capture user-specific touch be-
haviour. We refer to these sources for details on the model.

Training: We measure offset vectors between target centres
and touch locations by asking users to touch targets on the
screen. Assuming centres is no limitation: If users aim for a
different point, offsets will simply be shifted with no change
to the pattern. The model is trained on this data to predict
offsets for touches (see [36, 42] for details on training GPs).

Prediction: Trained models predict a bivariate Gaussian of
likely offsets, N (µ,Σ). To improve touch accuracy, we can
add the mean prediction µ to the sensed location t to correct
it. The full predictive distribution of likely target locations is
N (t + µ,Σ). We use these predictions to recognise users.

Recognising Users
To recognise users, we match observed offsets with offsets
predicted by users’ models to derive the likelihood of each
user being responsible for the analysed touches: We evaluate
the true target location under the GP’s predicted distribution
(Figure 3). This likelihood is high if the prediction matches
the observed behaviour. We thus interpret it as p(u|t), the
likelihood of user u given touch t. For touches ti, we update
our belief that the k-th of N users is touching at time T :

User Recognition Model: p(uk) =

T∏
i=1

p(uk|ti)

N∑
j=1

T∏
i=1

p(uj |ti)
(1)

The prediction for the currently touching user is then given
by the user with the highest probability p(uk) at T touches.
The next step employs this user recognition model to quantify
individual information in touch interactions.

Quantifying Individual Information
To develop our approach for calculating the amount of indi-
vidual information in touch targeting behaviour, we consider
the problem of hypothetically encoding a user’s identity. Ab-
stractions like this are commonly considered to measure in-
formation, for example by Fitts’ Law [21], which relates dis-
tance and target size to signal and noise in information theory
to compute an “index of difficulty” in bits.

Following a similar view, we define an “index of individual-
ity” I: the extent to which costs of explicitly encoding iden-
tity can be reduced with implicit information. In other words,
we compare uncertainty of guessing user identity to the un-
certainty after analysing users’ touch behaviour. We next de-
scribe explicit and implicit identity within this approach.

touch
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Figure 3. Recognising users with offset models. We predict a distribution
of intended locations with each user’s model to evaluate the true target
location. In this example, the target is more likely under the predictive
distribution from model B. Hence, we predict that user B is touching.

Explicitly Encoding User Identity
In a theoretic view, explicitly encoding identity requires
log2N bits per user for N different users, since we need to
represent numbers 0 to N -1 (hypothetical user IDs). This is
the maximum entropy [30] of a uniform distribution over N
states (i.e. users):

Explicit Costs: Hmax = −
N∑
i=1

1
N log2

1
N = log2N (2)

Entropy can be seen as a priori uncertainty [4]: Highest un-
certainty (Hmax) occurs when all users are equally likely (e.g.
guessing). In other words, we need Hmax bits (of explicit in-
formation) to resolve this uncertainty about the user’s iden-
tity. We consider this the cost of explicitly encoding identity.

Implicitly Inferring User Identity
We consider a model (e.g. Eq. 1) that predicts the probability
p(ui) that analysed touch data comes from user ui. The en-
tropy of the model’s predicted distribution over users is [30]:

Implicit Gains: H = −
N∑
i=1

p(ui) log2 p(ui) (3)

Relying on such predictions, users are no longer equally
likely (compare Eq. 2 and 3). Illustratively, if we “rule out”
half of the users with the predictions, we save one bit to ex-
plicitly encode IDs of the remaining users (log2N - log2

N
2 =

1). We consider this the gains of implicit information.

Individuality as Reduction in Uncertainty
In summary, analysing behaviour reduces uncertainty about
the user’s identity. It is this difference in uncertainty that we
have gained as user-specific information. Hence, we measure
the index of individuality I via this reduction in uncertainty:

Uncertainty Reduction: I = Hmax −H (4)

If we interpret this equation as information gain (e.g. as
in decision trees), it compares uncertainty before and after
analysing user behaviour with the model. In information the-
ory, it is also an equation for redundancy (see [30]).

To illustrate this interpretation, consider the extremes: I =
Hmax if analysing behaviour removed all uncertainty (H =
0). If we are already certain about the user’s identity based on
behaviour, the explicit identity seems redundant. However, if
analysing behaviour cannot reduce uncertainty (H = Hmax),
we gained no implicit information and I = 0. Then, explicit
identity is not redundant. Between these extremes lies a con-
tinuum where uncertainty is only partly reduced by analysing
the user’s behaviour with the model.



Considering Correctness of Inferred Identity
While low entropy H indicates certainty, it does not imply
correctness. For example, a model might predict user A with
high certainty, while ground truth is userB. Even if the model
is entirely certain, if it is wrong, we cannot say that the ex-
plicit (true) identity is redundant information. Hence, we can-
not reduce the costs of explicit identification, when a decision
based on the model’s predicted probabilities would be wrong.
Thus, we consider I = 0 in these cases:

Index of Individuality: I =

{
Hmax −H ifmax p(ui) = ut
0 otherwise

(5)
Here, ut denotes the ground truth user. In this paper, we use
this equation to quantify individual information in user be-
haviour. To estimate user probabilities p(ui) needed for H ,
we use our user recognition model defined in Equation 1.

Remarks on the Metric
In summary, we measure individuality as reduction of uncer-
tainty about user identity, achieved by observing touch be-
haviour. Equation 5 can be related to common classification
accuracy (ratio of correct user identifications). For discrete
predictions (i.e. p(ui) = 1 for exactly one user, and 0 for
all others), accuracy is equivalent to the average value of I ,
except for its scaling factor Hmax and unit (bits).

In our probabilistic perspective, I is more informative than
classification accuracy, since it measures reduction of uncer-
tainty with correct predictions, instead of just counting them.
Moreover, we consider bits more appropriate than accuracy
for the amount of individual information in user behaviour.
Our metric also respects the sample size of the analysed
dataset (N in Hmax term), whereas accuracy values always
fall between 0 and 100% regardless of N .

We defined individuality as characteristic and consistent in-
formation in behaviour. We will see that our metric is sen-
sitive to both: 1) It is sensitive to consistency, as shown by
higher values when analysing behaviour within one session
compared to analyses over a week. 2) It is sensitive to char-
acteristic behaviour – obtained values reflect that behaviour
characteristic among many users is to be considered more in-
dividual than if it was only characteristic among two users.

TARGETING STUDY
Touch targeting data was collected in a user study (see [11]
for other analyses on this data, not related to individuality).

Study Design
The study followed a repeated measures design with indepen-
dent variables hand posture (right thumb with device in right
hand; right index finger with device in left hand), target loca-
tion (400 locations), and target type: CROSS, KEY (4×7mm),
APP (9×9mm), and FILL (height 9mm), shown in Figure 1a).
The dependent variable was touch location. There were two
sessions per participant with a gap of a week.

Hence, the dataset contains 24 subjects × 2 sessions × 2
hand postures × 4 target types × 400 target locations =
153,600 touches.

Apparatus
Data was collected with a custom Android app on a smart-
phone (Nexus 5). Per task, it displayed 400 targets, one at a
time, with locations chosen from a grid in randomised order.
Targets were always fully visible – their centres were placed
at least half their width/height away from screen borders.

Participants
The study was completed by 24 participants (10 female, 3
left-handed, mean age 26), all students. Almost all partic-
ipants stated in a questionnaire prior to the study that they
used either hand to operate touchscreens, all including their
right hand. Hence, using the right hand in the study was not
an unusual task for the left-handed people. Hand sizes were
measured from the index finger to the bottom of the palm
(mean: 179mm; range: 159mm to 194mm) [11]. Participants
were compensated with a e15 gift card for an online shop.

Procedure
Each participant was invited to two study sessions in the lab,
with at least 6 days in between. A session consisted of a series
of 8 targeting tasks (2 hand postures × 4 target types) and
lasted for one hour, including a short questionnaire at the end.

Participants sat on a couch and held the phone in portrait ori-
entation. They were asked to neither emphasise accuracy nor
speed, but to tap “naturally”. A 8×8 latin-square was used for
task order to minimise learning effects. Tasks alternated be-
tween thumb and index finger to reduce fatigue. Participants
were encouraged to take breaks between tasks.

RESULTS
To evaluate individuality of touch targeting behaviour, we
present four analyses on the described dataset: 1) we evaluate
our method of representing user behaviour, 2) we measure in-
dividuality with the described approach, 3) we evaluate user
differences in targeting features in more detail, and 4) we take
a closer look at the role of the screen location of targets.

Evaluating the User Representation
This first analysis confirms that offset models trained per
individual improve accuracy for all our tasks (related work
studied different tasks/models [11, 42]). This shows that the
models capture user-specific targeting behaviour and are thus
suitable user representations for measuring individuality.

Touch Accuracy
Figure 4 compares touch-to-target-centre distances (i.e. off-
sets) per target type. GP models reduced offsets for all tasks,
evaluated with ten-fold cross-validation per user and task.
Hyperparameters (γ=2, a=0.1, α=0.9, σ2=0.001) were cho-
sen by cross-validation on one arbitrary session [42].

Greenhouse-Geisser corrected ANOVA found significant
main effects of hand posture (F1,23 = 9.34, p < 0.01, η2G = 0.02),
target type (F1.10,25.21 = 104.38, p < 0.001, η2G = 0.44) and
model (F1,23 = 201.72, p < 0.001, η2G = 0.36). The interaction
effect of target type × model was significant (F1.01,23.22 =

163.15, p < 0.001, η2G = 0.55). Bonferroni corrected paired t-
tests showed significantly smaller RMSEs with the model
than without (index/KEY, index/APP: p < 0.05; others: p <
0.01). Models thus significantly improved touch accuracy.
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Figure 4. Touch offsets by target type and hand posture. Thumb input
resulted in larger distances (i.e. touch RMSEs) to the target centres than
using the index finger. The predictions of the GP offset models shifted
touch locations towards the target centres, resulting in smaller RMSEs.
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Figure 5. Target hit ratios. Larger targets were easier to hit. Index finger
input was more successful than the thumb. Offset models improved hit
ratios for all target types.

Area Targets: Hit Ratios
To evaluate accuracy for area targets, we examined the ra-
tio of hits (touch in target bounding box). Figure 5 shows
that larger targets were hit more consistently, and that thumbs
missed targets more often than index fingers.

Greenhouse-Geisser corrected ANOVA revealed significant
main effects of posture (F1,23 = 19.62, p < 0.001, η2G = 0.06),
target type (F1.17,27.00 = 183.72, p < 0.001, η2G = 0.61) and
model (F1,23 = 52.56, p < 0.001, η2G = 0.06). All interaction
effects were significant: posture × target type (F1.75,40.33 =

17.49, p < 0.001, η2G = 0.04), posture × model (F1,23 =

21.36, p < 0.001, η2G = 0.01), target type × model (F1.08,24.86 =

25.19, p < 0.001, η2G = 0.05) and posture × target type ×
model (F1.32,30.36 = 9.34, p < 0.01, η2G = 0.01). Bonferroni
corrected paired t-tests revealed significantly higher hit ra-
tios with the model than without for index/KEY, thumb/KEY
and thumb/APP (all p < 0.05). The model also improved hit
ratios for the other tasks (not significant).

Applying Models Across Tasks
Improvements by models trained and tested on different tasks
were not as large as with task-specific data. Models trained
on FILL only reduced RMSEs for the other posture with FILL.
Models trained on index finger tasks reduced RMSEs in all
tasks, but thumb models only improved other thumb tasks
(and FILL with index). We conclude that offset models are
more robust across target types than postures.

Conclusions
The results show that GP offset models fit individual be-
haviour in all tasks, demonstrated by significant improve-
ment in targeting accuracy and hit ratios. Hence, the models
can represent individual users. Furthermore, our analyses re-
vealed that thumb input was less accurate than index finger
input, and that models trained with thumb data only reduced
offsets for thumb tasks, but regardless of the target type. As
an exception, models trained on FILL targets did not reduce
offsets for other targets.
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Individuality for Different Targeting Tasks Within and Across Sessions

Figure 6. Individuality of targeting behaviour measured with our ap-
proach. Results show: 1) more individual information was extracted (a)
within one session than (b) across sessions; 2) thumb touches were more
individual than index finger touches; 3) smaller targets tended to result
in more individual behaviour than larger ones. Numbers in Table 1.

Individuality of Targeting Behaviour
We now apply the developed approach (Figure 2) to measure
targeting individuality according to Equation 5.

This section reveals a ranking of targets and hand postures by
individual information in resulting touch targeting behaviour.
We also compare measuring individuality based on data of all
users to the most basic case of comparing only two users at
a time. Finally, we apply our user representation and recog-
nition method (Equation 1) to user identification, reporting
achieved accuracy and practical implications.

In general, we plot individuality over time: We update mea-
sured values after each touch, using all touches so far to infer
user identity implicitly (see Equation 1). This matches practi-
cal applications of touch biometrics, which can also consider
all available information to identify users (e.g. a continuous
implicit authentication system).

Ranking of Targets and Hand Postures
Here, we measure the amount of individual information that
can be extracted within sessions (how characteristic?) and
across sessions (how characteristic and consistent?).

Within sessions: We trained offset models for all users on half
of their data from the first/second session. With the result-
ing trained system (Equation 1), we measured the individ-
ual information in the other half of each user’s data from the
same session, then averaged over all users per task (Figure
6a): FILL did not reveal much individual information (<0.5
bits), but other targets reached ≈ 3 to 4 bits after 100-200
touches. Thumb input with CROSS and KEY reached the high-
est amount of individual information (>4 bits).

Across sessions: We trained offset models on each user’s first
session data, using the resulting system to measure individual
information in each user’s second session data, again repeated
for all combinations of users per task, then taking the average.
Figure 6b) shows that about 1 to 1.5 bits less individual infor-
mation was measured than in the within-session case, since
behaviour varied over time. Thumb input resulted in 1.5 to
3 bits for all target types (but FILL). Interestingly, APP tar-
gets were more consistent than KEY targets here, as indicated
by higher individuality across sessions. Table 1 summarises
these results, also including numbers from the following com-
parison to measuring individuality on pairs of users.



Rank Target Hand Posture
Individual Information (bits)

group (24 users) pairs of users
within across within across

1 cross thumb 3.45 2.48 0.95 0.91
2 key thumb 3.45 2.15 0.95 0.92
3 app thumb 2.70 2.45 0.91 0.86
4 cross index 2.64 2.18 0.91 0.84
5 key index 2.80 1.45 0.92 0.86
6 app index 2.44 1.27 0.90 0.79
7 fill index 0.41 0.26 0.50 0.42
8 fill thumb 0.42 0.23 0.54 0.44

Table 1. Tasks ranked by individual information, based on the aver-
age value within and across session evaluations when measuring on the
whole group of users. Smaller targets and thumb input led to more indi-
vidual behaviour. APP was more consistent than KEY for thumbs (higher
values across sessions in the group case).

Comparison to Pairs of Users
If a user A tends to touch too far left, and B too far right, then
these very simple patterns are individual. Such simple pat-
terns will not be unique to a single user any more, if we ob-
serve many more users. Hence, behaviour is inherently more
individual, if it is individual in a larger group of users. This
analysis demonstrates that this is reflected by our metric.

We repeated the analysis both within and across sessions for
all pairs of users to measure the most basic user recogni-
tion task (binary: “A vs B”). The ranking of targets and hand
postures overall matched the previous results (see Table 1).
However, absolute values were different: Our metric showed
the desired sensitivity to characteristic patters – behaviour
unique among many users was correctly considered more in-
dividual than behaviour unique among only two users.

User Identification
Beyond their role as a measuring instrument, the methods
for representing/recognising users with offset models (steps
2 and 3 in Figure 2) could also be applied to identify users as
part of a continuous implicit authentication system. Hence,
we evaluated user identification accuracy as well.

Accuracy is the number of correct user predictions, divided
by the total number of predictions. For each group size 2 ≤
N ≤ 20, we drew 100 random groups and computed average
identification accuracy, splitting data for training and testing
as in the previous analyses. Figure 7 shows the results. They
match our expectations based on the preceding analyses and
our metric: Users were more accurately identified based on
behaviour observed with smaller targets and thumb input.

In general, accuracy was lower for larger groups. Consistent
behaviour (i.e. within session) resulted in up to about 90% ac-
curacy after 150 touches. Varying behaviour across sessions
resulted in up to about 70% after 300 touches. We also com-
puted F1-scores in the same way, which resulted in the same
rankings of the tasks, with values for all but FILL tasks rang-
ing from 0.70 to 0.89 within sessions for groups of size 20,
and from 0.37 to 0.74 across sessions.

Conclusions
Table 1 shows the ranking of targets and hand postures by in-
dividuality: thumb input is more individual than index finger,
and CROSS and KEY overall yield more individual informa-
tion than APP. Little to none user-revealing information can
be extracted from touches aimed at FILL targets.
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Figure 7. Identification accuracy for different group sizes (a) within ses-
sions after 150 touches, and (b) across sessions after 300 touches. Predict-
ing the current user from a group of known users was easier for smaller
groups. The ranking of tasks matches expectations based on our metric.

As a second insight, more individual information is extracted
within a single session than across sessions. Hence, our re-
sults reveal higher consistency of individual touch targeting
behaviour within one session than over time.

We also compared individual information measured for all 24
users to measuring pairs of users at a time. While, for ex-
ample, identification accuracy is always in the range 0-100%
regardless of N , our metric captures that behaviour informa-
tion characteristic among many users is more individual than
information which is only characteristic among two users.

Predicting the user from a group of 4-6 reached about 75-
90% accuracy with thumb across weeks. While this may seem
too low for practical systems, note that we are only looking
at a single feature here. Further considering that recent work
utilised offsets with only a few touches to help identify typ-
ists [13], we conclude that offsets present an interesting ad-
ditional touch feature for continuous implicit authentication.
Ideally, they should be combined with other touch features
[23, 44, 47] or methods (e.g. gait recognition [19]), since
combining biometrics improves the system’s accuracy [17].

Features of Individuality
The preceding section has shown that the amount of indi-
viduality in touch targeting behaviour is influenced by hand
posture and target type. Now, we examine this targeting be-
haviour in further detail by analysing the variations in touch
offset lengths and angles between users for each task.

Behavioural Differences in Offset Lengths
For each target type and pairing of two users we computed
the difference in offset lengths for each observed target loca-
tion. Averaging over all locations yielded a difference score
for this pair of users. We limit this analysis to descriptive
statistics, since ANOVA is not applicable to user differences,
where each user necessarily contributes to more than one pair.

Figure 8 shows that thumbs resulted in greater offset length
variations between users than index fingers. We explain this
with users’ different hand and finger sizes: offset lengths are
likely to be influenced by the reachable area of the thumb
when holding the device in the same hand [6]. In contrast, the
index finger of a free hand can reach any point on the screen
more easily. The largest differences were observed for the
FILL targets, since they provide a larger touch area in which
users can operate. Hence, to complete the picture, we need to
assess a length-invariant feature as well.
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Figure 8. Pairwise user differences in offset vector lengths. Thumbs led
to larger differences between users than index fingers. The biggest tar-
gets (FILL) showed the largest differences.
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Figure 9. Pairwise user differences in offset vector angles. For all but
FILL targets, the thumb led to smaller offset angle differences between
users than the index finger.

Behavioural Differences in Offset Angles
We examined angles between offset vectors o1,o2 from two
users at the same target location, using a shifted and inverted
cosine similarity (to measure distance, not similarity):

d(o1,o2) =
1

2
− o1 · o2

2‖o1‖‖o2‖
(6)

For each target type and pair of users we computed this dis-
tance at each target location. Averaging over all locations
yielded the user difference scores.

Figure 9 shows that angles varied less between users for
thumbs than index fingers, likely due to anatomical con-
straints: a thumb’s angle relative to the device is more re-
stricted than a free hand’s index finger.

In contrast to offset lengths, FILL resulted in the smallest an-
gular user differences. The shape of these targets offered little
space to vary the angle relative to the centre. In addition, users
mostly touched on the right half of these targets due to the use
of the right hand in the study. For the other target types, dif-
ferences grew with increasing area (CROSS < KEY < APP).
Hence, we conclude that users individually made different use
of touch areas with respect to targeting angles.

Conclusions
These results show that thumb input leads to similar offset
angles, but individual offset lengths. In contrast, index finger
input leads to similar lengths, but individual angles. Target
size and shape, as well as hand postures, influence the main
features of individuality in touch targeting errors.

Relevant Screen Locations
We also analysed which parts of the screen are most important
to describe users’ individual touch targeting error patterns,
using the Relevance Vector Machine (RVM) algorithm [39].
Related work used this method for touch offset prediction and

Figure 10. Kernel density estimates (i.e. smoothed histograms) of the dis-
tribution of relevance vectors (RVs) on the screen across all users, found
with a Relevance Vector Machine. High values indicate the most impor-
tant touches for predicting user-specific offsets in (a) horizontal and (b)
vertical dimension. These plots show in which regions touches can be
expected to yield more descriptive information.

for training set analysis [41]. RVMs solve regression prob-
lems like GPs, but their predictions are based on a small sub-
set of all training examples, the relevance vectors (RVs). In
contrast, GPs use the full training set for predictions.

The RVs found by the algorithm can be interpreted as the
most important touches for modelling user behaviour. Thus,
screen regions with many relevant touches across users are
more descriptive. Figure 10 shows the distribution of RVs per
task for both screen dimensions (x, y).

Overall, most of the touches that the RVM found to be rel-
evant for describing users’ targeting patterns were located
near screen borders and corners (“peaks” in Figure 10 mostly
near edges and corners). Hence, interface elements (and thus
touches) at these locations are expected to yield more char-
acteristic information. In contrast, fewer RVs were located in
the centre of the screen.

These results are in line with the findings in related work on
cross-hair targets [41]. Moreover, we found that the RVM
used less training touches to describe index finger patterns
compared to thumbs. This suggests that index finger input
leads to less complex offset patterns.



INSIGHTS INTO TOUCH TARGETING
We summarise our key insights to inform research on touch
modelling and implicit identification/authentication:
• Target size and shape influence the main features of indi-

viduality in touch targeting errors: Offset lengths and an-
gles varied more between users for larger targets, but broad
target shapes resulted in more similar offset angles.
• Hand posture influences the main features of individuality

in touch targeting errors: Offset lengths varied more be-
tween users for thumbs than index fingers, as thumb size
restricts the reachable area. However, these restrictions also
resulted in less offset angle variations for thumbs.
• Thumb input is less accurate and more individual than in-

dex finger input: Offset lengths were smaller and hit ratios
were higher with index fingers, but thumb input resulted in
more characteristic and consistent offset patterns.
• Offset modelling for accuracy improvement is more ro-

bust across target types than across hand postures: Mod-
els trained with thumb data only reduced offsets for thumb
tasks, but regardless of the target type. Training on the large
FILL targets did not reduce offsets for other targets.
• Different screen locations best characterise behaviour for

different targeting tasks: The most informative screen ar-
eas for modelling individual touch offset patterns varied
between target types and hand postures, but screen edges
and corners were in general more relevant than the centre.
• Offset patterns are user-specific, but not for all targets:

Offsets are known to be user-specific [42], but we revealed
that this is not true for all targets. Patterns are less charac-
teristic and consistent if only one dimension matters (FILL).
• Individual touch characteristics stay more consistent for

small targets: User-specific behaviour can be recognised a
week after training, but with lower accuracy, especially for
targets which allow for multiple targeting strategies (e.g.
aiming at the centre or right half of broad targets).

IMPLICATIONS FOR APPLICATIONS
In summary, our results show that GUIs could optimise their
expected gain in individual information per touch as follows:

• Use interface elements at the screen borders: Touches at
these locations are more descriptive of users’ patterns.
• Avoid unnecessarily large targets: Users touch less consis-

tently if they can choose from a large area to hit the target.
• Avoid very elongated target shapes: Such targets lead to

less diverse offset angles, reducing pattern individuality.
• Use thumb-friendly layouts: User characteristics are more

evident with thumb input than with the index finger.

We could try to improve implicit identification by designing
interfaces with the above statements in mind, but usability
considerations should obviously come first. Hence, these im-
plications are mainly meant to help choose between usable
designs, with optimisation for biometrics as a secondary goal.
Moreover, instead of changing GUIs, developers can use our
implications to optimise which touches to “watch out for”.
Coming back to our initial example, an implicit continuous

authentication system could mitigate the risk of false deci-
sions by weighting touches higher, which are aimed at small
compact targets near screen borders. With approaches to infer
hand postures [11, 29, 45], systems can put more weight on
thumb than index finger touches to infer user identity (e.g. via
weighted samples in SVMs, or a prior in Bayesian methods).

INTERFACE EVALUATION
To facilitate application and verification of our implications,
we now present an interface evaluation method. It takes a
GUI layout as its input and outputs a (rough) estimate of the
amount of individual information that could be derived from
touch targeting interactions with that GUI. Developers and
researchers can use this method to computationally compare
different GUIs with respect to their expected usefulness for
touch-based user identification and authentication.

Rationale: Intuitively, we use the collected data to train touch
models for different interactions (target types, hand postures).
We then simulate touches based on these models. Finally,
we measure individuality of the simulated interactions. These
values can then be compared between interfaces. In summary,
our method comprises of the following three steps:
1. Creating a model: For a given interface, we train an inter-

action model on the study data from the second sessions.
2. Simulating touches: We next sample from this model’s dis-

tribution to simulate touch interactions for this interface.
3. Interface evaluation: Simulated touches are fed into our

measurement system, trained on the first sessions’ data.
In summary, we use our study observations to enable evalua-
tion of target combinations/layouts not directly observed be-
fore. The approach considers consistency, since touches are
generated by a model trained on users’ second sessions, and
fed to a system trained on their first sessions. It also consid-
ers user characteristics, since it evaluates interfaces with our
measuring system based on individual targeting patterns.

Applications and limitations: Predicted individuality is not
meant to be interpreted absolutely, since simulated behaviour
is less complex than real interactions. Nonetheless, we can
compare predictions (e.g. higher individuality predicted for
interface A than B). With this knowledge, developers and re-
searchers can 1) alter interfaces iteratively or 2) weight obser-
vations accordingly, both to yield more user-revealing touch
information. Figure 11 summarises our evaluation frame-
work. The corresponding detailed formal description follows.

Touch Interaction Model
We consider an interfaceE with a set of GUI elements e ∈ E,
and a set of users u ∈ U . Our touch interaction model for
E is then defined by the following factorisation of the joint
distribution of users u, elements e and touches t:

Touch Interaction Model: p(t, e, u) = p(t|e, u)p(e)p(u)
(7)

The individual parts are explained in detail below.

Expected touch locations per GUI element: p(t|e, u) de-
scribes the distribution of touches for interface element e tar-
geted by user u as a bivariate Gaussian:
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Figure 11. Graphical user interface evaluation framework. An interface
is given as a set of elements (blue). Each element e is described by its
bounding box, type (e.g. APP), and importance p(e). We train inverse
offset models from collected touches to predict a distribution of likely
touch locations p(t|e, u) for each target e and user u. Over all users
and targets, this results in a touch distribution for the whole interface
(orange): p(t|e, u)p(e)p(u). We sample touches (red) from this distri-
bution by drawing a user from p(u), an element from p(e), and then a
touch location from p(t|e, u). Finally, we feed these simulated touches
t into our measurement system to predict individuality (green). Values
can be compared between different interfaces, for example to evaluate
which one has higher potential for behavioural touch biometrics.

p(t|e, u) ∼ N (µe,u,Σe,u + εΣn) (8)

Here, µe,u denotes the mean prediction of an inverse offset
model for user u given location and type of element e. Σe,u

is the covariance matrix of this predictive distribution. Inverse
means that the model (here we again use the GP model) is
trained to predict touch locations given a target location [12].

We add noise with zero mean and covariance εΣn, set pro-
portional to the element’s width/height with scaling ε, a hy-
perparameter of the model. This reflects that users may touch
different parts of (larger) elements, as revealed by varying be-
haviour in our study, and also allows us to estimate behaviour
for elements with sizes not exactly observed during training.

Relative importances of interface elements: p(e) models the
elements’ relative importances. For example, when evaluat-
ing a keyboard we can use the relative frequency of the char-
acters in a given language. A uniform distribution means that
each element is equally important to the user.

Relative user frequencies: p(u) models how often users inter-
act. We assume uniformity – each user is equally likely.

Possible extensions: Our model assumes fixed hand postures,
since participants were told which postures to use. However,
it can easily be adapted to freely chosen postures h, for exam-
ple as p(t, e, u, h) = p(t|e, u, h)p(e)p(u)p(h), where p(h) is
the observed relative posture frequency. We can also include
terms like p(h|u) (different users favour different postures),
or p(h|e) (different elements provoke different postures).

Simulating Touch Interaction
To simulate interactions for the given interface, we sample
touches from the joint distribution p(t, e, u) as defined by our
model: 1) we draw a user u from p(u); 2) we draw an element
e from p(e); and 3) we draw a touch location t from p(t|e, u).

Example Application
Three example applications show that the model’s predictions
match the study insights. Figure 12 presents a list, a home-
screen, and a keyboard. The figure further shows each GUI’s

touch interaction model (Equation 7, density shown via con-
tours for thumb input) and predicted (pairwise) individual in-
formation. The method predicts the highest individuality for
the keyboard, followed by the homescreen and finally the list.
We discuss these results in the light of our previous insights:

Keyboard: Keys are smaller than app-icons and list entries;
thus, users touch more consistently. Predicted high touch den-
sity (Figure 12c) also lies in the most descriptive screen re-
gions (Figure 10), yielding more informative touches.

Homescreen: In contrast, the homescreen uses larger targets,
including the elongated searchbar at the top. Such targets lead
to less consistent behaviour. Moreover, the homescreen fea-
tures targets in the less descriptive centre region of the screen.

List: Finally, the list yielded little individual information. It
only features FILL targets, which the study revealed to lead to
very inconsistent behaviour.

Hand postures: Our method predicted higher accuracy for
thumbs than index fingers, matching our study findings.

In summary, we demonstrated that our method can rank inter-
face layouts according to expected individuality in targeting
behaviour. Predictions match expectations from our previous
analyses. The model can thus utilise given touch data to esti-
mate targeting behaviour for interface layouts. This comple-
ments our insights with an applicable evaluation tool.

SUMMARY AND DISCUSSION
Individuality of targeting behaviour: We analysed and ranked
eight targeting tasks by individuality (Table 1). Using data
from two sessions, our measuring approach considered both
user characteristics and consistency. Small targets result in
more individual touch behaviour. Targets and hand postures
influence whether targeting error length or angle is the main
feature of individuality in targeting behaviour. Moreover,
thumb input is less accurate but more individual than index
finger input. The most descriptive touch locations are near
the screen corners and edges.

Measuring individuality: We presented an approach to mea-
sure the amount of individual information in touch targeting
behaviour. Our analyses showed that the metric has desirable
properties: 1) Comparison of evaluations within and across
sessions (Figure 6) showed that the metric is sensitive to con-
sistency. 2) It is easier to extract characteristic behaviour for
two users than for 24 – the metric also proved to be sensitive
to this complexity of individuality. We thus conclude that our
measuring approach renders the amount of individual infor-
mation in mobile touch targeting behaviour assessable.

Interface evaluation: We applied our findings in a proba-
bilistic touch interaction framework for interface evaluation
and discussed three example cases. The predicted ranking
matched our expectations based on the manual analyses of the
collected data. The framework can thus help to comparatively
assess which interface leads to more individual information.

Implications for Touch Biometric Systems
Observe offsets: Our results show that touch offsets are use-
ful to distinguish users and could thus complement previous
feature sets (e.g. [44]).



Figure 12. User interface evaluation framework for three examples: (a) list, (b) homescreen, and (c) keyboard. Our model uses target bounding boxes,
types (e.g. APP, FILL), and importances (e.g. letter frequencies for the keyboard) to predict touch densities, as shown with contour plots (shown for
thumb input only, yellow is high). We sample touches from these distributions to simulate user interaction and (d) measure expected individuality. In
this example, we conclude that the keyboard allows us to observe more individual behaviour than homescreen and list.

Consider context: Hand postures and targets render some
touches more “telling” than others. In particular, to distin-
guish users, we recommend to rely on thumb touches target-
ing small, compactly-shaped targets near screen edges.

Integrate with other systems: Influences of targets and hand
postures imply that applications relying on touch biometrics
can benefit from close integration with other systems. GUI
targets are known to the OS and (touch-based) recognition
systems could provide the current hand posture [11, 29, 45].

Use multi-model methods: Our results show that touch-based
biometric systems could potentially improve accuracy with
target-specific and posture-specific models instead of one-
fits-all models. A promising approach is a hierarchy of mod-
els that increase in specificity, as successfully used in key-
board individualisation [45].

Opportunities for Future Applications
Holistic biometrics across GUIs: While most current systems
focus on one GUI or app (e.g. keyboard [13], Android pat-
tern [18]), our results help biometric systems to utilise touch
observations across multiple GUIs, by weighting relative im-
portances (e.g. keyboard touches are more important than list
touches to infer user identity).

Applications with prior knowledge: Our insights inform de-
fault parameters for biometric systems, for example to treat
touches on small targets and in screen corners as more reli-
able. This could be realised, for instance, via weighted sam-
ples in an SVM or via priors in a Bayesian approach.

LIMITATIONS
Influence of user representation: Measuring individual in-
formation I requires a model to recognise characteristic be-
haviour. Absolute values of I thus depend on the chosen
model, as in other information measures of behaviour [33].
To handle model-dependency, we chose the well-researched
offset model and evaluated its suitability as a user representa-
tion in all our tasks. In general, our approach can also be used
with other models for other biometrics (e.g. based on gait).

Analyses: Future work could study further element properties
(e.g. their visuals), landscape device orientation, and other
touch interactions (e.g. scrolling), possibly in every-day use.
While a controlled targeting study like ours is more abstract
than real GUIs, this control is needed to examine the factors’
influences. Nevertheless, our tasks used common GUI ele-
ment shapes/sizes and natural hand postures, and single taps
are the most fundamental and common touch interaction.

Interface evaluation: We do not claim to predict exact ab-
solute individual information with our interface evaluation
framework, which would require analyses on more interfaces
and testing to fine-tune the parameters. This is beyond the
scope of this paper. However, here we have shown that the
ranking of three typical mobile interfaces, as predicted by our
method, matches expectations based on manual data analy-
ses. While limited by available data (e.g. with respect to tar-
get types), our concept is flexible to work with any dataset of
touches and targets. It can thus easily be adapted, for example
to respect hand postures chosen by users.

CONCLUSION AND FUTURE WORK
We have evaluated individuality of mobile touch targeting
behaviour, measuring how characteristically and consistently
users target GUI elements with over 150,000 touches in eight
tasks. We presented a metric, data analyses, and an interface
evaluation framework. As a key insight, applications of touch
biometrics (e.g. implicit continuous authentication) should
consider hand postures and properties of GUI elements.

With this knowledge, biometric systems can 1) favour inter-
faces which yield characteristic and consistent touch infor-
mation, and 2) optimise user observation schemes to appro-
priately focus on the most individual and thus prolific interac-
tions. We regard these contributions as a fundamental step to-
wards robust, holistic applications of mobile touch biometrics
for interface personalisation and usable privacy and security.

In future work, we plan to build a continuous posture recog-
niser and user authentication system, with this paper’s results
as prior knowledge of individuality of touch interactions.
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