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ABSTRACT

The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in
recent years, both in academia and commercial applications. This is rooted in technological
advances and affordable head-mounted displays (HMDs). Whether in games or professional
applications, HMDs allow for immersive audio-visual experiences that transport users to
compelling digital worlds or convincingly augment the real world.

However, as true to life as these experiences have become in a visual and auditory sense, the
question remains how we can model interaction with these virtual environments in an equally
natural way. Solutions providing intuitive tangible interaction would bear the potential to
fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice
users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual
to real-world objects. Tangible interaction has been shown to provide significant advantages
for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case
of these devices, mainly due to their ability to fully embody any spherical virtual content.
In general, spherical devices increasingly transition from mere technology demonstrators to
usable multi-modal interfaces.

For this dissertation, we explore the application of STUIs in MR environments primarily by
comparing them to state-of-the-art input techniques in four different contexts. Thus, inves-
tigating the questions of embodiment, overall user performance, and the ability of STUIs
relying on their shape alone to support complex interaction techniques.

First, we examine how spherical devices can embody immersive visualizations. In an initial
study, we test the practicality of a tracked sphere embodying three kinds of visualizations.
We examine simulated multi-touch interaction on a spherical surface and compare two differ-
ent sphere sizes to VR controllers. Results confirmed our prototype’s viability and indicate
improved pattern recognition and advantages for the smaller sphere.

Second, to further substantiate VR as a prototyping technology, we demonstrate how a large
tangible spherical display can be simulated in VR. We show how VR can fundamentally
extend the capabilities of real spherical displays by adding physical rotation to a simulated
multi-touch surface. After a first study evaluating the general viability of simulating such a
display in VR, our second study revealed the superiority of a rotating spherical display.

Third, we present a concept for a spherical input device for tangible AR (TAR). We show
how such a device can provide basic object manipulation capabilities utilizing two different
modes and compare it to controller techniques with increasing hardware complexity. Our
results show that our button-less sphere-based technique is only outperformed by a mode-
less controller variant that uses physical buttons and a touchpad.

Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing ap-
proaches: a continuous and a discrete technique. For the first, we demonstrate a spherical
locomotion device supporting two different locomotion paradigms that propel a user’s first-
person avatar accordingly. We found that a position control paradigm applied to a sphere
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performed mostly superior in comparison to button-supported controller interaction. For dis-
crete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used
for avatar teleportation in a large virtual environment. Results showed that users subjectively
preferred the sphere-based technique over regular controllers and on average, achieved lower
task times and higher accuracy.

To conclude the thesis, we discuss our findings, insights, and subsequent contribution to
our central research questions to derive recommendations for designing techniques based on
spherical input devices and an outlook on the future development of spherical devices in the
mixed reality spectrum.
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ZUSAMMENFASSUNG

Die Popularität von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten
Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen
Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche
Head-Mounted Displays (HMDs) zurückzuführen. Ob in Spielen oder professionellen An-
wendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde
digitale Welten versetzen oder die reale Welt überzeugend erweitern.

Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind,
so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso
natürliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interakti-
on ermöglichen, hätten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental
zugänglicher zu machen, insbesondere für Unerfahrene. Die Forschung an Tangible User In-
terfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und
so hat sich gezeigt, dass greifbare Interaktion für zahlreiche Anwendungsfälle signifikan-
te Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von
greifbaren Interfaces dar, insbesondere aufgrund ihrer Fähigkeit, beliebige sphärische virtu-
elle Inhalte vollständig verkörpern zu können. Generell entwickeln sich sphärische Geräte
zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumen-
ten, die auf eine breite Palette von Interaktionstechniken zurückgreifen können.

Diese Dissertation untersucht primär die Anwendung von STUIs in MR-Umgebungen durch
einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten.
Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der
Benutzerleistung im Allgemeinen und der Fähigkeit von STUIs, die sich lediglich auf ihre
Form verlassen, komplexe Interaktionstechniken zu unterstützen.

Zunächst erforschen wir, wie sphärische Geräte immersive Visualisierungen verkörpern kön-
nen. Eine erste Studie ergründet die Praxistauglichkeit einer einfach konstruierten, getrack-
ten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-
Touch-Interaktion auf einer sphärischen Oberfläche und vergleichen zwei Kugelgrößen mit
VR-Controllern. Die Ergebnisse bestätigten die Praxistauglichkeit des Prototyps und deuten
auf verbesserte Mustererkennung sowie Vorteile für die kleinere Kugel hin.

Zweitens, um die Validität von VR als Prototyping-Technologie zu bekräftigen, demonstrie-
ren wir, wie ein großes, anfassbares sphärisches Display in VR simuliert werden kann. Es
zeigt sich, wie VR die Möglichkeiten realer sphärischer Displays substantiell erweitern kann,
indem eine simulierte Multi-Touch-Oberfläche um die Fähigkeit der physischen Rotation er-
gänzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines
solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren
sphärischen Displays.

v



Drittens präsentiert diese Arbeit ein Konzept für ein sphärisches Eingabegerät für Tangi-
ble AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende Fähigkeiten zur Ob-
jektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und
vergleichen es mit Eingabetechniken deren Hardwarekomplexität zunehmend steigt. Unsere
Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von ei-
ner Controller-Variante übertroffen wird, die physische Knöpfe und ein Touchpad verwendet
und somit nicht auf unterschiedliche Modi angewiesen ist.

Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen
wir zwei gegensätzliche Ansätze: eine kontinuierliche und eine diskrete Technik. Für die ers-
te präsentieren wir ein sphärisches Eingabegerät zur Fortbewegung, das zwei verschiedene
Paradigmen unterstützt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich,
dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller,
im Vergleich zu regulärer Controller-Interaktion, die zusätzlich auf physische Knöpfe zu-
rückgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evalu-
ieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature,
SWIM), die für die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet
werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Tech-
nik im Vergleich zu regulären Controllern und im Durchschnitt eine schnellere Lösung der
Aufgaben sowie eine höhere Genauigkeit.

Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus
resultierenden Beiträge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen
für die Gestaltung von Techniken auf Basis kugelförmiger Eingabegeräte und einen Aus-
blick auf die mögliche zukünftige Entwicklung sphärischer Eingabegräte im Mixed-Reality-
Bereich abzuleiten.
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1
Introduction and Background

“The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would
be good enough to sit in.”

Ivan E. Sutherland - The Ultimate Display [97]
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Introduction and Background

With the scientific and technological progress over the last three decades, the boundaries
between the real and virtual world are becoming increasingly blurred. Be it the augmentation
of our physical environment in every conceivable situation or the convincing simulation
of alternate virtual spaces, the ubiquitous interaction between humans and computers and
subsequent blending of both realities is inevitably becoming a part of our daily lives.

Since the first implementation of a head-mounted display (HMD) in 1968 by Sutherland et
al. [98], the technology has made enormous progress. However, until recently, the main
area of application has been the academic domain. This changed rapidly with the release of
commercially available products such as Oculus Rift or HTC Vive. Since then, in particular,
VR has seen a rise, predominantly in games1, but applications in the environment of public
installations or immersive data visualization are equally relying on blended realities.

These advancements, especially in computer science, do not correlate with the evolution
of human capabilities [21]. Therefore, the development of techniques leveraging natural
and learned human skills is becoming increasingly important. To convey interaction with
digital content, scientists often rely on metaphors that build on widespread knowledge or are
borrowed from facts well established in the real world [71].

One of the most prominent representatives of this principle is the desktop metaphor. In its
origin, a two-dimensional graphical user interface (GUI), it mimics the user’s desk by, for
instance, referencing the functions of a digital system with folders, documents, or a recycle
bin. In contrast, a TUI seeks to supply its users with tangible objects that, on the one hand,
represent and, on the other hand, can manipulate a system’s state. It is worth noting that TUIs
do not generally provide advantages over GUI-based systems. However, multiple studies
have shown benefits for TUIs in terms of physical interaction, realism, and feedback [111].

The inherent property of a mixed reality environment not having to abide by laws and con-
straints of physics makes it an especially interesting testbed. The evaluation of interfaces
that currently can not be realized outside of a blended reality due to technical limitations,
thus opening the possibility to investigate the importance of their physicality, seems promis-
ing. This enables us to envision and evaluate user interfaces that may become a reality in the
future and contribute to the question of such devices may be more beneficial if we simulate
or extend their capabilities in MR.

Even with advances in tracking technology [82, 79] an answer to these questions is not
easy. Until now, we can not transfer any object, shape, or surface to the virtual space.
Simulating tangible feedback is also not yet developed to the point where it eliminates the
need for physical devices. However, current tracking technology allows for the use of a
wide range of items fitted with tracking devices or markers. This ability appears especially
interesting if the tracking technology does not influence the tracked object’s shape or general
characteristics. Such a prototype could support many different use cases, for example, by
utilizing a universal shape that may not need to be explained to its users.

1 https://www.roadtovr.com/monthly-connected-headsets-steam-3-million-march-2021/
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Introduction and Background

An object that meets these requirements is the sphere. It can be efficiently tracked without
distorting its outline, we deal with its known symmetric form in a variety of real-world sit-
uations, and as a result, it may be able to support several different types of fully embodied
interfaces and interaction techniques. Hence, in this dissertation, we are dedicated to study-
ing spherical tangible user interfaces. MR provides a compelling environment to implement,
explore, and evaluate such concepts compared to established interaction techniques.

In many different commercial applications and the academic field of human-computer inter-
action (HCI), we find a variety of interfaces that rely on a tangible spherical shape. There-
fore, an analysis of these previous implementations will serve as the basis for formulating
the precise research questions that this dissertation seeks to answer. They may ultimately
contribute insights to the overarching questions discussed in this introduction.

1.1 Fundamentals and Definitions

In the introduction, we built on an intuitive concept of the real and virtual world. Yet, we
must define the spectrum between the two realities and other terms that may also seem self-
evident at first glance but require a clear classification.

Concepts of Reality and Virtuality

To gain a deeper understanding of virtuality in contrast to what is generally considered real-
ity, we will start with reviewing a definition of the latter. Reality can be seen as a dichotomy
of a natural and an artificial part. One is created by human interference, and the other is
not [12]. This philosophic approach shows that we can see reality itself as a blend of two
concepts of thought.

In contrast, the term virtual usually describes anything that the human mind can imagine,
but that does not exist in either of these two parts of reality – a fact that only exists theoret-
ically [95] or in virtuality. However, in a contemporary context, the term more commonly
refers to entities that are simulated by a computer [72] and do not exist [15] but only are
presented [101] in the physical world.

It is important to note that the distinction between reality and virtuality is a contentious topic.
The question, for instance, if a simulated reality that can not be distinguished from the real
world can still be seen as virtual is not easily answered [46]. Nevertheless, we can often find
the crucial factor for such a distinction in the difference between a world that is created and
in some form presented and another that just exists [101]. While this general definition of
the real and virtual world may not be too far from the intuitive interpretation, terms such as
virtual reality need a detailed explanation, especially in the scientific sense.
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Introduction and Background

Virtual and Augmented Reality

Virtual Reality (VR): We can divide attempts to define VR into technical and conceptual ap-
proaches. Lanier [60] referred to VR as “three-dimensional realities implemented with stereo
viewing goggles and reality gloves.” In opposition, Brudea and Coiffet [14] saw it as an inter-
play of immersion, interaction, and imagination. Immersion [78] is often associated with the
technical capabilities of a system to communicate a simulated reality convincingly. Simulta-
neously, the subjective experience is commonly described as a feeling of presence [45, 106].
Cruz-Neira’s [19] definition touches on technical and conceptual aspects: “VR refers to im-
mersive, interactive, multi-sensory, viewer-centered, three-dimensional computer-generated
environments and the combination of technologies required to build these environments.” A
recent and more general definition is given by Dörner et al. [22]: “Due to the natural interac-
tion possibilities, virtual reality is also referred to as a human-machine interface, [...] which,
compared to traditional user interfaces, enables a particularly natural or intuitive interaction
with the three-dimensional simulated environment.”

These definitions help form a clearer picture of VR and undoubtedly show the importance of
interaction and immersion. As natural interaction being a key focus of this work, we prefer
the definition by Dörner et al. [22].

Virtual World: Bell [3] defined a virtual world as “a synchronous, persistent network of
people, represented as avatars, facilitated by networked computers.” An example would be
a massive multiplayer online game (MMO), which simulates a world independent of the
presence of a particular user [94]. It is obvious that such a definition has evolved with tech-
nological progress, as has the colloquial use of the term, which itself is often used (including
this work) as a synonym for the concept of virtuality that we discussed above.

Virtual Environment (VE): Opposed to the previous term, a virtual environment can be set
apart by persistence and a social component [89, 88]. In academia, the term is commonly
used to describe the variety of virtual scenes to which a user is exposed during a study and
does not necessarily implement the aforementioned properties of a virtual world.

Augmented Reality (AR): Describes a reality superimposed, complemented, or enhanced
with virtual content. This ultimately results in a shared space between digital and physical
objects [9]. As with VR, we find a difference between technical and conceptual definitions.
Milgram et al. [75] presented approaches for both ends of the spectrum. They referred to
AR as “augmenting natural feedback to the operator with simulated cues.” in contrast to “a
form of virtual reality where the participant’s head-mounted display is transparent, allowing
a clear view of the real world.” In a more recent statement, Klopfer and Sheldon [58] saw
AR to “provide users technology-mediated immersive experiences in which real and virtual
worlds are blended.” As with VR definitions, we will base our interpretation of AR on
definitions that include user interaction, such as a recent definition by Dunleavy et al. [25]
that states: “users’ interactions and engagement are augmented.” Schmalstieg et al. [86]
accordingly attributed greater importance to AR than VR for the “complex manipulation of
three-dimensional information.”
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Introduction and Background

Blending Realities

Mixed Reality (MR): In 1995 Milgram et. al [75, 74] proposed the reality-virtuality con-
tinuum (RV). It covers a bidirectional space spanning from a real to a virtual environment
(Figure 1.1). MR, defined within this continuum, constitutes an important part of this thesis
and its title. MR presents entities from both realities simultaneously, meaning that at least
one object from the real and one from the virtual world is present.

Figure 1.1: Milgram’s famous reality-virtuality continuum serves as a basis to defining MR as
the conceptual space between real and virtual environments that depend on a majority of real or
virtual entities. They can be further split into augmented reality and augmented virtuality [75].

MR is comprised of two main concepts: augmented reality and augmented virtuality (AV).
Both conceptual spaces are defined by a majority of the content from either of the two worlds.
AR as a composition contains more real than virtual objects, while AV refers to adding
real objects to a space that is mainly made up of virtual information. Because all of the
publications presented in this thesis either transfer real objects to a virtual environment or
augment them with digital information, our experiments exclusively occur in the MR space.
Obviously, the interaction with one tangible, real object alone, such as a VR controller, in a
VE results in a blend of two realities. In literature, such a space also may be referred to as
XR, which serves as an umbrella term for VR, AR, and MR. However, in contrast to AR, an
AV setup strongly leaning towards the virtual side is often referred to as VR. We adopt the
latter convention for all presented publications.

TUIs and Embodiment

Tangible User Interface (TUI): Ishii and Ullmer [51] defined TUIs in 1997 as interfaces
that “augment the real physical world by coupling digital information to everyday physical
objects and environments.” Fitzmaurice et al. [41, 40] however, made the first distinction
between GUIs and TUIs in 1995 while referring to such interfaces as “graspable interfaces”
and defining them as “a physical handle to a virtual function where the physical handle serves
as a dedicated functional manipulator.” While the first definition serves as a solid foundation
for the publications [P1 - P7]2 outlined in this thesis, they require a deeper investigation due
to their general nature.

2 Abbreviations for publications are assigned in Section 2.

5



Introduction and Background

One of the most widely used input devices, the mouse, is a TUI by these two definitions.
However, following the assessment of Sharlin et al. [91] this is not the case. The authors
proposed three heuristics; TUIs must: provide successful spatial mappings, unify input and
output (I/O) space and enable trial-and-error activity. While a mouse can provide excellent
spatial mapping [69] neither does it accurately reflect the state of a digital system (since
it separates action and perception space), nor does it support trial-and-error activity. This
means it would be able to be used out of the context of a pragmatic task enabling the explo-
ration of physical space.

Furthermore, the authors argue that designers should aim at a one-to-one mapping of virtual
and real objects for best supporting these heuristics rather than a one-to-many coupling. This
proposal certainly makes sense in the context of the defined heuristics, but it also raises the
question of what the embodiment of virtual content actually means. In the course of this
work, we will therefore refer to the taxonomy by Fishkin et al. [37] that orients TUIs along
two axes: embodiment and metaphor.

Embodiment can be split into four levels: full, nearby, environmental and distant. For full
embodiment, the output device is the same as the input device. Therefore a virtual object is
fully embodied if a real object fills its complete outline. Nearby refers to output occurring in
the immediate vicinity of the user input. Such a device is in literature often referred to as a
proxy. Environmental defines output that only occurs around an arbitrary user’s environment.
In comparison, distant describes an output effect happening in an area neither related to users
nor the input device, such as the working principle of a remote control.

Metaphors allow users to connect an interface’s functionality to an analog, existing mental
model from the real world. An ability tangible interfaces may enable like no other [76].
Subsequently the taxonomy again defines four levels: none, noun or verb, noun and verb,
and full. Self-explanatory, none relates to the complete absence of any metaphor. A noun
describes an analogy to the physical shape, look, or sound of an object. Verb seeks to classify
a metaphor by its functionality. Subsequently, Noun and verb refers to defining analogous
properties and behavior. For instance, if a system deletes a document (noun) dragged (verb)
to a wastebasket, it would qualify for this kind of metaphor. Yet, in contrast to the level
full, the physical and virtual objects still differ. If this is not the case and the TUI literally is
the virtual system, it fulfills the last condition and therefore can also be described as “really
direct manipulation” [38]. A digital pen can serve as an example. It looks and behaves just
like its real-world counterpart.

If we review Fishkin’s taxonomy and the heuristics of Sharlin et al., we do not only get a
good understanding of the essential properties of TUIs, but it becomes clear that the better
a TUI (literally) fulfills these defined guidelines, the greater its potential may be. While
this theoretically may lead to intuitive and usable devices, the technical realization of such
interfaces is still a huge culprit. This is where VR technology comes into play. It may enable
TUIs not always achieving an ideal classification but that could allow us to push beyond the
boundaries where interfaces with no or minimal user instrumentation struggle.
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Introduction and Background

1.2 Prototyping STUIs in Mixed Reality

Before introducing our first research question, we will reflect on our choice for spherical
devices in light of the classifications outlined in the previous section. The question comes
to mind if spherical devices in MR environments qualify for either full embodiment and full
metaphor while meeting the requirements of the three discussed heuristics.

TUIs as a Motivation for STUIs

If we examine the latter, we can answer the question of spatial mapping as long as the spher-
ical device would support six degrees of freedom (6-DOF) interaction [90]. The unification
of I/O may seem straightforward, but in a technical sense, the output device is not the tracked
object itself but the HMD. Therefore, unified I/O is true if we accept that we simulate this
requirement. However, especially in tangible AR (TAR) [11], and in the field of display sim-
ulation, such setups have been used to some extent, for example, to investigate latency [62]
or novel interfaces in general [57, 53].

Regarding Fishkin’s taxonomy, an STUI would likely qualify for full embodiment [39], yet
the assignment of the metaphor level is more complicated. Here we can find an interesting
phenomenon. If we transfer a simple, embodied object to the VR space, the requirements
for a full metaphor appear to be satisfied; a virtual sphere would behave just as in the real
world. If we extend its functionality, for instance, by adding more advanced interaction
capabilities, the requirements for noun and verb would still be met. Yet, the virtual object
would no longer exactly correspond with the real one. As a result, we diminish the metaphor
level by extending interactive functionality. Generally, we use this taxonomy throughout
the thesis and will provide an overview of embodiment and metaphor levels for all practical
prototypes in the context of their respective studies in Table 3.1.

In general, physical spheres provide the prospect of achieving high levels of tangible quality
(regarding both classifications), making them interesting subjects to explore. They may:

• Fully embody any spherical objects in mixed reality.

• Provide intuitive interaction for a variety of existing and novel use cases.

• Convey complex functionality by their natural tendency towards rotation.

• Leverage advantages in ergonomics, visualization, and spatial orientation.

Subsequently, research on STUIs might ultimately inform on the actual usability and possi-
ble advantages of spherical tangible interfaces and their potential to support complex inter-
action that goes beyond but does not alter the natural properties of a sphere.

7
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Transferring Spherical Objects to MR

As mentioned towards the end of Section 1.1, a major hurdle for TUIs is their technical
feasibility. As a preliminary step for this work, we had to find a solution for these issues that
would ultimately enable the investigation of embodied spherical objects in MR. Hence, we
formulated the first research question:

RQ1: How can commercial hardware be used to efficiently embody virtual spher-
ical objects in MR?

As primary goals for the hardware implementation, we defined: easy reproducibility, fast and
precise object tracking, a completely smooth surface, and as a matter of course, a wireless,
room-size tracking experience. After having tried other more costly options [2] we found
that the tracking performance [79] of the HTC Vive3 system was not noticeably influenced
if we placed a Vive Tracker4 behind infrared-transparent material such as acrylic glass. We
applied this principle to all prototypes but adjusted them to the requirements of each study.

(a)

(b)

(c)

(d)

Figure 1.2: This sketch from [P6] illustrates the general working principle of the hardware
prototypes we used in all publications. We mounted a Vive Tracker (b) to the center of an
acrylic glass sphere using a threaded rod (d) and a stabilization piece (c).

Contribution. Accordingly, [P1] contributes a description and discussion of our devices’
basic construction principle (Figure 1.2) and thereby answers RQ1. Besides a detailed illus-
tration of two prototypes (diameter: 25 cm, 40 cm), we discuss their general pros and cons.
We elaborate on ergonomic factors, the advantages of an MR setup, and topics such as the
visibility of the users’ hands and possible feature use cases. For instance, we discovered
a slight advantage for the tracker to sit in a centered position. This prevented the tracking
device from being shielded by the users’ hands, and the center of mass shifted towards the
center of the spheres. Simultaneously, as a pleasant side effect, the software implementations
did not need to consider a possible offset. In summary, we can attribute the reproducibility
to the simplicity of the design but also to the commercial availability of these devices that
for a long time only could be found in the professional or academic sector [73].

3 https://www.vive.com/us/product/
4 https://www.vive.com/us/accessory/vive-tracker/
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1.3 Embodied Spherical Information Visualization

To evaluate our hardware prototypes, we identified three application areas [P2]: the simu-
lation of spherical displays, handheld spherical displays, and the more experimental field of
spherical controllers. First, we decided to turn to handheld displays embodying spherical vi-
sualizations. We can divide previous work in the field by the technical realization into three
groups: inside [4] or outside [7, 6, 35] projected spherical displays and simulated ones [65].
If those displays use a viewer’s position to create the illusion of contained three-dimensional
content, they are referred to as handheld perspective corrected displays (HPCDs).

While this was not a primary concern for an initial experiment, VR simulated displays could
generally provide the advantages of low weight, large operation area, and the ability to show
holographic content. The main disadvantage would clearly be strong user instrumentation.
Still, the concept of enriching physical items with virtual content is most prominent in AR
research [6]. For instance, Schmalstieg et al. [87] implemented a three-dimensional visual-
ization hovering above an augmented tablet in their pioneering project “Studierstube”.

As a goal for the first practical exploration, we hoped to gain insights into the possible bene-
fits of fully embodied visualizations on information perception. Additionally, as a secondary
objective, we wanted to test an initial implementation of a spherical multi-touch surface that
we simulated with tracking gloves. This may allow for a first assessment of the input capa-
bilities of such a device and the general viability of VR simulation, yet the primary focus
remained on information perception. Hence, the second research question:

RQ2: How does the full physical embodiment of spherical visualizations affect
information perception?

Contribution. Our position paper [P2] adds to RQ2 in consolidating our view regarding
the importance of fully embodied surfaces in the light of related work [38]. However, our
main contribution lies in the user study (N=32) presented in the third publication [P3]. We
compared two user groups (Sphere / Controller) and evaluated three embodied visualizations
(virtual globe, spherical graph, omnidirectional video). The study was primarily motivated
by the potential of TUIs to support the learning process [71, 110, 70]. The ability to natu-
rally interact with embodied visualizations could provide advantages in pattern recognition,
spatial orientation, and task performance. Additionally, we aimed at insights on subjective
perception and two different display sizes (25 cm, 40 cm) as well as conclusions for VR
simulated devices in general.

The results from a selection task only showed an advantage in task completion time for the
smaller spherical display that was easier to handle. The most interesting finding was caused
by the embodied spherical graph [24]. 56.25% of users that analyzed the visualization with
tangible spheres found a hidden pattern, while for the group using VR controllers, only
29.13% of participants were successful.
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1.4 Simulating Spherical Displays

Inspired by the practicality of our prototypes and the positive results the previous study [P3]
brought to light, we continued with a deeper exploration of the spherical devices’ physicality.
To investigate multiple aspects of such, display simulation appeared as promising. In the
course of this well-tested research principle [50, 43] spherical displays have been simulated
in VR to explore perspective corrected displays [33] or possible advantages of AR [65].

Since the implementation of the first spherical displays [67] in the early 2000s, the devices
have significantly developed with the advances in display technology. Yet, until now, they
mostly serve as eye-catching technology demonstrators that offer minimal interaction. While
expensive commercial displays often rely on a multi-touch surface [44, 5] and inside pro-
jection, in academia a number of prototypes [99, 36, 13, 109] have been realized that due to
outside projection could offer interaction such as physical rotation [17, 55].

The simulation of a large commercial spherical display in VR [P4] would allow us to i)
test different interaction techniques influenced by various levels of tangible feedback and
ii) gain insights into the capabilities of VR simulated devices in general. Consequently, we
formulated the third research question that would be essential to all following work:

RQ3: How do the physicality of spherical objects and their self-explanatory
shape influence user performance and subjective perception?

Contribution. With [P4], we contribute two studies (N=16, N=32) to RQ3. The first study
adds to the general question of the viability of a VR simulated spherical display and the
practicality of displays presented inside VR. In summary, results showed a comparable per-
formance for the VR simulated variant in comparison to a Puffersphere display5. For an
alignment task, the VR condition performed superior. This added further to the motivation
for a follow-up study. Subsequently, we compared three different levels of physicality by VR
simulation: a purely virtual, a fixed but tangible, and a fully rotatable spherical display. For
the latter conditions, we supplied a custom-built prototype. Additionally, the second study
contributes a comparison between selection by alignment and tapping, both with either fixed
or rotating background. Meaning that for the fixed background, only the task-related ele-
ments would rotate along with the sphere, otherwise showing a static grid.

Therefore, the second study would allow conclusions to be drawn about the physicality of
the display, the role of real rotation, and the effects of the two selection and visual feed-
back techniques. As the clearest result, we found that the rotating display was significantly
faster, more accurate, and subjectively preferred. We also must add that, interestingly, users
achieved better overall results in the alignment task that did not require a simulated multi-
touch interface for the rotatable condition.

5 https://pufferfishdisplays.com/
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1.5 Advanced Interaction Techniques with STUIs

These two findings were crucial to defining the research focus for the next three publications.
On the one hand, the spherical device performed superior with a less complex interaction
technique (alignment). On the other hand, the physical rotation but not the physicality itself
was the determining factor for the found advantages. Therefore we decided to dedicate our
following research efforts to the final question:

RQ4: How can STUIs facilitate complex interaction techniques requiring trans-
lation, rotation, and scaling by their shape alone?

This question, along with RQ3 (since we have tested all of the following concepts in terms
of task completion time, accuracy, and subjective ratings), would accompany us over the
remainder of our work. To evaluate more complex interaction techniques that would only
rely on the shape of a spherical tangible device, we decided to first turn to the field of TAR.

Object Manipulation in TAR

Generally speaking, TAR applications profit from a relationship between the real and virtual
world [68]. Subsequently, Billinghurst et al. [10] defined two properties: users interact with
virtual objects by manipulating a real-world equivalent, and each virtual representation is
coupled to only one physical counterpart. However, we can find an increasing number of
approaches that rely on proxies [16, 47, 23]. Such items can be coupled with a variety of
virtual objects while embodying them to various degrees.

An important ability to interact with virtual objects is manipulation, most commonly rota-
tion, translation, and scaling (RTS). For such a task, TAR applications often supply physical
devices [48, 85]. This approach benefits from objects that indicate their functionality by their
shape [54, 42, 108]. However, the question remains how users can select a virtual object by
connecting it to a physical one. The virtual hand [80] and virtual pointing [64] techniques
describe the general principle of picking up an object within the range of the input device or
selecting an item out of reach. In our concept, we rely on the first paradigm since this may
fit the natural character of a tangible proxy.

As we aim to investigate a sphere’s ability to support object manipulation by only utilizing
its shape, we have to supply a dwell-time-based solution for performing the actual selec-
tion [93]. Consequently, we are missing one degree of freedom to allow for simultaneous
RTS (7-DOF). Therefore, we implemented a mode-based approach that allows switching
between rotation/translation and scaling [102]. For scaling, we decided to make use of the
sphere’s tendency towards rotation over a distance-based approach [92]. We tested our im-
plementation (diameter: 12 cm) against three controller conditions, one of which allowed for
simultaneous 7-DOF interaction.
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Contribution. In total, we contribute three studies [P5 - P7] to RQ4 that at the same time
add to RQ3. This paragraph will discuss the contribution derived from the fifth publication’s
[P5] study (N=30). The study evaluated our implementation of a spherical proxy compared
to three VR controller conditions with increasing hardware complexity both in mid-air and
on a table. As outlined, our prototype could not support 7-DOF interaction and therefore had
to rely on a menu to switch between rotation/translation and scaling. As by the definition of
RQ3, this constraint is necessary since we want to explore interaction solely benefiting from
the spherical shape. Subsequently, two conditions only must differ in shape while interaction
is identical. To gain further insights, we compared two additional controller conditions that
once incorporated a button to switch between interaction modes and ultimately allowed for
simultaneous 7-DOF interaction.

As the most notable result, we found the spherical device to be faster than all controller
conditions except for the one mentioned last. A similar picture showed for overall task
performance and subjective ratings. An analysis of what interaction types caused the advan-
tages for the spherical controllers revealed that most users achieved the lower task times by
the scaling interaction that we based on rotation around a central axis.

Discrete and Continuous VR Locomotion

Next, we decide to explore VR locomotion as yet another topic that would allow us to con-
clude a sphere’s potential to support complex interaction. VR locomotion concepts rely on
techniques that often make use of multiple degrees of freedom. Overall it is a challenging
topic since the virtual space mostly largely exceeds the physical space. Therefore, elaborated
methods that allow users to navigate a large VE at ease are needed. In general, we can divide
the field into two opposing paradigms: continuous and discrete techniques [1]. As the names
suggest, the first aims at reproducing a fluent locomotion experience (e.g., walking) while
the latter allows users to change their position often without any intermediate action instantly
(e.g., teleportation). While both techniques have their advantages, we see the potential of a
spherical device to contribute a solution to each field.

For continuous locomotion, we build our approach on classical control theory [52] and
gesture-based methods [104], since a sphere (diameter: 12 cm) rotated in hands would elicit a
hand-gesture [56] associated with locomotion that allows users to mimic a ball rolling on the
ground. For discrete locomotion, we explored a world-in-miniature (WIM) implementation.
A WIM supplies users with a miniature version of a VE that can be used for navigation and
object manipulation. The original concept was implemented by Pausch and Stoakley [96]
in 1995 and since then has been extended [105] and successfully applied to locomotion in
modern VR settings [8]. As a result, we saw potential in a tangible spherical WIM (SWIM)
that would unify the advantages of TUIs and discrete VR locomotion by projecting a planar
WIM to the surface of tangible spheres (diameters: 12 cm, 25 cm).
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Contribution. Based on the use cases of discrete and continuous VR locomotion, we con-
tribute, as mentioned, two studies [P6, P7] to answering RQ3 and RQ4. In [P6], we imple-
mented a spherical device, rotated in hands that would constitute a hybrid solution between
a controller and a gesture-based approach. Additionally, it could realize a zero-order sys-
tem [52] that, due to the direct translation of input to movement, appeared as particularly
promising. Still, we decided to test two paradigms: the zero-order system and a first-order
system that would transfer the sphere’s directional tilt to a corresponding velocity and direc-
tion. The results from our study (N=20) showed clear advantages for the zero-order system
that could eventually outperform the first-order variant and two controller-based methods,
mainly in task completion time and accuracy. However, subjective ratings were in favor of
the VR controllers. These findings affirmed the viability of a spherical VR controller only
relying on its shape for first-person locomotion.

In contrast to [P5], the SWIM implementation allowed for simultaneous 7-DOF interaction
solely based on the tangible device. Apart from answering RQ3 with a comparison to VR
controllers in objective and subjective ratings, our study (N=20) naturally contributes to
answering RQ4. To be able to navigate a large terrain, a WIM needs to support scrolling and
zooming. We aimed at conveying these interaction techniques by only utilizing the spherical
shape. For instance, if users rotated the device, it would scroll a planar WIM projected onto
a sphere. Only appearing as rotation users would, in reality, perform a more complex type
of interaction (scrolling). Since our implementation would require simulated holographic
content protruding from the sphere’s surface, it can only be realized in MR environments that
can use the visual space surrounding the device. The results from the study we conducted
in the course of [P7] were unambiguous. The SWIM technique could outperform a VR
controller technique in all ratings.

1.6 Summary and Overview of the Thesis

As the goal of this thesis, we pursue the exploration of the potential and practicality of spher-
ical tangible interfaces in MR. Following the preliminary technical exploration, we defined
three main research objectives (RQ2-RQ4): first, we examine the impact of embodied spher-
ical visualizations on user perception. Second, we wanted to gain knowledge on the overall
task performance of handheld spherical devices in display simulation and, more prominently,
in tasks requiring complex interaction such as object manipulation and locomotion. Third,
we studied possible advantages stemming from the spherical shape alone by deliberately
limiting interaction to this constraint.

Chapter 2 introduces the publications this thesis is based on in greater detail and places them
in the context of the general research objective.

Chapter 3 discusses the results of this thesis regarding the research questions and then pro-
vides an outlook on respective future work.
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2
Publications

After the introduction of the leading research questions and relevant fundamentals, we will
now, in greater detail, focus on the publications that form this dissertation. We introduce
each section briefly before we present a preview and summary of the contained papers.
Table 2.1 gives a complete overview of all publications, their addressed research questions,
research methods, and primary contribution. It is worth noting that the papers are presented
roughly in order of their publication, as the primary research questions (RQ2, RQ3, RQ4)
have evolved throughout the studies. However, a strict separation of the research questions is
not meaningful, as most publications touch on multiple questions. Hence, the assignment to
the questions refers to the main contribution of the papers as outlined in the previous chapter.

The original publications and a table explaining the contributions of all listed authors (Table
A.1) are available in the Appendix A.
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RQ Title of Paper and Publication Venue Research Method Primary contribution

[P1] RQ1 “Sphere in Hand: Exploring Tangible Interaction with Immersive Spher-
ical Visualizations” in IEEE VR ’19

Observation, hardware evaluation Development and description of a low-cost
hardware prototype for tracking spherical ob-
jects in MR.

[P2] RQ2 “Spherical Objects as an Opportunity to Investigate Physical Embodi-
ment in Mixed Reality Environments” in MUC ’19

Position paper Outlining use cases and research opportu-
nities for fully embodied spherical objects
mainly from an academic perspective.

[P3] RQ2 “Feel the Globe: Enhancing the Perception of Immersive Spherical Vi-
sualizations with Tangible Proxies” in IEEE VR ’19

Controlled experiment (N=32) Practical evaluation of spherical prototypes in
the context of tangible information visualiza-
tion and multi-touch selection.

[P4] RQ3 “TangibleSphere – Interaction Techniques for Physical and Virtual
Spherical Displays” in NordiCHI ’20

Controlled experiments (N=16),
(N=32)

Description and evaluation of the simulation
of a large tangible spherical display in VR in
regard to three levels of physical feedback.

[P5] RQ3, RQ4 “A Tangible Spherical Proxy for Object Manipulation in Augmented
Reality” in IEEE VR ’20

Controlled experiment (N=30) Development and analysis of a buttonless,
sphere-based object manipulation technique
and comparison to three controller-based
methods with varying hardware complexity.

[P6] RQ3, RQ4 “Rock or Roll – Locomotion Techniques with a Handheld Spherical De-
vice in Virtual Reality” in ISMAR ’20

Controlled experiment (N=20) Development and analysis of two buttonless,
sphere-based continuous first-person locomo-
tion paradigms and subsequent comparison to
two controller-based techniques.

[P7] RQ3, RQ4 “Spherical World in Miniature: Exploring the Tiny Planets Metaphor
for Discrete Locomotion in Virtual Reality” in IEEE VR ’21

Controlled experiment (N=20) Development and analysis of a buttonless,
sphere-based discrete locomotion technique
for avatar teleportation and comparison to a
controller-based technique.

Table 2.1: Overview of publications the thesis is based on, abbreviated as [P1 - P7] with corre-
sponding research methods and primary contributions.



Publications

2.1 Prototyping STUIs in Mixed Reality

The first paper [P1], lays the technical foundation for the following publications. We de-
scribe the used hardware and construction of the technical prototype that we in its principle
used in all projects of this thesis. However, since the implementation for each paper had to be
adjusted or slightly tweaked, all papers contain their own description of the exact prototype
construction in regard to the context of the respective area of application (see Appendix A).

After having studied the performance and complexity of various hardware solutions we
found that a simple tracking device mounted to the center of an acrylic glass sphere would
not only provide fast and responsive tracking but could also support a large area of operation
while keeping implementation and hardware costs comparatively low.

RQ1: How can commercial hardware be used to efficiently embody virtual spher-
ical objects in MR?

[P1] Sphere in Hand: Exploring Tangible Interaction with Immersive Spherical
Visualizations

teraction and stereoscopic 3D rendering. Both of the above examples
demonstrate that the technology does not only require considerable
effort in terms of costly or custom-built hardware, but yet cannot
overcome a number of significant disadvantages.

3 A HANDHELD SPHERE AS AN INTERACTION OBJECT

The spherical props for our prototype had to be robust, simple in
construction, low cost, and provide a largely unobstructed and com-
plete spherical surface. Another main goal of the construction and
the hardware concept was to enable an effortless reproduction. Thus,
we present an alternative to specialized and expensive hardware
previously used in this field. The disadvantage of user instrumenta-
tion can obviously not be eliminated but the concept does not suffer
from crucial drawbacks such as a limited view, a severely restricted
operation area, obstruction of the visualization (e.g., shadowing by
the users’ hands or masking by tracking markers) or an incomplete
spherical shape.

4 CONSTRUCTION & HARDWARE

We chose the HTC Vive lighthouse tracking system because it pro-
vides a low-latency, room-scale tracking with sufficient accuracy [8]
at a refresh rate of 90 Hz. For tracking the spherical object, the
commercially available Vive Tracker1 is used. We found that the
operation of the infrared-based tracking system was not restricted
in any noticeable way when the tracker is placed behind transparent
material. Consequently, we ordered two acrylic glass spheres (di-
ameter: 25cm, 40cm) from a decoration equipment manufacturer.
As seen in Figure 1, the spheres can be split into two halves and
had to be fitted with a mount for the tracker. This was done by
attaching a 1/4 inch threaded rod to one of the “poles” of the sphere
with a countersunk screw from the outside. To achieve an optimal
mapping to the virtual object and an unobstructed line of sight for
the tracking system, we put the tracker in the center of the sphere.
To center the rod and to avoid its vibration (and in turn the tracker’s)
we inserted a stabilization piece made of acrylic glass. Such a piece
can be created with a laser cutter, 3D printer or simply with a jigsaw.
When assembled completely, the smaller sphere has a total weight
of 970g while the larger one weighs 2390g. For multi-touch input
on the spheres’ surfaces, we use the Noitom Hi5 VR Glove2, which
is designed for the integration with a Vive setup.

5 DISCUSSION & LIMITATIONS

Our prototype shows that current VR technology can provide cred-
ible and fast visual feedback even though the tracking device is
placed behind transparent material. Some current limitations are
rooted in HMD technology. In addition to a high level of user instru-
mentation, users still remain quite isolated from their surroundings,
multi-user collaboration is not possible without effort and the display
resolution is not yet high enough to show elaborate detail. Since
these limitations are of technical nature and likely to improve, we
see great potential in the proposed method especially because it is
not suffering from the various drawbacks that outside and inside
projected handheld spherical displays have to deal with.

One major advantage of placing the tracker inside the tracked
object is the result of a completely unobstructed surface and
visualization—a condition the HPCD approach as well as the inside
projection method cannot maintain. The former is dependent on
visible tracking markers on the surface and additional obstruction
can occur when the user’s body or hands get in the way of the projec-
tors, while the latter needs a socket to which the sphere is mounted,
strongly distorting its topology. Additionally, the level of obstruc-
tion by the user’s hands can be adjusted freely with our approach
by either changing the opacity of the tracked 3D hand model or

1Vive Tracker: https://www.vive.com/de/vive-tracker/
2Noitom Hi5 VR Glove: https://hi5vrglove.com/

by completely disregarding hand tracking. Moreover, the visualiza-
tion can be examined unrestricted from any viewpoint without any
limitation. This is also not possible for HPCDs since the image is
commonly projected from above the sphere and therefore only can
cover the upper part. Improving HMD technology increasingly of-
fers possibilities of blending between real and virtual world, mainly
by the use of stereoscopic cameras alleviating the isolation problem
of VR environments. Therefore VR setups are likely to catch up
on advantages of AR as they were investigated by Krichenbauer et
al. [6]. We recognize that the weights of our prototype are yet not
low enough to encourage long term usage. This is mainly due to
the fact that we focused on a stable fixation of the tracker, but are
confident that the mounting method can be improved, reducing the
overall weight of the spheres.

6 CONCLUSION & OUTLOOK

Three-dimensional spherical visualizations in VR cannot only cover
a wide field of applications but may also provide a convenient
medium for data analysis, especially when fully embodied by a
physical sphere. Due to its simplicity in hardware and construc-
tion, and presented manifold positive characteristics our approach is
widely applicable for larger audiences. The natural way of interac-
tion may also indicate beneficial future applications in education or
for public VR technology demonstrations with first-time users.

A logical step for follow-up research we plan to design and eval-
uate more complex UI elements, along with a further exploration
of the importance of tangible feedback. Another intriguing future
direction is presented by the ability to go beyond the capabilities of
actual spherical physical displays while retaining tangible feedback,
for example by showing simulated holographic content emanating
from the sphere into the space around it.

The natural versatility of VR and AR technology combined with
the simplicity of the tangible sphere interaction approach supports
spherical visualization and data analysis in VR. Holding a tracked
sphere can provide an interesting and beneficial alternative to estab-
lished interaction techniques, addresses the haptic sense in a very
realistic way, and may help in further bridging the gap between the
physical and the virtual world.
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ABSTRACT

The emerging possibilities of data analysis and exploration in virtual
reality raise the question of how users can be best supported dur-
ing such interactions. Spherical visualizations allow for convenient
exploration of certain types of data. Our tangible sphere, exactly
aligned with the sphere visualizations shown in VR, implements a
very natural way of interaction and utilizes senses and skills trained
in the real world. This work is motivated by the prospect to create
in VR a low-cost, tangible, robust, handheld spherical display that
would be difficult or impossible to implement as a physical display.
Our concept enables it to gain insights about the impact of a fully
tangible embodiment of a virtual object on task performance, com-
prehension of patterns, and user behavior. After a description of the
implementation we discuss the advantages and disadvantages of our
approach, taking into account different handheld spherical displays
utilizing outside and inside projection.

Index Terms: Human-centered computing—Interaction para-
digms—Virtual reality;

1 INTRODUCTION

Developments in the commercialization of virtual reality open up
many opportunities for enhancing human interaction with three-
dimensional objects and visualizations. While common drawbacks
of VR regarding visual display issues, such as field of view, resolu-
tion, and latency are constantly improved, the concepts for tangible
feedback are less straightforward. As Anthes et al. [1] state, a consid-
erable variety of controllers exist, covering approaches for gestural
input and methods for passive and active haptic feedback. However,
it is still unclear which concept is best suited for which kind of appli-
cation. A spherical display accommodates numerous visualizations
and provides a unified surface that can be represented by a (simple
and cheap) tracked object. This opens the opportunity to investigate
the role of accurate topological feedback on an established visualiza-
tion paradigm and its use cases, as well as the possibility to prototype
interaction with novel display technologies. Besides the simple and
self-explanatory character of the shape and its natural affordance
for rotation and focus, a spherical visualization provides multiple
advantages that may even be amplified by tangible interaction such
as placing an inverse element at the back side of the sphere indi-
cating an opposing relationship. We demonstrate the practicability
of tracked spherical proxy objects that allow tangible interaction
for spherical visualizations. Our implementation relies on common
off-the-shelf VR hardware and is therefore easily reproducible.
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†e-mail: schoenewald@cip.ifi.lmu.de
‡e-mail: butz@ifi.lmu.de
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Figure 1: A Vive Tracker (1) is fitted to the center of an acrylic sphere
(4) by a thread rod (3) together with a stabilization piece (2). The
assembly is held by a countersunk screw (5) from the outside. A tiny
hole at the top is used for switching on the device (6).

2 RELATED WORK

Recent advances have been made in the field of Handheld
Perspective-Coupled Displays (HPCDs) [3–5]. This method tracks
the user’s position and the location of a spherical prop to project
a perspectively correct image of an object from the outside onto
its surface, which also makes it possible to display 3D objects that
appear to be inside the sphere. Louis and Berard [7] compared
an HPCD to an opaque Head-Mounted Display (HMD) on a dock-
ing task performed with a tangible sphere. They found that the
HPCD approach was superior in terms of efficiency, user proprio-
ception and the quality of visual feedback but acknowledged that the
system had a number of drawbacks compared to the HMD—most
prominently a limited and partially obstructed view of the sphere’s
projected content. Another interesting example is the work of Bel-
loc et al. [2]. By positioning multiple calibrated high-performance
laser pico-projectors inside the socket of a translucent sphere, they
realized a handheld spherical display with support for multi-user in-

Summary. This publication describes and illustrates how a
spherical object can be tracked at a low cost in VR by using
commercially available hardware. We then discuss the emerg-
ing possibilities of data analysis and exploration in VR that
raise the question of how users can be best supported during
such interactions. Spherical visualizations allow for conve-
nient exploration of certain types of data. Our spherical proto-
type, exactly aligned with virtual content presented in VR, im-
plements a very natural way of interaction and utilizes senses
and skills trained in the real world. At its core, this work is
motivated by the prospect to create in VR a low-cost, tangi-
ble, robust, handheld spherical display that would be difficult
or impossible to implement as a physical display. We realize
this concept by placing a tracking device in the center of two
differently sized acrylic glass spheres (25 cm, 40 cm). We em-
phasize that we hardly encountered any tracking errors caused
either by obstruction or light refraction. After a description of
the implementation, we discuss the advantages and disadvantages of our approach, taking
into account different handheld spherical displays utilizing outside and inside projection.

Englmeier, D., Schönewald, I., Butz, A., and Höllerer, T. (2019b). Sphere in Hand: Explor-
ing Tangible Interaction with Immersive Spherical Visualizations. In 2019 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). doi:10.1109/VR.2019.8797887
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2.2 Embodied Spherical Information Visualization

Following the first tests and the implementation of our hardware concept [P1], we (i) defined
use cases [P2] to explore the concept and (ii) conducted a first user study [P3] where we
applied spheres with two different diameters (25 cm, 40 cm). While we identified several
use cases, we decided to target tangible information visualization [49] for the first study.

In the position paper [P2], we first consolidated our view regarding the importance of em-
bodied interaction. Then, we identified three main areas of application that would set the
course for the following projects: the simulation of spherical displays, handheld spherical
displays, and spherical controllers. While the latter also serve as tangible displays, the main
difference to handheld spherical displays is rooted in focus on more complex interaction in
contrast to perception and the presentation of information. We also emphasized our proto-
type’s capability to fully embody tracked objects since our approach does not modify the
(spherical) surface of the tracked object in any way. Consequently, these kinds of implemen-
tations enable a completely topologically accurate embodiment of virtual spherical objects,
as described in the summary below.

[P2] Spherical Objects as an Opportunity to Investigate Physical Embodiment
in Mixed Reality Environments

Spherical Objects as an Opportunity to Investigate
Physical Embodiment in Mixed Reality Environments

David Englmeier
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ABSTRACT
In this work, we introduce our approach of using current
VR and AR technology to explore fully tangible spherical
user interfaces. We present three prototypes utilizing this
technique. We briefly outline possible challenges, advan-
tages, and fields of application for the presented concepts.
Accordingly, we discuss why VR is an interesting tool to
investigate interaction with Tangible User Interfaces (TUIs)
that are currently not feasible in real world applications such
as tangible holographic interfaces or lightweight handheld
non-planar displays. This allows for studying various lev-
els of tangible feedback on established use cases such as
spherical visualizations. Subsequently, a tangible sphere, due
to its natural shape enables an investigation of interaction
techniques transferred from the real to the virtual world.
Building on these prospects we represent the position that
such objects could play a leading role not only in research
but in future Virtual Reality (VR) and Augmented Reality
(AR) applications that rely on natural interaction based on
realistic physical feedback.
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1 INTRODUCTION
As described in the vision [5] of Ishii and Ullmer physical
objects play a key role in bridging the gap between real and
physical world. Current VR technology allows for precise
tracking of controllers and Head Mounted Displays (HMDs)
but lacks the possibility to efficiently transfer custom objects
to the virtual world without significantly altering their topo-
logical features. Tracked spherical objects, however, grant
the opportunity to investigate an unobstructed surface in
VR since it is possible to use tracking devices mounted to
the inside of a sphere. This enables to create rigid, com-
pletely round tracked objects that can represent any kind of
virtual content on and around their surface. Although it is
not inevitably necessary for these objects to be virtually aug-
mented current technology provides this possibility enabling
responsive interfaces that are also visually convincing and
therefore can accommodate use cases that rely on tangible
objects also acting as a display. It is often the consensus that
tangible interaction provides benefits in VR and AR, yet it is
unclear to what degree physicality can enhance interaction
with virtual content. Therefore we see spherical objects as a
tool to prototype tangible interfaces and to investigate the
necessity of such for concrete use cases.

2 RELATEDWORK
Spherical devices and objects have a long history in human
computer interaction mainly in the form of trackballs. Since
our concepts rely on the possibility of VR and AR to project
virtual content onto the sphere we will shortly discuss the
fields of tangible interaction and spherical displays. Ware
et al. have shown that virtually embodied objects can be
used to control [7] content shown on a 2D screen. Concepts
for spherical displays in a three-dimensional space either
rely on projecting content from the outside or the inside.
The first method allows for movable spheres but suffers from
projection issues such as limited operation area or shadowing
caused by the users’ hands [2, 6]. The second method, when
implemented in movable fashion, needs a stand to which the
projectors are mounted [1] distorting the shape, while a fixed
sphere obviously lacks haptic feedback from real rotation and
needs to compensate this by simulating rotation by detecting
multi-touch input.

Physical Embodiment by Spherical Objects in VR MuC’19 Workshops, Hamburg, Deutschland

controller method the handheld spheres needed significantly
less introduction time for users due to well-known shape.
Qualitative results in form of a questionnaire also spoke in
favor of the spheres concerning user preference and self pro-
prioception even if the users were not able to see their hand
but just the controllers.

Spherical Controllers for VR
While the previous prototypes mainly were focused on de-
tecting the effect of the spherical shape regarding percep-
tion and task performance (selection and rotation) we also
work on more unconventional applications for the spherical
tracked objects in VR while considering the core concepts
of natural interaction and high learnability. Thus, we are
developing a locomotion concept for navigation in virtual
environments that is based on rotating a spherical handheld
controller that is also capable of showing visual content such
as a miniature variant of the environment. This prototype
offers the prospect to gain insights on the impact of the shape
and the constant tangible feedback provided by continuous
rotation and its influence on risks such as cybersickness. We
expect to gain part of these results by issuing a comparison
to movement concepts utilizing standard VR controllers.
While the concept in a first version is solely focused on

movement further extensions could regard selection and
other types of interaction concepts such as tilting or even
tossing the controller. In comparison to a classic trackball,
the idea offers a full spherical shape, the capability to dis-
play content and the utilization of full six-degree-of-freedom

Figure 1: Our prototypes allow for the exploration of novel
display technology such as this holographic visualization
utilizing the space around the fully tangible object.

interaction. Positive results could point in the direction of
application in the fields of public HMD usage where high
learning times and long introduction for rather basic types
of interaction (movement) are to be avoided.

6 CONCLUSION AND OUTLOOK
The outlined projects acknowledge the general assumption
that full tangible embodiment provides an advantage above
simulated or absent haptic feedback. The possibility of VR
and AR to realize displays that are not possible in reality
while still generating an accurate tangible sensation from a
similarly shaped object opens interesting opportunities for
future research.
Our current results show that tangible spherical objects

have advantages in a number of use cases. However, the full
potential of this method could lie within conjunction with
more commonly used interaction techniques. For example, a
sphere could play an important role in a toolkit of tangible
objects in which it could take over the tasks of rotation and
alignment while other shapes are more suited to other kinds
of interaction. Apart from that, an application in research for
gradually modulating various levels of real and simulated
tangible feedback is interesting in its own right.

If we consider our environment to become more and more
digitized in the future the attribution of virtual content to
real-world objects is inescapable. Therefore, we see our re-
search as a foundation that may expand to more complex
shapes while building on the knowledge gained from basic
objects just like a sphere.
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Summary. In this position paper, we introduce our approach
of using current VR and AR technology to explore fully tangi-
ble spherical user interfaces. We present three prototypes uti-
lizing this technique. We briefly outline possible challenges,
advantages, and fields of application for the presented con-
cepts. Accordingly, we discuss why VR is an interesting tool to
investigate interaction with TUIs that are currently not feasible
in real world applications such as tangible holographic inter-
faces or lightweight handheld non-planar displays. This allows
for studying various levels of tangible feedback on established
use cases such as spherical visualizations. Subsequently, a tan-
gible sphere, due to its natural shape enables an investigation
of interaction techniques transferred from the real to the virtual
world. Building on these prospects we represent the position
that such objects could play a leading role not only in research
but in future VR and AR applications and research projects that
rely on or seek to explore natural interaction based on realistic
physical feedback.
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It becomes clear that the outlined property to fully embody spherically shaped objects could
constitute a major advantage in contrast to tracked items whose shape and center of mass
could be distorted by tracking devices. Accordingly, we decided to investigate this potential
further. First, we wanted to obtain insights on the effects of this kind of physical embodiment
on the perception of three-dimensional information. Second, we wanted to test a first imple-
mentation that provides an input technique for a handheld spherical device. However, we set
the main focus of the experiment on investigating a possible positive effect of topologically
embodied spherical visualizations in contrast to visualizations coupled with a standard VR
controller [P3].

RQ2: How does the full physical embodiment of spherical visualizations affect
information perception?

[P3] Feel the Globe: Enhancing the Perception of Immersive Spherical Visual-
izations with Tangible Proxies
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ABSTRACT

Recent developments in the commercialization of virtual reality
open up many opportunities for enhancing human interaction with
three-dimensional objects and visualizations. Spherical visualiza-
tions allow for convenient exploration of certain types of data. Our
tangible sphere, exactly aligned with the sphere visualizations shown
in VR, implements a very natural way of interaction and utilizes
senses and skills trained in the real world. In a lab study, we in-
vestigate the effects of the perception of actually holding a virtual
spherical visualization in hands. As use cases, we focus on surface
visualizations that benefit from or require a rounded shape. We
compared the usage of two differently sized acrylic glass spheres to
a related interaction technique that utilizes VR controllers as proxies.
On the one hand, our work is motivated by the ability to create in VR
a tangible, lightweight, handheld spherical display that can hardly
be realized in reality. On the other hand, gaining insights about
the impact of a fully tangible embodiment of a virtual object on
task performance, comprehension of patterns, and user behavior is
important in its own right. After a description of the implementation
we discuss the advantages and disadvantages of our approach, taking
into account different handheld spherical displays utilizing outside
and inside projection.

Index Terms: Human-centered computing—Interaction para-
digms—Virtual reality;

1 INTRODUCTION & MOTIVATION

While common drawbacks of VR regarding visual display issues,
such as field of view, resolution, and latency are constantly improved,
the concepts for tangible feedback are less straightforward. As
Anthes et al. [2] state, a considerable variety of controllers exist,
covering approaches for gestural input and methods for passive and
active haptic feedback. However, it is still unclear which concept
is best suited for which kind of application. A spherical display
and controller shape accommodates numerous visualizations and
provides a unified surface that can be represented by a (simple and
cheap) tracked object. This opens the opportunity to investigate the
role of accurate topological feedback on an established visualization
paradigm as well as the possibility to prototype interaction with
novel display technologies.

Besides its reproducibility, the simple and self-explanatory char-
acter of the shape and its natural affordance for rotation and focus, a
spherical visualization provides multiple advantages that may even
be amplified by tangible interaction. Spherical surfaces can, for
instance, enhance the perception of structures and relationships
in an information space, which can be useful for graph visualiza-
tions or representations of correlated elements as shown by Brath et

*e-mail: david.englmeier@ifi.lmu.de
†e-mail: schoenewald@cip.ifi.lmu.de
‡e-mail: butz@ifi.lmu.de
§e-mail: holl@cs.ucsb.edu

Figure 1: We show how a fully tangible spherical object can be utilized
in VR by tracking an acrylic glass sphere with commercial hardware.
This allows for the examination of the effects of a topologically equiva-
lent tangible proxy object (image captured with Microsoft Hololens).

al. [7]. For example, an inverse element can intuitively be mapped
to the back side of the sphere while an element that is placed on the
opposite edge of a plane cannot be identified distinctly as such a
contrasting element. In a first step, we demonstrate the practicability
of tracked spherical proxy objects that allow tangible interaction
for spherical visualizations. Our implementation relies on common
off-the-shelf VR hardware and is therefore easily reproducible. Sec-
ond, we compare handling a fully tangible sphere to a closely related
controller-as-proxy interaction technique and draw conclusions what
types of spherical visualizations benefit from tangible interaction.
We show that the perception of complex patterns in graph visualiza-
tions yield better results with fully tangible interaction.

2 BACKGROUND & RELATED WORK

Our work draws from various fields of research such as the inter-
action with handheld spherical objects, spherical visualizations in
general (since they are not yet widely used in VR), and from tangible
interaction as well as from display simulation techniques in VR.

2.1 Handheld Spherical Objects
While a considerable amount of research focuses on the interaction
with static spherical displays [4, 27, 29], handheld spherical interac-
tion objects are still rare. Recent advances have been made in the
field of Handheld Perspective-Coupled Displays (HPCDs) [5, 6, 10].
This method tracks the user’s position and the location of a spherical
prop to project a perspectively correct image of an object from the
outside onto its surface, which also makes it possible to display 3D
objects that appear to be inside the sphere. Louis and Berard [18]
compared an HPCD to an opaque Head-Mounted Display (HMD)
on a docking task performed with a tangible sphere. They found that
the HPCD approach was superior in terms of efficiency, user proprio-
ception and the quality of visual feedback but acknowledged that the
system had a number of drawbacks compared to the HMD—most
prominently a limited and partially obstructed view of the sphere’s
projected content. Another interesting example is the work of Bel-
loc et al. [3]. By positioning multiple calibrated high-performance

Questions about the recall of the arrangement of objects in the
scenes as well as on important parts indicated also did not show any
noteworthy differences between the two groups. Thus, an in depth
analyis was not necessary.

5.4 Qualitative Results
The final questionnaire consisted of Likert scales between 1 (agree)
and 5 (disagree) about relevant topics such as intuitive usability or a
level of immersion as well as questions with free text answers. The
complete results are presented in Figure 6. In terms of subjectively
reported cybersickness, there was not a strong feeling of sickness
either for the outside perspective (earth and graph) or the inside
perspective (video) content. The cybersickness ratings for the sphere
group were overall better than those of the controller group.

5.4.1 Sphere Group
When asked what they liked about the interaction method, the users
in the sphere group answered that the technique was intuitively
usable and provided a familiar feeling due to its similarity with
interaction in the real world, especially the earth visualization that
resembled a traditional globe. In addition, the interaction with the
fingers instead of a device and the feeling that the direct touch helps
in understanding and remembering information were mentioned
positively. One point of criticism on the tangible interaction method
was the heavy weight of the large sphere which required a stronger
focus on the handling of the object. Also, the selection was described
as difficult by some users because both hands were necessary for
holding the sphere. For the video task, most of the participants did
not realize that the tangible sphere could be used as an additional
display and some of them even found it confusing because they
were not able to concentrate on two displays at the same time. All
participants preferred the small sphere size because they found the
large sphere too heavy and also criticized that it had to be held far
way from the body to see the whole visualization.

5.4.2 Controller Group
In the controller group, some of the participants criticized that it
was not clear from the beginning which button had to be used for
selecting a country. The rotation movement with the controller was
characterized as not very natural and comfortable. In general users
in the controller group named the ease of use and the light weight
as characteristics they liked. In this group, 62.5% preferred the
small sphere. The handy size which allowed to hold the sphere at
a comfortable distance to the body and required less movement for
rotating it was mentioned as an advantage as well. In general, users
in the controller group named the ease of use and the light weight
as characteristics they liked.

5.5 Observations and Interaction Strategies
Furthermore, some participants of both groups described the small
sphere as more clearly arranged for an all-around view while the sup-
porters of the large sphere found the greater display size beneficial
to exploring details and selecting a point on the sphere. We observed
that, especially for the larger sphere, users came up with alternative
methods than just standing and holding the sphere. Some tucked it
in against their body while others preferred placing it on the floor or
sat down with it while placing the object on the lap (Figure 7).

6 DISCUSSION & LIMITATIONS

Our prototype shows that current VR technology can provide credi-
ble and fast visual feedback even though the tracking device is placed
behind transparent material. Some current limitations are rooted in
HMD technology. In addition to a high level of user instrumentation,
users still remain quite isolated from their surroundings and the
display resolution is not yet high enough to show elaborate detail.
Since these limitations are of technical nature and likely to improve,
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Figure 6: The evaluation of the qualitative results shows that both
interaction methods performed within a close margin. No strong
feelings of cybersickness were reported, with the spherical props
scoring lower values. Values are given on a Likert scale from 0 to 5.

Figure 7: Some users applied unconventional strategies, especially
for the large sphere, such as sitting on the floor and placing the sphere
on their lap.

we see great potential in the proposed method especially because it
is not suffering from the various drawbacks that outside and inside
projected handheld spherical displays have to deal with. One major
advantage of placing the tracker inside the tracked object is the result
of a completely unobstructed surface and visualization—a condition
the HPCD approach as well as the inside projection method cannot
maintain. The former is dependent on visible tracking markers on the
surface and additional obstruction can occur when the user’s body or
hands get in the way of the projectors, while the latter needs a socket
to which the sphere is mounted, strongly distorting its topology.

Additionally, the level of obstruction by the users’ hands can
be adjusted freely with our approach by either changing the opac-
ity of the tracked 3D hand model or by completely disregarding
hand tracking. Moreover, the visualization can be examined un-
restricted from any viewpoint without any limitation. This is also
not possible for HPCDs since the image is commonly projected
from above the sphere and therefore only can cover the upper part.
Developing HMD technology increasingly offers possibilities of
blending between real and virtual world, mainly by the use of stereo-
scopic cameras, alleviating the isolation problem of VR environ-
ments. Therefore VR setups are likely to catch up on advantages
of AR as they were investigated by Krichenbauer et al. [15]. We
also believe collaborative interaction in VR could benefit from our
approach taking into account the possibilty to show individual con-
tent on a shared sphere what at least for projected displays cannot
be implemented without effort. We recognize that the weights of
our prototype are yet not low enough to encourage long term usage.
This is mainly due to the fact that we focused on a stable fixation
of the tracker, but are confident that the mounting method can be
improved, reducing the overall weight of the spheres.

Summary. In the course of this paper, we explore the oppor-
tunities that recent developments in the commercialization of
virtual reality have created for enhancing human interaction
with three-dimensional objects and visualizations. Spherical
visualizations allow for convenient exploration of certain types
of data. Our tangible sphere, exactly aligned with the sphere
visualizations shown in VR, implements a very natural way
of interaction and utilizes senses and skills trained in the real
world. In a lab study, we investigate the effects of the per-
ception of actually holding a virtual spherical visualization in
hands. As use cases, we focus on surface visualizations that
benefit from or require a rounded shape. We compared the us-
age of two differently sized acrylic glass spheres to a related
interaction technique that utilizes VR controllers as proxies.
On the one hand, our work is motivated by the ability to create
a tangible, lightweight, handheld spherical display in VR that
can hardly be realized in reality. On the other hand, gaining
insights about the impact of a fully tangible embodiment of a virtual object on task perfor-
mance, comprehension of patterns, and user behavior is important in its own right. After a
description of the implementation we discuss the advantages and disadvantages of our ap-
proach, taking into account different handheld spherical displays utilizing outside and inside
projection.

Englmeier, D., Schönewald, I., Butz, A., and Höllerer, T. (2019a). Feel the Globe: Enhancing
the Perception of Immersive Spherical Visualizations with Tangible Proxies. In 2019 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR). doi:10.1109/VR.2019.8797869
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2.3 Simulating Spherical Displays

As outlined in Section 1.4 the positive results from the previous study [P3] led to the concept
of a large VR simulated spherical display (60 cm in diameter) that would allow for a deeper
investigation of possible benefits of the spherical shape on measurable performance and user
ratings. The reason why we conducted two studies for [P4] is rooted in the fact that only
very little previous work on VR simulated spherical displays [65, 33], exists, especially
in combination with a multi-touch surface [5]. Therefore, the second study followed the
positive results from the first that showed the general viability of a VR simulated STUI.

RQ3: How do the physicality of spherical objects and their self-explanatory
shape influence user performance and subjective perception?

[P4] TangibleSphere – Interaction Techniques for Physical and Virtual Spheri-
cal Displays

TangibleSphere – Interaction Techniques for Physical and Virtual Spherical Displays NordiCHI ’20, October 25–29, 2020, Tallinn, Estonia

Figure 3: The tangible sphere was assembled in four steps (1-4 from left to right). First, we built a frame to join the two halves
(a). Second, we created a stand (b) that allows the sphere to be held in a fixed position or to rotate it. We included a threaded
rod (c) to firmly hold the VR tracker. Finally, we added a counterweight to the top part in order to balance the sphere during
rotation (d).

5 STUDY ONE: REAL VS. VIRTUAL DISPLAYS
Our first study compares the efficiency of a virtual spherical display
to current state-of-the-art projected displays that do not require
user instrumentation for interaction. The commercial display we
used as a baseline enables sophisticated multi-touch interaction.
The device appears to be an ideal tool for exploring the general
feasibility of our concept. Users did not see their hands in VR
since we did not want to introduce side-effects through a virtual
representation [39]. The system enables precise detection of the
exact point where the sphere was touched and we provided visual
feedback by a colored touch-point. This allowed us to compare the
two display conditions independent of the input technology, and
to carefully compare task performance in reality and in VR.

5.1 Hardware
In order to ensure a fair comparison, we exclusively used the spher-
ical display as an input device. For visual output, we used either
the real display itself or a VR headset.

5.1.1 Spherical Display. The projected display we used1 provides
multi-touch tracking across a fixed acrylic surface. It is made of
rigid plastic that sits on an enclosed aluminum and steel stand.
The display stands 1.47m tall, with a diameter of 60 cm. A major
advantage of this hardware is that it does not require user instru-
mentation and can be used as a free-standing display in a wide
range of environments.

5.1.2 HTC Vive. In the VR display conditions we used a commer-
cially available VR headset to visualize spherical content. The head-
set supports room-scale tracking with a 110° field of view and
display refresh rates up to 90Hz and a latency of about 20ms.

5.2 Experimental Conditions
Our first study compared two different display conditions: the orig-
inal projected spherical display and an overlaid VR display. All

1PufferSphere M: https://pufferfishdisplays.com/

input was detected using the vision-based multi-touch surface of
the commercial spherical display.

5.2.1 Condition 1: Fixed Sphere with Projected Display. Input was
implemented as a simulated rotation across a fixed acrylic surface.
This condition did not require any user instrumentation and repre-
sents the current state of the art in projected spherical displays.

5.2.2 Condition 2: Fixed Sphere with VR Display. Input was imple-
mented as a simulated rotation as in the first condition but output
was provided in a VR display. An HTC Vive HMD and tracking
system was used for the VR simulation.

5.3 Tasks
For each condition, participants had to complete a set of tasks. In
particular, we combined two selection techniques (selection by tap

Table 1: The tasks completed for each condition combined
two target acquisition techniques (selection and target align-
ment) and two visual feedback techniques (Foreground Ro-
tation and Background Rotation).

Task BG Rotation FG Fixed BG Fixed FG Rotation
Target Selection BG: Grid and Dot, FG: None BG: Grid, FG: Dot
Target Alignment BG: Grid and Dot, FG: Ring BG: Grid and Ring, FG: Dot

Figure 4: Users had to complete two types of tasks: selecting
a target (a) and aligning an object (red dot) with a target (blue
circle) (b, c).
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Figure 1: We present TangibleSphere – a setup that allows physical, interactive displays (in our case a spherical display with a
diameter of 60 cm) to be simulated inexpensively in VR. We preserve the advantages of such displays’ physical counterparts
by enabling tangible interaction, such as free rotation in all directions. Comparing TangibleSphere to a purely virtual display,
we found that allowing true physical rotation significantly improves accuracy and reduces task completion time.

ABSTRACT
Tangible interaction is generally assumed to provide benefits com-
pared to other interaction styles due to its physicality. We demon-
strate how this physicality can be brought to VR by means of Tan-
gibleSphere – a tracked, low-cost physical object that can (a) be
rotated freely and (b) is overlaid with a virtual display. We present
two studies, investigating performance in terms of efficiency and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NordiCHI ’20, October 25–29, 2020, Tallinn, Estonia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7579-5/20/10. . . $15.00
https://doi.org/10.1145/3419249.3420101

usability: the first study (N=16) compares TangibleSphere to a phys-
ical spherical display regarding accuracy and task completion time.
We found comparable results for both types of displays. The sec-
ond study (N=32) investigates the influence of physical rotation in
more depth. We compare a pure VR condition to TangibleSphere
in two conditions: one that allows actual physical rotation of the
object and one that does not. Our findings show that physical ro-
tation significantly improves accuracy and task completion time.
These insights are valuable for researchers designing interaction
techniques and interactive visualizations for spherical displays and
for VR researchers aiming to incorporate physical touch into the
experiences they design.

CCS CONCEPTS
• Human-centered computing → Virtual reality.

Summary. Tangible interaction is generally assumed to pro-
vide benefits compared to other interaction styles due to its
physicality. We demonstrate how this physicality can be
brought to VR by means of TangibleSphere – a tracked, low-
cost physical object that can (a) be rotated freely and (b) is
overlaid with a virtual display. We present two studies, in-
vestigating performance in terms of efficiency and usability:
the first study (N=16) compares TangibleSphere to a physical
spherical display regarding accuracy and task completion time.
We found comparable results for both types of displays. The
second study (N=32) investigates the influence of physical ro-
tation in more depth. We compare a pure VR condition to Tan-
gibleSphere in two conditions: one that allows actual physical
rotation of the object and one that does not. Our findings show
that physical rotation significantly improves accuracy and task
completion time. These insights are valuable for researchers
designing interaction techniques and interactive visualizations
for spherical displays and for VR researchers aiming to incorporate physical touch into the
experiences they design.

Englmeier, D., O’Hagan, J., Zhang, M., Alt, F., Butz, A., Höllerer, T., and Williamson, J.
(2020). TangibleSphere – Interaction Techniques for Physical and Virtual Spherical Dis-
plays. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction:
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2.4 Advanced Interaction Techniques with STUIs

As one of the most interesting findings from the previous two studies [P4], we identified
that user performance was best for the physical rotating display for the alignment task. In
this combination, the STUI did not need to provide a multi-touch surface. In summary the
less complex hardware performed superior in combination with a physical device that let
users feel its rotation. Therefore, we decided to dedicate future studies also to exploring this
phenomenon along mandatory contributions to RQ3.

RQ4: How can STUIs facilitate complex interaction techniques requiring trans-
lation, rotation, and scaling by their shape alone?

2.4.1 A Spherical Interface for Object Manipulation

According to the aforementioned properties of TAR (Section 1.5), we decided to test an
STUI for object manipulation in AR. Opposed to previous papers, we coupled the STUI
with arbitrarily shaped objects that did not necessarily embody the sphere’s outline.

[P5] A Tangible Spherical Proxy for Object Manipulation in Augmented Reality
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Figure 1: We investigate how a handheld sphere (a) aligned with an arbitrarily shaped virtual object (b) can serve as a universal
tangible proxy for object manipulation in AR. We evaluated our concept by letting users perform an alignment task in mid-air (b) and
on a table (c). To reach the given target (d), users had to perform the basic RTS (rotation, translation, scaling) operations.

ABSTRACT

In this paper, we explore how a familiarly shaped object can serve as
a physical proxy to manipulate virtual objects in Augmented Reality
(AR) environments. Using the example of a tangible, handheld
sphere, we demonstrate how irregularly shaped virtual objects can
be selected, transformed, and released. After a brief description of
the implementation of the tangible proxy, we present a buttonless
interaction technique suited to the characteristics of the sphere. In a
user study (N = 30), we compare our approach with three different
controller-based methods that increasingly rely on physical buttons.
As a use case, we focused on an alignment task that had to be
completed in mid-air as well as on a flat surface. Results show that
our concept has advantages over two of the controller-based methods
regarding task completion time and user ratings. Our findings inform
research on integrating tangible interaction into AR experiences.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction devices—Haptic devices;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms— Mixed / augmented reality

1 INTRODUCTION

Augmented Reality (AR) can be seen as the real-time fusion of
physical and virtual content in a 3D space [5], while Tangible User
Interfaces (TUIs) allow the manipulation of virtual content by using
physical objects [30]. One strength of TUIs is the close relation
to already familiar properties of real-world items, such as physical
characteristics and constraints, or a specific purpose of use defined
by the object’s shape [65]. This combination of physicality and
naturalness can facilitate interfaces that are not only easy to use but
also easy to learn and understand, due to their close resemblance to
real-world interaction, and their literal direct manipulation [59].

As stated by MacIntyre [42], AR interfaces benefit from a strong
relationship between the real and the virtual world. This is often

*e-mail: david.englmeier@ifi.lmu.de
†e-mail: julia.doerner@campus.lmu.de
‡e-mail: butz@ifi.lmu.de
§e-mail: holl@cs.ucsb.edu

achieved by mapping the input generated by physical objects to
a virtual output [12]. Consequently, the concept of Tangible AR
(TAR) has emerged [14, 35] as an obvious combination of both
fields. Billinghurst et al. [13] define two properties of Tangible AR
interfaces: the user interacting with virtual objects by manipulating a
physical counterpart and each virtual representation being registered
to one specific physical equivalent. One advantage of this approach
is that an object can simply be selected by picking up the physical
representation [37]. However, this can result in a significant demand
for hardware, especially if interaction with a variety of different
items is intended. A universal manipulator prop [38] used to select
virtual objects can provide a solution to this problem. Selection thus
becomes more scalable, but less intuitive. Also, the adaptation of
physical to arbitrarily shaped virtual objects and rapidly changing
virtual content is severely limited by physical constraints.

The development of tracking methods constitutes its own field in
research, as they fundamentally enable AR interfaces. Most promi-
nently, vision-based techniques, such as the tracking of markers or
model-based tracking, are used to augment real items with virtual
information and to track the 3D position, pose, or motion [37, 65].
However, if we interact naturally with real objects, our hands often
cover large parts of the surface, rendering vision-based approaches
difficult or impractical to implement, especially if fast and responsive
tracking for resemblance to real physical behavior is desired.

AR and VR systems let users explore virtual environments nat-
urally by controlling the camera with their head. High frame rates,
responsive virtual scenes, and precise sensor-based tracking enable
reactive AR applications with a large field of view. Our work uses
video-see-through AR, utilizing standard VR headsets such as the
tethered VIVE Pro and the wireless standalone Lenovo Mirage Solo.
Both these systems support decent stereoscopic video feed-through
modes. We see this technology as a good testbed for investigat-
ing natural interaction in AR due to its high-performance tracking
capabilities and the possibility for opaque virtual augmentations.

An AR scene is likely to be populated with a variety of portable
real-world objects. This raises the question of how to use such natu-
rally existing objects in frequent interaction tasks such as 3D spatial
manipulation. Our work investigates how simple, naturally shaped
objects can support users during interaction in AR environments.

Spheres are found in many different contexts in our daily environ-
ments and constitute a fundamental shape that we encounter from an
early age. We know how a sphere behaves, how it feels, and that we
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Sphere Controller: Buttonless Controller: Button and Menu

Trigger

Trigger
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Figure 5: For the Sphere condition, the prop’s six degrees of freedom are directly mapped to the virtual object. Scaling is performed by rotating the
sphere around one axis. The second condition (controller-as-sphere) works in the same way but with a different physical device (VIVE controller).
The third condition (controller-with-trigger) makes use of the controller’s trigger button, which enables “clutching” and one-handed rotation. The
last condition (controller-trigger-touchpad) allows for simultaneous 7-DOF manipulation by employing a trigger button and trackpad.

Touchpad) as the independent variable and two task scenarios: mid-
air manipulation and table-top manipulation. The order of conditions
was permuted using a counterbalanced design as illustrated in Figure
4. We defined the constraint that the fourth condition (Controller:
Button and Touchpad) that we considered as an evolution of the
third (Controller: Button and Menu) would always be completed en
bloc and also permuted the succession of conditions between both
tasks. This resulted in a total of 6×6 = 36 permutations. Each of
the scenarios had a sequence of object alignment challenges, each
manipulation technique was given carefully administered scripted
training time before it was tested, and the whole study took about 50
minutes (including a post-experiment questionnaire). The subjects
were compensated for their time with a $10 payment.

4.2 Apparatus
Apart from the already described tracked spherical device, we used
additional hardware and software to implement our design and to
realize the experimental setup.

4.2.1 Hardware
In terms of HWDs (Head-Worn Displays) we tested two devices:
the Lenovo Mirage Solo with Daydream (Figure 1, (c)) and the HTC
Vive Pro Eye as illustrated in Figure 1, (a, b, d). The first is a stand-
alone headset that does not require external tracking equipment
and provides a 75 Hz refresh rate and a 110° field of view (FOV)
while the second requires a permanent (wired) connection to a PC
and provides a refresh rate of 90 Hz and an equally sized FOV. We
ultimately decided to use the HTC Vive due to the better quality of
the colored stereoscopic camera image and the easier integration of
the object tracking system, that required an external tracking server
for the Lenovo HWD.

4.2.2 Software
To realize the virtual environment for our study, we used Unity3

and C# as the programming language. To provide visual feedback
for interaction with the sphere during rotation, we added a simple
black and white grid and supplied a menu for interaction techniques
that required mode switching (as seen in Figure 3, (a)). The menu
would appear when approaching a virtual object with the device
within a distance of less than 20 cm. We based the design of the
menu on the concept of a 3D ring menu [20, 40] that we found to
perform well with VR controllers and the sphere. It consisted of

3https://unity.com/

three spherical items (15 cm diameter) positioned in equal distance
(20 cm) to the respective object’s center. To select a menu item, it
needed to be approached with the controller: the item closest to
the input device was highlighted and if the distance was reduced to
below 10 cm it was selected. We provide a detailed explanation of
the manipulation modes and the implementation of object release
along with the description of the four conditions in the next section.

4.3 Experimental Conditions
In order to detect the advantages and disadvantages of the spherical
form factor, the dwell-time and time needed to switch modes, as
well as the rotation-based scaling, we compared our technique to
three controller-based methods that progressively increased hard-
ware complexity (see Figure 5), resulting in the following study
conditions:

4.3.1 Sphere
When the sphere is approaching the desired virtual object that the
user intends to manipulate, the described mode menu appears. When
selecting “move & rotate” the virtual representation of the sphere
is changed to nearly transparent while the virtual object snaps to
the center of the sphere, and subsequently, rotation and translation
are directly mapped to the grabbed object. In “scale” mode, the
rotation of the sphere around an indicated axis is mapped linearly to
the scale of the virtual object. When users rotate the sphere towards
themselves (counter-clockwise), the virtual objects increases in size.
To exit the current manipulation mode, the sphere has to be kept
still for the dwell-time of a second while the circular progress bar
indicates the remaining time to complete the interaction. Now the
menu reappears, and the user can select another mode or cancel
interaction with selecting “exit”.

4.3.2 Controller: Buttonless
The buttonless controller interface uses the same interaction tech-
nique as the sphere. The only difference is the controller’s shape: a
bare HTC Vive controller was employed instead of the sphere. None
of its hardware controls were used, just its tracking capability.

4.3.3 Controller: Button and Menu
This interface adds the use of a button to the previous condition. It
still utilizes the same menu, but we extended the manipulation meth-
ods by adding a physical button. In the “move & rotate” mode the
trigger is used to grab and release the object. This allowed for one-
handed use of the controller, especially during rotation. For scaling,

Summary. In this paper, we explore how a familiarly shaped
object (a sphere) can serve as a physical proxy to manipu-
late virtual objects in AR environments. Using the example
of a tangible, handheld sphere, we demonstrate how irregu-
larly shaped virtual objects can be selected, transformed, and
released. After a brief description of the implementation of
the tangible proxy, we present a buttonless interaction tech-
nique suited to the characteristics of the sphere. Users can se-
lect from two different interaction modes that allow for trans-
lation and rotation and for scaling the picked up object. In a
user study (N=30), we compare our approach with three differ-
ent controller-based methods that increasingly rely on physical
buttons. As a use case, we focused on an alignment task that
had to be completed in mid-air as well as on a flat surface.
Results show that our concept has advantages over two of the
controller-based methods regarding task completion time and
user ratings. Our findings inform research on integrating tan-
gible interaction into AR experiences.

Englmeier, D., Dörner, J., Butz, A., and Höllerer, T. (2020a). A Tangible Spherical Proxy
for Object Manipulation in Augmented Reality. In 2020 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). doi:10.1109/VR46266.2020.00041
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2.4.2 Spherical Interfaces for VR Locomotion

For the final use cases, we have chosen the problem of VR locomotion. As discussed, we
contribute one study to each sub-domain (continuous/discrete). While first-person locomo-
tion is a challenging topic in VR, we dedicated our approach to finding a viable method for an
STUI that would provide a convincing metaphor. Consequently, we only used two rotation
axes for locomotion and the transitional DOFs for positioning the sphere in the virtual space.
We decided against using the up-axis for rotating the user’s camera mainly because contin-
uous locomotion in VR is prone to cybersickness [103, 34, 18]. This phenomenon describes
an unpleasant feeling caused by a perceived disparity of virtual and real motion [61, 20]. It
can be occur when virtual and real movement do not match but also by the virtual camera
rotating, for instance, by additional controller input.

Accordingly, locomotion techniques often struggle on the one hand with limited physical
space and on the other hand with cybersickness. While scholars have addressed both issues
in multiple ways, a controller technique can mitigate these problems to some degree. Our
main motivation from the user perspective lies in the self-explanatory character that an STUI
could provide in this field. If the sphere is rotated in one direction and the user’s avatar moves
accordingly, this may provide an accessible technique that may appeal in particular to novice
VR users.

[P6] Rock or Roll – Locomotion Techniques with a Handheld Spherical Device
in Virtual Reality
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Figure 1: We show how a handheld (a), tracked spherical object (b) aligned with a visualization (c) can be used to control first-person
locomotion (d) in virtual reality (VR) by means of rotation. We implement two different approaches (Position Control, Velocity Control)
and compare them to two established methods using VR controllers. Our results show that the spherical controller in combination
with the position control technique leads to both faster task completion and higher accuracy.

ABSTRACT

We investigate the use of a handheld spherical object as a controller
for locomotion in VR. Rotating the object controls avatar movement
in two different ways: As a zero order controller, it is continuously
rotated to the target position as if rolling a ball on the floor. As a first
order controller, it is tilted like a joystick to determine the direction
and speed of movement. We describe how our prototype was built
from low-cost commercially available hardware and discuss our
design decisions. Then we evaluate both locomotion techniques in a
user study (N=20) and compare them to established methods using
handheld VR controllers. Our prototype matched and in some cases
outperformed these methods regarding task time and accuracy. All
results were obtained without any usage instructions, indicating easy
learnability. Some of our insights may transfer to interaction with
other naturally shaped objects in VR experiences.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction devices—Haptic devices;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms— Virtual reality

1 INTRODUCTION

The design of interaction techniques for first-person locomotion
in Virtual Reality (VR) is a demanding task: Virtual environ-
ments (VEs) commonly exceed the available physical space, but
if our physical motion doesn’t match our motion in the VE, cyber-
sickness [15, 31] is likely to occur and familiar concepts such as
controller-based input can not be used out of the box. As a result, a
range of methods classifiable by the type of input (physical, artifi-
cial) and the type of movement (continuous, non-continuous) have
emerged. Physical input relies on tracking natural motion cues and
therefore, is primarily used to implement continuous approaches.
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The artificial paradigm describes any other form of input, for exam-
ple, input devices such as handheld controllers. These devices also
allow non-continuous techniques [5], such as the point and teleport
approach [6, 8] that is widely used in VR.

Continuous techniques feel more realistic and immersive, but are
often more susceptible to cybersickness caused by the noticeable
disparity between real and virtual motion [14, 20, 47]. Methods
using actual or redirected walking suffer from this problem to a
lesser extent. However, they require a larger physical space, ex-
pensive hardware such as treadmills [42] or need to limit the VE.
Non-continuous techniques are often faster and generally more com-
fortable to use, but they tend to reduce the level of immersion [23]
or complicate orientation [6].

To address these issues, we see a great potential in simple physical
interaction techniques known from the real world. For example, we
learn to rotate objects in our hands to inspect them at an early age and
we regularly and skillfully use it in many daily activities. A sphere is
a well-known object that affords rotation in a very direct and natural
way. The image of a ball rolling on the ground and thereby covering
a corresponding distance is rooted in early childhood and provides an
easily understood mental model clearly associated with continuous
locomotion. The fact that synchronous visual and tangible feedback
as generated by a sphere rotating in hands can enhance the sense
of body ownership [29] provides an additional reason for exploring
this concept in the context of virtual locomotion.

One main advantage of controller-based methods is the finite
amount of physical space that is needed. Yet, the possibility to
achieve persistent tangible feedback during movement is often lim-
ited. Therefore, a rotating sphere provides an interesting opportunity
to create a novel type of feedback regarding both movement direc-
tion and velocity. We can classify our approach as continuous but
as a hybrid approach between physical and artificial input. The
handheld sphere, on the one hand, acts as a classical input device,
but on the other hand, a physical motion associated with locomotion
is transferred to the avatar. Accordingly, the technique can also be
seen as a hybrid concept between gesture- and controller-based input.
Building on the survey of Boletsis [5] we found that a majority of
the ideas presented during the recent two years are of continuous
nature, indicating a substantial demand for realistic locomotion.

3.1 Device Construction
The spherical device we had in mind had to meet two require-
ments: It had to provide fast and precise tracking and an orientation-
independent, perfectly spherical shape to enable unhindered rotation
in all directions.

Both can be achieved by simply placing a Vive Tracker2 in a
sphere made from infrared-transparent material such as acrylic
glass [10, 17, 19]. To center the tracking device in the sphere we use
a 1/4 inch threaded rod that is mounted to a threaded socket with a
screw from the outside of the lower half as illustrated in Figure 2.
The Vive Tracker is fitted with a matching thread at the bottom and
can therefore simply be screwed to the top of the rod. To stably
center the tracker, we insert a three-arm stabilizer piece just below
the tracker that is held in place by the tracker pushing down on it.
Once assembled, the input device is self-contained, perfectly round,
relatively well balanced, and weighs about 190g in total. In compar-
ison it is slightly heavier than Oculus Touch (150g) and lighter than
a Vive Controller (309g).

3.1.1 Design Decisions
Our design is a trade-off between the factors of overall weight,
tracking performance, and balance. We decided against the solution
of placing two trackers [10] inside the device since this would have
nearly doubled the weight of the sphere. Since the tracker is the
heaviest part, in order to balance the construction, we aligned its
center of gravity with the center of the sphere. We also found that the
device would not properly perform without vertical and horizontal
stabilization. This mainly happened when the device was fiercely
rotated, which resulted in unintentional vibration of the tracker. We,
therefore, applied the described stabilization measures, to prevent a
negative impact on the tracking quality.

3.1.2 Limitations
Since our device is designed for easy reproduction using commercial
hardware components we could not achieve a completely balanced
sphere. To achieve perfect balance the tracking device would have to
be spherical or the sensors would have to be mounted to the sphere
itself. Also since the optical tracking requires an unobstructed line
of sight we found that a sphere with a smaller diameter would greatly
increase the risk of the sensors being covered by the users’ hands.
Lastly, the usage time of the device is limited by the Vive Tracker
that allows for four hours of continuous use.

3.2 Locomotion Paradigms
Although an avatar can, in principle, move in 6 DOF in a VE, this
only makes sense in specific scenarios, such as space flight. Locomo-
tion in most VEs is more restricted and borrows from our experience
of walking or driving in the physical world. Typical locomotion
techniques map the four directions forward, backward, left, and right
to controller-based input. Tracked controllers additionally allow
movement in these directions relative to the orientation of the device.
This method is well established, allows for subtle as well as dis-
tinguished adjustments of the movement direction and locomotion
independent from the viewing direction of the HMD.

We identified two alternative paradigms for defining locomotion
using a spherical device. The first borrows from the concept of a
sphere that moves by rolling on the floor. The user has to perform a
constant rotational motion. The second approach is borrowed from
joystick interaction: Locomotion is triggered when the sphere is
tilted in the desired direction and performed automatically until the
controller is tilted back to its original position. Consequently, the
first approach can be described as a Position Control technique that
results in a direct translation of the input while the second method
allows for changing the velocity of an automatically executed motion

2https://www.vive.com/us/vive-tracker/
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Figure 2: The spherical controller is constructed from a two-piece
acrylic glass sphere with a diameter of 12 cm (a) that encloses a Vive
Tracker (b). A stabilization piece (c) centers and stabilizes a 1/4 inch
threaded rod that is screwed to the sphere from the outside (d).

by manipulating the inclination angle (Velocity Control) of the device.
According to the control theory defined by Jagacinski et al. [26],
the first method can be classified as a zero order system and the
tilt-based concept as a first order system.

3.2.1 Position Control
After a first implementation of the Position Control input paradigm,
we discovered a dilemma: The direct mapping of the rotation al-
lowed a very accurate control when the sphere was rotated slowly.
However, a faster rotation into what was perceived as one clear direc-
tion would result in unintended secondary motion in other directions
due to the imprecision of fast manipulation. As we did not want to
sacrifice the intuitive, seamless adjustment of velocity, we decided to
simultaneously support the direct mapping and the quick movement
in one discrete direction. A simple detection algorithm based on
previously executed rotations and rotational speed can recognize a
fast movement and restrict it to the primary direction, as if putting
the sphere on rails.

After careful testing during the pilot study we determined the
average rotation speed for movement at running speed (10 m/s) at
about 172.8 °/s, and for walking speed (5 m/s) at about 84.8 °/s.
We translated rotation speeds to the desired locomotion speed by
multiplying with a simple constant. We did not apply restrictions
regarding movement speed, which is therefore limited only by the
speed at which the user can turn the physical device.

Once the limit for walking speed is exceeded, we lock the direc-
tion to the one in which the user was moving within a time frame
of 0.25 seconds prior to exceeding the threshold. With this simple
auxiliary function, we could provide a relatively steady motion when
moving at running speed while allowing completely unrestricted and
precise movement at lower speeds. The transition between free and
locked movement can barely be noticed because faster rotation is
generally perceived as a motion in one of the four main directions.
The facts that the sphere has to be physically slowed down to change
rotation direction and the dependency of the movement direction
from the orientation of the device supports a smooth transition be-
tween both states.

3.2.2 Velocity Control
With the Velocity Control paradigm we found a similar issue as with
Position Control. When the locomotion used the exact direction in
which the sphere was tilted, this often did not correspond with the
user’s intended movement direction, which usually coincided with
the four basic directions. We, therefore, decided to limit the possible
movement directions to those four and left subtle adjustments to
the orientation of the device relative to the HMD position. We
also did not limit the maximum movement speed which increases
linearly with the inclination angle of the device. As a consequence,
fast locomotion speed can easily be achieved by rotating the device
several times into the desired direction.

Summary. In this work, we investigate the use of a handheld
spherical object as a controller for locomotion in VR. Rotat-
ing the object controls avatar movement in two different ways:
As a zero order controller, it is continuously rotated to the tar-
get position as if rolling a ball on the floor. As a first order
controller, it is tilted like a joystick to determine the direction
and speed of movement. We describe how our prototype was
built from low-cost commercially available hardware and dis-
cuss our design decisions. Then we evaluate both locomotion
techniques in a user study (N=20) and compare them to estab-
lished methods using handheld VR controllers. Our prototype
matched and in some cases outperformed these methods re-
garding task time and accuracy. All results were obtained with-
out any usage instructions, indicating easy learnability. Some
of our insights may transfer to interaction with other naturally
shaped objects in VR experiences.

Englmeier, D., Fan, F., and Butz, A. (2020b). Rock or Roll – Locomotion Techniques with
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The seventh publication [P7] tackles the problem of discrete VR locomotion and implements
a system for avatar teleportation. Building on previous insights, we see the potential of a
spherical device embodying a topologically matching miniature world. By simple rotation
and translation of the device, we aim at naturally conveying more complex types of interac-
tion to users that otherwise would, as in the compared controller-based methods, needed to
be learned, e.g., by studying a button layout. This idea is particularly related to the scrolling
interaction that at first sight appears as a naturally rotating spherical object when in reality,
a viewport is scrolled along a planar WIM wrapped around a sphere.

In contrast to [P5], this implementation may allow for simultaneously 7-DOF interaction
mainly due to the fact that the SWIM can always be coupled with the tangible device since
it does not need to be placed at a specific position in the VE. As a result, we may be able
to support scrolling and scaling with an STUI that can only provide its own shape. Overall,
this would create the impression of a tangible interactive tiny planet that may present a
compelling tool for VR locomotion.

[P7] Spherical World in Miniature: Exploring the Tiny Planets Metaphor for
Discrete Locomotion in Virtual Reality
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Figure 1: We compare two VR teleportation techniques: a planar (a) and a spherical (b) World in Miniature. The planar WIM relies
on button-supported interaction (c) while the SWIM is solely controlled and embodied with a physical sphere (d). We evaluate both
techniques with the tasks of scrolling, scaling, and teleportation, each with two different display sizes.

ABSTRACT

We explore the concept of a Spherical World in Miniature (SWIM)
for discrete locomotion in Virtual Reality (VR). A SWIM wraps
a planar WIM around a physically embodied sphere and thereby
implements the metaphor of a tangible Tiny Planet that can be rotated
and moved, enabling scrolling, scaling, and avatar teleportation. The
scaling factor is set according to the sphere’s distance from the head-
mounted display (HMD), while rotation moves the current viewing
window. Teleportation is triggered with a dwell time when looking
at the sphere and keeping it still. In a lab study (N=20), we compare
our SWIM implementation to a planar WIM with an established VR
controller technique using physical buttons. We test both concepts
in a navigation task and also investigate the effects of two different
screen sizes. Our results show that the SWIM, despite its less direct
geometrical transformation, performed superior in most evaluations.
It outperformed the planar WIM not only in terms of task completion
time (TCT) and accuracy but also in subjective ratings.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction devices—Haptic devices;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms— Virtual reality

1 INTRODUCTION

VR technology enables intriguing ways to explore vast virtual envi-
ronments. For instance, immersive geo information systems (GIS)
such as Google Earth VR let us travel our planet by visiting de-
tailed 3D-scanned places all around the globe in a matter of seconds.
Environments enhanced with real-time lighting, e.g., live-rendered
weather effects, can additionally increase the level of immersion [35].
However, locomotion in those vast VEs, despite the many existing
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approaches, poses a considerable challenge both for developers and
users [14, 28]. The ability to quickly and precisely navigate a wide
area is, for a usable and equally pleasant VR experience, as important
as natural and situation-aware interaction.

We can split VR locomotion into two major paradigms: discrete
or non-continuous locomotion as opposed to continuous locomo-
tion [4]. While the latter is generally considered as more immersive
and natural, techniques found in this field often lack the ability to
cover a large space or to provide sufficient orientation and are likely
to cause cybersickness [9]. Hence, discrete locomotion techniques,
most notably the point and teleport technique [7, 9], are widely used
in VR. The classical teleport approach requires users to directly
point at the desired spot within their field of view (FOV). Meth-
ods incorporating navigation aids such as miniature versions of the
virtual environment provide access to more distant virtual scenes
and allow users to teleport there by placing a representation of their
avatar in a miniature world.

While the general advantages of the WIM concept have been
demonstrated [3], we see the recent developments in commercial
VR hardware and tracking technology as an opportunity to explore
novel interaction techniques that may support users in other intuitive
ways when moving in VR.

In particular, we focus on the possible benefits of a physically
embodied, spherical miniature world. This concept provides an
easily understood metaphor for naturally controlling a small planet.
This metaphor is inspired by a projection technique from photogra-
phy [10] that is often described as a Tiny Planets projection. The
concept appears to be exciting from many different angles: In addi-
tion to its comprehensible metaphor, the SWIM can be built at low
expense [20] and, most importantly, allows us to utilize our natural
skills in manipulating physical objects [26]. As a tangible spherical
shape, it invites rotation and may intuitively convey [43] solutions
to two inherent challenges of the WIM idea: scrolling and scaling.

Finally, the SWIM technique obviously allows the accurate repre-
sentation of actual planets, but due to the VR implementation, it can
also show content expanding to the area around the sphere, which
is more difficult for AR systems. This ability becomes important
when 3D objects with a certain height need to be wrapped around
the sphere, as illustrated in Figure 1, (b).

the front hemisphere, but this creates the illusion of a fully covered
planet because the user can’t see the uncovered back side. Since
this method would cause the SWIM to slightly move if the sphere’s
position changes in relation to the HMD, we stabilize the WIM like
a billboard, creating a stable image of the Tiny Planet. The view-
ing window of the WIM only changes when the user scrolls it by
rotating the sphere. Lastly, the projection also implicitly creates a
Focus+Context visualization [11] due to the resulting magnification
of the surface points closer to the camera. While this effect is miti-
gated by the clipping technique describe in Section 3.2 it can not be
replicated by a planar WIM without unnatural distortion.

3.2 Clipping
As described by Stoakley and Pausch [34, 38], clipping the WIM
in X and Y is straightforward. However, especially with a spherical
projection, unwanted and overly strong distortion in Z can occur.
We solved this problem by setting a maximum value for the scaling
along Z. This results in uniform scaling up a predefined threshold,
and from that point on, the WIM is only scaled along X and Y . The
amount of distortion and scaling along Z may vary with the type of
visualized content and, due to resulting occlusion, with the amount
of desired visible context. We, therefore, leave that value to be set
manually. However, since this method could lead to an advantage in
an area with many occluding objects such as a city, we also applied
it to the planar WIM to preserve a fair comparison.

Figure 2: We align the planar WIM with a plane perpendicular to
the camera vector (black). For a correctly rotating planet, we map
the WIM’s rotation in Z to the roll (red), the scrolling in Y to the pitch
(green), and scrolling in X to the yaw angle (blue).

3.3 Scrolling & Rotation
Our projection technique also facilitated the implementation of
scrolling: For a planet naturally rotating in sync with the tangi-
ble object, we mapped scrolling linearly to the yaw and pitch angles
of the tracked sphere. Since the WIM is scrolled using these two
degrees of freedom (DOF) only, the roll angle remained unused.
However, we found that for a natural behavior, we also had to map
the rotation of the plane in which we placed the WIM (see Section
3.1) to this angle. This means that, if the sphere is rolled, we rotate
the WIM around the pivot point defined by the intersection of the
camera vector and the WIM plane. The combination of these three
angles results in natural rotational behavior as one would expect
from a physical handheld globe, with the only difference that yaw
and pitch do not actually rotate the sphere, but only generate this
impression by scrolling the viewing window within the projected pla-
nar WIM (which itself can be of arbitrary size). Figure 2 illustrates
this mapping.

3.4 Scaling
Since our approach uses all six degrees of freedom (3 for rotation and
scrolling, 3 for positioning the object in the 3D space), we needed to
find a different way to realize zooming without fundamentally chang-
ing the previous implementation. We first tested an implementation
that mapped the roll angle to scaling [17, 31] instead of actual roll.
However, we found that this strongly disturbed the impression of
natural behavior of the embodied sphere and discarded the idea. We
also rejected a mode-based approach because of inherent complexity
and expected disadvantages in TCT [17].

Ultimately, we decided to base the scaling factor on the distance
of the sphere from the HMD. This provides yet another easily under-
stood metaphor: If users look closer at the object, as if inspecting it,
the WIM is enlarged, and if pushed away, its size is decreased [24].
For both directions, we set a minimum and maximum value. To
indicate when scrolling is possible, we show a simple scroll-bar
at one side of the SWIM that consists of a blue dead zone, yellow
scrolling areas, and a red indicator (Figure 3, (b)). Since the sphere’s
physical distance from the HMD is limited by the user’s arm length,
we needed to perform a quick preliminary calibration, which re-
quired users to hold the sphere in a neutral position. For both WIM
and SWIM we applied the same logarithmic scale allowing for a
homogeneous zooming behavior.

3.5 Teleportation
The teleportation mechanism is based on the selection by alignment
technique that has been proven viable for spherical devices [19,
31]. We show a static target ring in the foreground of the spherical
visualization that teleports the user to a position selected with a
central dot. Selection works by keeping the sphere still for a dwell
time of one second [17] while looking at the sphere. Selection is
only triggered if the user looks at the sphere, keeps it still, and
does not perform any zooming. This efficiently prevents unwanted
teleportation. For constant visual feedback, we filled the selection
circle progressively, and teleportation is only triggered when it is
completely filled.

4 EXPERIMENT

To evaluate the SWIM concept in terms of performance, precision,
and user ratings, we conducted a lab study comparing our implemen-
tation using embodied spheres of two different sizes (small, large)
to an established technique using VR controllers. In the process, we
also compared two different display sizes for the miniature world.

4.1 Study Design & Participants
We designed our experiment as a within-subjects study and followed
the regulations of the local ERB regarding consent and data collec-
tion. Each participant completed a find-and-navigate task with all
four conditions. We presented those in (incompletely) counterbal-
anced order following a Latin Square to prevent adverse learning or
fatigue effects. Including a post-experiment questionnaire, the study
took about half an hour. Participants could take a break between

(a) (b) (c)

Figure 3: As a navigation aid, we supplied an arrow visible at smaller
scales (a). The SWIM allowed teleporting by aligning a target, indi-
cated with a square (c), for a dwell time with a static circle (b).

Summary. In the last presented paper, we explore the con-
cept of a Spherical World in Miniature (SWIM) for discrete
locomotion in Virtual Reality (VR). A SWIM wraps a planar
WIM around a physically embodied sphere and thereby imple-
ments the metaphor of a tangible tiny planet that can be rotated
and moved, enabling scrolling, scaling, and avatar teleporta-
tion. The scaling factor is set according to the sphere’s distance
from the HMD, while rotation moves the current viewing win-
dow. Teleportation is triggered with a dwell time when look-
ing at the sphere and keeping it still. In a lab study (N=20),
we compare our SWIM implementation to a planar WIM with
an established VR controller technique using physical buttons.
We test both concepts in a navigation task and also investigate
the effects of two different screen sizes. Our results show that
the SWIM, despite its less direct geometrical transformation,
performed superior in most evaluations. It outperformed the
planar WIM not only in terms of task completion time and ac-
curacy but also in subjective ratings.

Englmeier, D., Sajko, W., and Butz, A. (2021). Spherical World in Miniature: Exploring the
Tiny Planets Metaphor for Discrete Locomotion in Virtual Reality. In 2021 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). doi:10.1109/VR50410.2021.00057
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3
Discussion and Future Work

This thesis aims to explore STUIs to provide easily understood but yet effective input de-
vices that leverage the advantages of tangible interfaces. First, we presented the technical
concept that at low cost allows for constructing such devices and then demonstrated a total
of five implementations [P3 - P7]. In the course of these, we explored the applicability of
STUIs each in four different contexts: embodied visualization, display simulation, and more
complex interaction techniques required for object manipulation and avatar locomotion.

For all application areas, we found various results that contribute to spherical devices as
usable and self-explaining tools that could ultimately provide greater access to the MR space.
In this concluding chapter, these findings are reflected upon in detail, and implications and
future possibilities are discussed in light of the research questions outlined previously.
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Discussion and Future Work

3.1 Protoyping STUIs in Mixed Reality

To answer RQ1, we can state that as for now, our approach of placing a Vive tracker inside
an acrylic glass sphere constitutes a cost-effective and overall very performant solution to
transfer spherical devices to MR. If we recall Fishkin’s taxonomy [37] and the heuristics of
Sharlin et al. [91] our devices qualify as TUIs (as long as we accept the fact of HMD output)
and also for embodiment and metaphor levels that may help in explaining some of our results.
Therefore, as a reflection on prototyping STUIs, we classify our implementations according
to the above taxonomy (Table 3.1) as this may not be as straightforward as the fulfillment of
the heuristics.

Embodiment Metaphor Description

[P3] full
full /
noun & verb

Visually fully embodied, but the globe visualiza-
tion offered extended functionality (selection).

[P4] full
noun /
noun & verb

Visually fully embodied, but only the rotating dis-
play builds an analogy to the behavior of a sphere.

[P5] nearby noun & verb
Embodiment of arbitrary objects that still behave
largely analogous to the real world.

[P6] full noun & verb
Visually fully embodied, yet extended functional-
ity (movement by rotation).

[P7] full / nearby noun & verb
Visually fully embodied only when zoomed out
and extended functionality to manipulate a WIM.

Table 3.1: Embodiment and metaphor levels according to Fishkin [37] for papers [P3 - P7].

As outlined in Section 1.2 a simple spherical object such as a globe transferred to VR that
acts just like its real counterpart would qualify for both full levels. However, if we extend the
virtual representation both in functional and visual ways, we likely diminish both levels. If
we again look at the example of a globe that we presented in [P3] and extend its functionality
by adding a touch-sensitive surface, the requirement for verb would be no longer met since
the real object does typically not support this kind of interaction.

One could argue that such a virtual sphere acts as a simulation of a theoretically existing
display, and thus, the criteria for full metaphor are satisfied. However, this would presup-
pose users to recognize the display as such. While it may be an interesting thought to see a
display as a metaphor itself and thereby convey functionality (for example, by building on
visual concepts users might have of a certain kind of display), we discard the idea. We argue
that the extension of functionality (visual and interactive) most likely results in a reduction
of embodiment and metaphor levels since users would associate a virtual sphere more likely
with its presented content than recognize it as a display. While this might change in the
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Discussion and Future Work

future, all of our demonstrated TUIs support a sphere’s natural properties, for example, rota-
tion. Therefore, regarding metaphor, a part of the verb level is met. Hence, we classify this
case to diminish the full level to verb and noun. In the following discussion of the results,
we include a short explanation of the taxonomic classification for each paper.

3.2 Embodied Spherical Information Visualization

As discussed, the reason that the outlined prototype of [P3] does not completely qualify for
the full metaphor level is rooted in the possibility to select targets on the virtual globe. The
other visualizations, however, exclusively provided 6-DOF interaction hence qualifying for
full embodiment and metaphor. We tested the spherical prototypes in one exploratory and
two analytical tasks and found advantages for the physically embodied visualizations for the
spherical graph (RQ2). Users more often recognized a hidden pattern when analyzing the
graph while generally rating the STUIs higher in perceived learnability and overall subjective
feedback. To solve the exploratory task, users had to select a succession of countries on a
globe. For the sphere conditions, we implemented a simulated multi-touch surface based on
tracking gloves. Simultaneously, controller selection worked by pointing a ray at the desired
spot before pulling a trigger. For this task, we neither found advantages for the sphere-based
technique nor the controller.

The results regarding the spherical graph showed clear advantages for the tangible virtual
spheres, leading to the question of what properties of the spherical device these might have
been caused. The data from the exploratory task hinted that a simulated multi-touch surface
is a viable approach, but other methods that may, in a greater sense, adept to the properties
of a sphere appear as worth exploring. While we found a slight preference and faster task
completion times for the smaller sphere, users would provide unconventional strategies for
operating with the larger one. Some users placed the spheres on the floor and rotated them.
Others sat down and placed the STUIs on their lap, subsequently exploring the physical
space. This trial-and-error activity clearly demonstrates how a tangible object in VR can
fulfill the eponymous heuristic. It is also interesting to note that users did not conduct any
comparable actions with the VR controllers.

As a consequence, we can record a clear benefit for the VR simulated STUI, while compa-
rable effects have been found for physical visualizations [49]. However, a future experiment
could tackle the problem to what degree shape or embodiment have caused this advantage
in perception. Another productive extension may be a further combination of previous work
regarding spherical visualizations. For instance, Vega et al. [100] showed that virtual globes
presenting statistical data [83] could communicate complex scientific concepts to a wider
audience due to linking phenomena to a recognizable system (globe). A surrounding visual-
ization based on previous research on immersive spherical visualizations [59, 107] may also
be a rich research topic. Lastly, a comparison to systems requiring less [65] or no user instru-
mentation may be promising, yet the technical progress of movable displays with non-planar
shapes [63] currently appears as the main hurdle.
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3.3 Simulating Spherical Displays

For the fourth publication [P4], we conducted two studies, and the taxonomic classification
is also twofold. In the visual sense, all tested prototypes fully embodied matching spherical
content. The difference in classification for the metaphor is a result of the fixed conditions in
contrast to the rotating ones not being able to provide this very property naturally associated
with a sphere.

Figure 3.1: This illustration from [P4] describes the construction of our rotatable VR simulated
display prototype. As with the other implementations, a Vive tracker (c) is mounted to the center
of an acrylic glass sphere that, due to its diameter (60 cm), required a stabilization scaffold (a)
and sat on a socked equipped with interchangeable ball-bearings (b).

We formulated RQ3 based on the motivation derived from the positive results for the spheri-
cal embodied visualizations. We answer this question by means of the second study. The first
experiment’s goal was to test for the general validity of a VR simulated spherical multi-touch
display. While the positive effects for user performance and accuracy clearly substantiate the
second study, the first study makes a clear point for VR as a useful prototyping tool. Follow-
ing this principle, we constructed a prototype that resembled the outline and extended the
capabilities (by physical rotation) of a real spherical display (Figure 3.1).

From the results of our second study comparing three levels of tangible feedback (no tan-
gible feedback, simulated rotation on a static display, physical rotation) we can derive that
despite users having to rotate a large device (diameter of 60 cm) they achieved significantly
lower task completion times and higher accuracy than with both variants that only simulated
rotation. These findings make a strong case for VR as a tool to simulate (tangible) dis-
plays in general and again emphasize the importance of physical feedback that allows users
to sense weight, inertia, momentum, and rotation. In addition, we compared two selection
techniques. One required users to simply tap on a target and another for which users had
to align a fixed interface element with the desired target. Then, the selection was triggered
with a dwell-time of one second. When supplied with the rotatable display, users were sig-
nificantly faster but also more precise, while the alignment technique that did not require a
multi-touch surface achieved the best results.
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These unambiguous results lead to the conclusion that this selection technique, in combina-
tion with a movable spherical device, constitutes a viable approach that interestingly needs
less complex hardware (no multi-touch surface) than the tapping technique. A compari-
son between the tangible and non-tangible conditions, both simulating rotation, showed no
significant differences. This finding emphasizes our assumption that the advantages of the
rotatable display are mainly rooted in the experienced and actively executed rotation of the
device and not just its physical presence and felt passive haptic feedback. Therefore, the
results from [P4] contribute to answering RQ3 by clearly exposing a positive impact on
task completion time, accuracy, and subjective perception when the spherical device can be
touched and physically rotated.

From an academic perspective, these conclusions substantiate VR as a prototyping tool [81,
57] allowing us to experience TUIs that can yet only exist in MR. Regarding spherical de-
vices, the selection-by-alignment technique appears promising for further exploration since
it can be facilitated by a sphere’s properties alone. We also have to leave a further investiga-
tion of a multi-touch surface combined with physical interaction to future research. However,
concluding from both studies, a VR simulation may facilitate such a project.

3.4 Advanced Interaction Techniques with STUIs

As mentioned, we formulated RQ3 based on these previous results and related work dis-
cussed in Section 1.5. This question of how STUIs can leverage a sphere’s shape alone
without implementing additional input options presents an overarching and important guide-
line that significantly influenced the design and use cases for publications [P5 - P7].

A Spherical Interface for Object Manipulation

A quick recapitulation: Tangible AR applications often rely on input devices that establish
functionality by their shape. For example, a controller shaped like a shovel or a scoop [54,
42] indicates that it can be used to pick up a virtual object. However, our approach of
picking up arbitrary objects with a sphere and manipulating them in RTS only constitutes
nearby embodiment. Yet, we see the metaphor level of noun and verb still being met due to
spatial 6-DOF interaction and the spherical shape clearly indicating rotation. The full level
can not be reached because of the extended ability allowing for object scaling.

As a critical property of our technique, we have to emphasize that we implemented object
manipulation based on two separate modes that had to be selected from a menu. We made
this decision because we needed to enable object-scaling at the current object position and
therefore only had a maximum of six degrees of freedom at our disposal per interaction mode
(while simultaneous RTS would have required at least seven degrees of freedom). Following
the constraint of only using the sphere we based the pick-up and menu interaction as before
on the selection-by-alignment technique with a dwell-time of one second. We compared
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our approach to three controller techniques that would i) provide similar functionally at a
different shape, ii) integrated a button to switch between modes and iii) enable full 7-DOF
interaction utilizing buttons and a touchpad. While a comparison to the first condition would
allow for conclusions regarding the shape alone, the second and third conditions would again
generate insights on the benefits of more complex hardware.

The spherical device was faster than two controller conditions but was outperformed by
the controller condition that supported simultaneous 7-DOF interaction and made use of
buttons and a touchpad. The same picture showed for subjective user ratings. These results
undoubtedly make a strong point for the spherical shape as a manipulation interface in AR
but also for simultaneous RTS. An analysis of what interaction types caused the advantages
for the spherical controllers revealed that most users achieved lower task times by the scaling
interaction that we based on rotation around a central axis.

In summary, we again found solid evidence for a positive influence of the spherical shape
on user performance and subjective ratings (RQ3) even with a more distant level of embodi-
ment. Therefore, our approach solely based on a tangible sphere constitutes a viable solution
for object manipulation in AR (RQ4). We can further confirm the usability of the selection-
by-alignment technique that we used to select menu items and pick up objects. However, the
switching between modes caused a significant disadvantage in task completion times that
the surprisingly well-performing scaling-by-rotation strategy could not mitigate.

Consequently, the most crucial additional feature for our proxy solution [16, 23] would be
an extension that would unify both interaction modes. This could be achieved either by
implementing another interaction level such as buttons or touch sensitivity or by finding
a viable gesture-based technique [84]. A multi-touch surface would generally enable the
support of additional interaction techniques such as the selection of objects at a distance as
recently explored by Louis et al. [66] in an AR setup.

Spherical Interfaces for VR Locomotion

While VR locomotion presents a challenging topic itself (Sections 1.5 and 2.4.2) for us,
it provided an interesting opportunity to test novel spherical devices and to gain insights
mainly regarding the research questions RQ3 and RQ4.

Implications from Continuous VR Locomotion

In the course of [P6], we tested an STUI supporting two different paradigms. For the zero-
order system, it is continuously rotated towards a target, while for the first-order system, the
angular tilt would set a constantly executed velocity. Both paradigms enabled movement in
four directions, which we mapped to pitch and roll angles, while the yaw angle regarding
locomotion remained unused. We transferred all six degrees of freedom to a matching visu-
alization but only utilized two for actual first-person locomotion. Consequently, the visual
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representation (a spherical grid that, in analogy to a snowglobe, contained a WIM as a navi-
gation aid) qualifies for full embodiment. Likewise, the functionality of movement prevents
a similar level for the metaphor classification. While we again see a clear resemblance to the
real-world properties of a rotating sphere, we can set this level to noun and verb.

Despite the lower scores that both sphere-based paradigms received in terms of subjective
ratings, we found significant advantages for the zero-order system (in comparison to the
first-order system and two matching controller conditions). Still, the subjective ratings were
clearly in favor of a position-control technique that made use of the VR controller’s di-
rectional touchpad. However, users were more precise and faster when using the STUI
in combination with the zero-order paradigm. Additionally, we emphasize the easy learn-
ability of this paradigm. Users were able to execute avatar movement without any given
instructions. As with other approaches, for instance, requiring the constant execution of a
gesture [56] study participants subjectively disliked the constant activity while some also
reported a greater feeling of involvement.

Overall, these findings answer RQ3 in showing the potential of an STUI to embody an
efficient first-order system. As for answering RQ4, we again find evidence that an STUI
can support complex interaction by its shape if applying the right paradigm, in our case, the
direct translation of rotation to movement. Future research could provide further insights
on a possible use case for the yaw angle, while additions, for example, allowing to switch
between a zero- and a first-order system a multi-touch surface could reduce physical demand
or provide more refined interaction with the VE.

Implications from Discrete VR Locomotion

The taxonomic classification for our SWIM technique may be less straightforward than for
the others. At first, in terms of embodiment, the virtual content is only fully embodied as
long as possible elevations (e.g., mountains, buildings) are not, due to the current zoom-
level, protruding visibly from the surface. Second, for the metaphor, a SWIM may appear as
a handheld globe or tiny planet but does not exactly behave like one. At the same time, we
use this effect to convey interaction techniques. The scrolling functionality only looks like
a rotating sphere, but in fact, the miniature world is scrolled, which may eventually require
many full rotations to get back to a starting point compared to just one with a simple globe.
As shown in [P3], such would qualify for full embodiment. The SWIM, however, provides
a strong resemblance to a sphere but extends its capabilities by scrolling and scaling.

In total, the SWIM technique built on a sum of advantages that we found for STUIs: it makes
use of a strong metaphor that allows the sensation of rotation, thereby communicates more
complex interaction, and utilizes the selection-by-alignment technique for teleportation. We
mapped the scrolling interaction linearly to the yaw and pitch angles of the handheld sphere.
Since only these two degrees of freedom are needed for scrolling the viewport, the roll angle
remained unused. However, we found that for natural behavior, it is important to map the
rotation of the plane in which we placed the planar WIM to this angle. This means that if
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the sphere is rolled, we rotate the WIM around a pivot point defined by the intersection of
the user’s camera vector and the WIM plane. The general working principle is shown in
Figure 3.2.

After analyzing the results from [P7], a clear picture showed: the SWIM concept clearly
outperformed a controller method inspired by the classical WIM implementation. The con-
troller method was based on two separate VR controllers, one for holding the map and one
for pointing and teleportation. Particularly noteworthy herewith is the fact that users did not
rate the spherical distortion as negative. On the contrary: some even found the distortion
helpful for spatial orientation. Therefore, we can conclude that for a spherical miniature
world, a tangible spherical device is capable of communicating complex interaction such
as scrolling and zooming to users (RQ4) while providing advantages in terms of task com-
pletion time, accuracy, and subjective ratings (RQ3) and maintaining a simple and easily
understood interaction metaphor.

Figure 3.2: This sketch from [P7] illustrates the working principle of the SWIM technique.
Pitch and yaw angles scroll the viewport while the roll angle rotates the WIM in place. After
projecting the planar WIM to the sphere, it convincingly represents a handheld planet.

As flawless as discrete locomotion with the SWIM technique performed, an extension in
the direction of a multi-touch surface appears as meaningful to additionally support object
manipulation. Future work could also provide further insights into the advantages of the
spherical shape by comparing it to a tangible planar WIM [77, 105] utilizing similar in-
teraction. We also want to emphasize the usability of the applied selection-by-alignment
technique that we again could demonstrate. Lastly, an application and evaluation in the en-
vironment of an actual geographic application seems exciting and could further substantiate
the concept based on a spherical shape conveying complex interacting by a catchy metaphor.
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3.5 Closing Remarks

“Everything in nature takes its form from the sphere, the cone and the cylinder.”

Paul Cezanne

This thesis has presented a first exploration of the capabilities of STUIs completely simulated
in MR. Following the initial finding of the spherical devices’ positive effect on information
perception, we investigated STUIs by simulating spherical displays as well as studying their
capability to support object manipulation and two paradigms for VR locomotion. Our results
have shown that STUIs can often support these demanding use cases by only relying on their
shape while eventually outperforming established and more complex controller techniques.

The crucial finding from our fourth publication that not the physical shape of a sphere may
constitute an interactive benefit but its property to communicate a self-inflicted feeling of
mass, inertia, and momentum to the user’s fingertips has significantly shaped the course of
this dissertation. This result adds to the assumption that STUIs can afford the possible prop-
erty of TUIs to experience a given input directly at fingertips and palms by means of rotation
like hardly any other device. Due to VR simulation, we have shown that they also lever-
age the advantages of low weight and display simulation in general. By the demonstrated
high levels for embodiment and metaphor and insights such as the convincing performance
of the selection-by-alignment technique, this dissertation may inspire further research ef-
forts to contribute to the overarching goals of enriching interaction in a subsequently more
accessible user experience.

As a natural property of the MR space, our findings may transfer to other virtual spaces, and
thus the discussed techniques could be applied in different contexts. As we have shown with
the SWIM technique, this context could be a reiteration of a classical interaction technique
that may eventually profit from a tangible spherical shape or challenging fields such as VR
locomotion in general. The simplicity and cost-effectiveness of the demonstrated prototypes
strongly facilitate such a future exploration. Our results have uncovered profound evidence
for VR as a prototyping tool for novel displays and input devices and as a space for expe-
riencing capabilities that can yet not be realized outside MR. These findings clear the path
to manifold future studies. Be it the implementation of a multi-touch surface in conjunction
with an STUI, the exploration of simulated holographic content, or the subsequent extension
of the evaluated use cases; this work may form the basis for many opportunities to deepen
our understanding of elemental geometric shapes acting as tangible interfaces in MR.

STUIs are not only transitioning from technology demonstrators such as spherical displays
to versatile input devices [66] but, as demonstrated, undoubtedly have the potential of con-
stituting viable input devices that may, in the right context, provide the best possible solution
for interaction. Even if the vision of Sutherland [97] and Ishii [51] of displays forming mat-
ter creating completely tangible bits might come true someday, users will most likely still
benefit from a simple and yet natural interaction metaphor such as a tangible sphere.
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