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Figure 1: Raw eye movement speed before and after a blink with a gap of 90 ms where the eye tracker cannot obtain data. 
Highlighted in yellow are the areas before and after a blink that contain artifacts introduced by eyelid movements. 

ABSTRACT 
Currently, interactive systems use physiological sensing to enable 
advanced functionalities. While eye tracking is a promising means 
to understand the user, eye tracking data inherently sufers from 
missing data due to blinks, which may result in reduced system 
performance. We conducted a literature review to understand how 
researchers deal with this issue. We uncovered that researchers 
often implemented their use-case-specifc pipeline to overcome the 
issue, ranging from ignoring missing data to artifcial interpola-
tion. With these frst insights, we run a large-scale analysis on 11 
publicly available datasets to understand the impact of the various 
approaches on data quality and accuracy. By this, we highlight the 
pitfalls in data processing and which methods work best. Based on 
our results, we provide guidelines for handling eye tracking data for 
interactive systems. Further, we propose a standard data processing 
pipeline that allows researchers and practitioners to pre-process 
and standardize their data efciently. 
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1 INTRODUCTION 
Nowadays, eye tracking is a major additional input channel for 
multi-model interactions [54, 121, 197]. On the other hand, optical 
and infrared eye tracking data sufer from data loss. This data loss 
happens when the eye tracker cannot estimate the pupil direction 
from the image of the eye, as occurs at a high frequency due to 
human blinks, see Figure 1. However, both traditional methods of 
understanding user behaviors and prediction models (e.g., intent 
prediction) struggle with missing data and require additional pre-
processing steps to handle this. Subsequently, we see diverse blink 
detection methods and how to account for the gaps in the input 
data stream. Grootjen et al. [68] recently demonstrated a lack of 
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standardized processes to overcome the challenges raised by eye 
blinks. The lack of standardized approaches for data processing 
presents a signifcant challenge to the reproducibility and compara-

bility of results across diferent studies. Ignoring input afected by 
missing data in interactive systems is one approach commonly used. 
However, this introduces an input lag and unexpected jumps and 
jitters in the input stream, reducing the usability of systems drasti-
cally [124, 126]. Moreover, processing and predicting interactions 
using machine learning (e.g., using RNN and LSTM) is becoming 
more common; however, they typically require a consistent data 
input stream without gaps in the data. Therefore, we currently have 
no understanding of how removing or inflling data might impact 
real-world applicability and, thus, usability. 

Various interactive systems make use of eye tracking for system 
enhancement, e.g., direct manipulation [121, 157], action predic-
tion [214], and gestures [48, 216]. Lately, such systems used neural 
networks to improve on traditional feature extraction approaches, 
e.g., [4, 214]. However, neural networks cannot easily handle miss-

ing information as it occurs during a blink. Therefore, the most 
prominent way of dealing with missing data from the eye tracker 
is to remove the data containing blinks, e.g., [52, 69, 204]. Other 
studies have attempted to fll in the missing information, e.g., Stein 
et al. [184]. These systems employed use-case-specifc and device-
specifc approaches. However, reproducibility and generalizability 
were not a concern; thus, they did not evaluate the impact of fne-
tuning, e.g., the impact of the specifc parameters for the inflling 
method. Additionally, blinks introduce artifacts into the remaining 
eye tracking data [2, 39, 53], see Figure 1. However, it is uncom-

mon for current systems to address these artifacts; thus, systems 
generally ignore the input. It is therefore crucial to establish a com-

prehensive and consistent approach to pre-processing eye tracking 
data to ensure the reliability and validity of interactive systems 
using eye tracking. 

Evaluating these diferent inflling methods on a large-scale 
dataset will bring an understanding of potential generalization 
issues and allow us to formalize recommendations to overcome 
them. Therefore, future researchers will know how to apply these 
methods to enable online processing and prediction in interactive 
systems efectively. Thus, we reviewed all scientifc publications of 
eye tracking studies until the end of 2022 and how they deal with 
missing data from the ACM digital library and IEEE, inspired by the 
PRISMA method [145]. Here, we contribute an overview of com-

mon approaches to identifying blinks and processes to deal with 
the missing data. Based on these insights, we perform experiments 
to understand how today’s approaches afect data quality. We used 
11 open-source eye tracking datasets for our experiments in order 
to foster high rigor and external validity. First, we analyze the eye 
tracking datasets concerning potential data loss that occurs through 
blinks. Second, we analyze artifacts before and after gaps in the 
input stream as part of the blink sequence and use this to motivate 
additional data to be cut of. With these fndings, we introduce 
artifcial blinks into the datasets by varying the amount of missing 
data and window sizes for the diferent eye tracker frequencies. 
This allowed us to compare diferent inflling methods against each 
other. 

In our literature survey (� = 140), we found that 42.9% had 
shortcomings in the reporting, e.g., missed reporting about data 

handling, lacked important reporting, or acknowledged the pres-
ence of missing data but did not include any further details or 
removed blinks, and 11.4% simply removed the samples afect by 
gaps. Finally, 45.7% of the literature surveyed explained ways to 
deal with the missing data, including interpolation and imputation 
methods. This highlights the need for standardization in processing 
eye tracking data for interactive systems. We show that there is a 
big spread in blink frequency from diferent datasets, which is in 
line with existing literature. When not processing samples contain-
ing missing data, we show that the combination of blink frequency 
and window size heavily infuences the amount of usable data. We 
highlight the presence of artifacts introduced by eyelid movements 
surrounding missing data, which are not addressed in the majority 
of the reviewed literature. We show that these artifacts from eyelid 
movements can infuence 70 ms of data proceeding and 118 ms 
following a “closed eye” and that these should be removed. Based 
on existing literature and our fndings, we explore diferent inflling 
methods and propose a pipeline that standardizes pre-processing 
eye tracking data to deal with blinks and allows the resulting data 
to be used in interactive systems. 

2 RELATED WORK 
First, we provide a short overview of the reasons for blinks and 
how blinks are used in interactive systems for human-computer 
interaction (HCI). Next, we provide insight into diferent ways of 
blink detection. For the fnal part of our related work, we provide 
more use-cases for eye tracking in interactive systems. 

2.1 Reasons for Blinks 
A blink is defned as “a temporary closure of both eyes, involv-
ing movements of the upper and lower eyelids” [26]. One blink 
lasts roughly one-third of a second and human adults blink ap-
proximately 12 times per minute [56]. This natural eye motion is 
responsible for regularly replenishing the precorneal tear-flm and 
protecting the eye from drying out. However, there is a variety of 
factors impacting the frequency of blinks outside of this responsibil-
ity, including but not limited to the presence of air pollutants [185], 
contact lenses [40], monitors [151], time of day [185], mental work-
load [31, 196, 198, 208], age [185], psychoticism [41], and individual 
diferences [47]. 

While eyelid movements introduce a profound and transient 
modifcation in the position of the eyes, various human-computer 
interaction (HCI) studies use blink data in interactive systems such 
as driver fatigue detection [22, 73], lie detection [114, 128], detection 
of mild cognitive impairment [110], anti-face spoofng [63, 72, 148], 
and human-computer interfaces [3] among many others. However, 
the frequency of blinks is infuenced by many factors, which can 
heavily impact the accuracy of these interactive systems. 

2.2 Blink Detector 
Many diferent methods have been developed for detecting blinks. 
Although the output is binary, i.e., either eye open or eye closed, we 
can divide the blink detection methods into a series of categories 
according to requirements. These methods can be intrusive, e.g., 
EOG [146], Doppler sensor [189], or glasses with special close-up 
cameras observing the eye [58]. However, many modern systems 
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rely on non-intrusive methods that use a camera with or without 
illuminators. In the following, we highlight two blink detection 
approaches that can be used in interactive systems. 

2.2.1 Built-In Blink Detector. The EyeLink 1000 parser1 
(SR Re-

search Ltd., Ottawa, ON, Canada) includes a blink detection mech-

anism. Here, a blink is defned as part of the eye position data, 
where the pupil size is very small or the pupil in the camera image 
is missing or severely distorted by eyelid occlusion. The EyeLink 
1000 parser senses the partial occlusion of the pupil preceding and 
following a blink, marking these as a saccade. In their manual, the 
manufacturer recommends discarding fxations shorter than 100 
ms proceeding and following a blink in order to eliminate most 
artifacts from the blink process. 

The BeGaze parser2 
(SensoMotoric Instruments GmbH., Toltow, 

Germany) includes a built-in detector for blinks. Here, a blink is 
defned as a special case of a fxation, where eye data is not present, 
i.e., the pupil diameter is either zero or outside a dynamically com-

puted valid pupil range. If either of these conditions is met, then 
a blink event is created where the event is expanded to include 
the transition period between valid gaze data and the blink. This 
transition period is set to look at pupil diameter changes; if these 
exceed an internal threshold value, then it is assumed to be a part 
of the blink. If the blink is shorter than 70 ms, then it is discarded. 

Both of these built-in parsers have one limitation: they cannot 
diferentiate between a true blink and a period where eye tracking 
was simply lost for other reasons. For both parsers, blinks do not 
have a maximum duration. 

2.2.2 Custom Blink Detector. On the other end of the spectrum, 
building a custom blink detector is also an option. Over the last 
couple of years, there has been a plethora of publications that 
feature custom blink detection models (e.g., Al-Hindawi et al. [7], 
Appel et al. [11], Królak and Strumiłło [109]). Al-Gawwam and 
Benaissa [6] proposed a blink detection method using facial features 
from a video sequence instead of looking specifcally at the eyes, 
which proves to be robust against various illumination and facial 
expressions. Another example of a custom blink detector comes 
from Hu et al. [80], where they showed a fast and accurate blink 
detection model based on AdaBoost and ANN that uses pictures of 
eyes to classify for a blink or not. While these approaches introduce 
interesting new blink detection methods, they are all camera-based 
and cannot be applied to data already gathered with existing eye 
trackers. 

2.3 Eye Tracking in Interactive Systems 
Eye tracking is used in interactive systems in various ways and has 
been used as, for example, as a tool for target selection, as input via 
gaze gestures, and as a measurement tool. The eye is sufciently 
capable to allow interactions between humans and computers by 
using gaze gestures as input via an eye tracker [49]. Another study 
by Traoré and Hurter [195] showed that intentional blinks could be 
used as a technique to navigate through a menu and interact with 
the environment. More specifcally, they showed that it is feasible 

1
https://www.sr-research.com/eyelink-1000-plus/, accessed 2024–02–27 

2
https://www.dpg.unipd.it/sites/dpg.unipd.it/fles/BeGaze2.pdf, accessed 2024–02–27 

to use this technique also in an air trafc control system, which is 
a high-risk scenario. 

Dwell time is another input parameter for gaze in interactive 
systems and has been the object of study on several occasions [9, 
51, 99]. Using dwell time as an input, users can select an item or 
navigate a menu in an interactive system by placing their gaze at the 
target for a certain length of time. Vertegaal [200] evaluated several 
eye tracking and manual input devices in the selection of visual 
targets, and demonstrated that the performance of eye tracking in 
combination with dwell time outperforms traditional input using a 
mouse. 

Gaze predictions can allow for the evaluation of interactive sys-
tems without needing a user. Predicting gaze, e.g., through the use 
of saliency maps or task-specifc models, such as EZ Reader for 
reading, can allow for the evaluation of what will be looked at. 
Examples of this are [61, 129], where they used gaze prediction 
in short videos, which can then be used in interactive media ap-
plications such as customized advertisements in videos through 
identifed regions of interest. Another application of gaze prediction 
in interactive systems is pre-rendering scenes in VR [209]. 

One use-case of blinks for interactive systems uses eye tracking 
as an input method. The work of Krapic et al. [105] used blinks as 
the input modality to click. Other eye tracking studies using eye 
movements for interactive systems include Palacios-Ibáñez et al. 
[147]. Here, the authors reported nothing about the missing data. 
However, because they used the Tobii software, an assumption can 
be made they used a Tobii eye tracker, which in turn logs values 
that are missing as (0, 0) instead of NANs. The work of Bremer et al. 
[30] used linear extrapolation based on the previous three frames to 
infll missing values for their prediction of locomotion intent from 
gaze data, which is the same as the work of Bremer et al. [29], Stein 
et al. [184]. Asish et al. [16] reported that about 10% of their data 
was missing per participant and inflled these missing values with 
the average of each participant. 

3 LITERATURE REVIEW ON CURRENT 
APPROACHES TO ADDRESS BLINKS 

We conducted a structured literature review to identify the wide 
range of approaches used in dealing with eye tracking data in 
interactive systems. In detail, we aim to review the blink detection 
methods and algorithms used. For this, we follow the four-phase 
procedure of the PRISMA [145] guidelines on reporting systematic 
reviews. Figure 2 visualizes the PRISMA fowchart. 

3.1 Method 
We follow the PRISMA guidelines to review prior work, which is in 
line with other papers [17, 23, 75] in the HCI domain. The review 
focuses on three key aspects: the Method used for handling blinks, 
the use of blink Detectors, and the Task that users carry out. 

3.1.1 Identification. We defned the eligibility criteria, namely, ex-
clusion criteria as shown in Figure 2. We defned the inclusion 
criteria as papers involving eye tracking data and their handling 
of missing data. From the databases, we selected the ACM digital 
library and IEEE as they are representative of high-quality and ma-

ture research published in the feld of interactive systems and eye 
tracking. At the same time, we acknowledge that this excludes other 

https://www.sr-research.com/eyelink-1000-plus/
https://www.dpg.unipd.it/sites/dpg.unipd.it/files/BeGaze2.pdf
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venues interested in eye tracking data (e.g., ARVO, Journal of Vision 
and Thieme Medical Publishers, and Journal of Academic Ophthal-
mology). However, the ACM Digital Library and IEEE Xplore are 
major libraries for interactive systems and, thus, best ft the aim of 
this review. We conducted our search given our inclusion criteria, 
selecting papers with terms relevant to eye tracking and terms 
that indicate the presence of missing data. Specifcally, we used the 
following search string: 

("eye tracking" OR "gaze tracking" OR "eye 
movements" OR "gaze movements") 

AND ("missing data" OR "missing value" OR 
"data gaps") 

AND E-Publication Date: (* TO 12/31/2022) 

We manually saved all resulting records in a CSV fle for screening. 

We excluded all tables of content and posters,3.1.2 Screening.         
papers that do not include a study, and papers that do a study with 
non-human subjects as shown in Figure 2. For this, the frst author 
then screened each paper while not using automated tools. The 
goal of the initial screening is to keep all papers that could help 
us understand how current papers deal with missing data. Thus, 
we excluded papers based on the exclusion criteria in Figure 2. 
We excluded 1) table of contents (� = 61); 2) posters (� = 1); 3) 
papers with non-human subjects (� = 1) as they do not add to our 
investigation; 4) not original work as they only review or comment 
on others’ work but do not process eye tracking data (� = 21); 5) 
even though eye tracking was in the keywords, we had to exclude 
works, which is not eye tracking (� = 95); and 6) we excluded results 
that do not entail a user study as no validation was done (� = 37). 
In this step, we reduced the number of included papers from 402 to 
186. 

For the second step, the frst two authors then read the remaining 
186 papers after the initial screening. Here, we excluded papers 
based on two criteria: not relevant (� = 31) to the inclusion criteria 
and not an empirical study (� = 15), see Figure 2. The two people 
who screened the papers again did this independently to minimize 
potential bias. The inter-rater reliability was 97% on the exclusion 
criteria and discrepancies were resolved through discussions. 

3.1.3 Included Papers. We included the remaining 140 publications 
in the review3

. The frst two authors independently coded each of 
these papers without the use of automated tools. 

Without specifying a codebook beforehand, the two authors 
each coded the Method used for handling blinks, the possible use 
of blink Detectors, and the Task the users carried out. As we did not 
establish a codebook beforehand, we did not expect high inter-rater 
reliability on the open-ended text. Despite this, we had an inter-rater 
reliability of 79.5% for coding the Detectors, 53.4% for the Method, 
and 13.7% for the Task. As before, we resolved all discrepancies 
in discussions, resulting in the fnal codes reported in Table 1 and 
Appendix A. 

3.2 Selected Papers 
Table 1 gives an overview of how the 140 papers dealt with missing 
data. The earliest paper in our selected papers is from 1993. We 
note that 60 papers reported insufcient information on how they 

handled missing data, see Table 1; thus, we cannot include them in 
further analyses. However, they provide evidence for the need for 
better reporting guidelines. We showcase a subset of 81 papers in 
Appendix A to highlight the work that deals with missing data. 

Figure 2: Literature search and inclusion phases and rates 
using the PRISMA fowchart. 

Table 1: Diferent methods for handling missing data 

ing them 
Included in Detailed Review 
Removed missing data 16 [1, 13, 14, 21, 28, 32, 46, 69, 91, 96, 106, 

137, 144, 167, 201, 222] 
Interpolation – linear 19 [4, 5, 18–20, 28, 81, 85, 88, 97, 103, 104, 

140, 141, 167, 169, 186, 199, 219] 
Interpolation – polynomial 2 [95, 191] 
Interpolation – bilinear 1 [118] 
Interpolation – spline 3 [28, 204, 221] 
Interpolation – cubic spline 4 [74, 136, 163, 179] 
Interpolation – Other 14 [13, 45, 64, 67, 76, 119, 127, 162, 178, 192, 

211, 218, 220, 223] 
Imputation 7 [38, 117, 132–134, 187, 212] 
WEKA 2 [82, 165] 
Aggregating 4 [86, 120, 138, 166] 
Winsoring 1 [25] 
Reconstructing 1 [143] 
Averaging 2 [70, 92] 
Extrapolate 2 [27, 184] 
Other 6 [42, 55, 159, 181, 205, 213] 

Method Count Publications 

Insufcient Information 
Nothing reported 44 [8, 15, 24, 33–36, 44, 60, 66, 77, 89, 90, 100, 

101, 108, 112, 123, 125, 135, 139, 142, 149, 
152–155, 158, 160, 164, 172, 173, 176, 180, 
188, 190, 193, 194, 202, 203, 206, 207, 210, 
224] 

No handling of missing data 15 [43, 50, 52, 57, 71, 83, 87, 111, 113, 122, 
150, 170, 177, 215, 217] 

Removing blinks, not defn- 1 [102] 

3
These 140 papers are marked with a • in the references of this paper. 
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Papers with Insufcient Information. An overwhelming majority 
of the papers (44/140) did not report how they dealt with missing 
data from their experiments or they acknowledged the existence of 
missing data but did not elaborate on how they handled the missing 
data, see Table 1. Some of these papers mention the removal of 
participants who are missing over a certain amount of data (e.g., [60, 
111, 125, 142]) or trials where missing data reached a threshold 
(e.g., [46, 102]). However, they did not elaborate on what they did 
with trials and participants who had missing data but were not 
excluded in the analysis, i.e., how they dealt with remaining missing 
data was not described. Moreover, we identifed 15 papers that did 
not handle missing data while acknowledging the issue around 
missing data. Finally, one paper did remove blinks but gave no 
information on the criteria for removal or how they were removed. 

Papers with Helpful Information. Sixty papers had insufcient 
information to be fully included in this review. In the following, 
we will categorize the remaining 81 papers on how they dealt with 
missing data. 

Although all reviewed work comes from either the ACM digital 
library or IEEE Xplore, the work reviewed was published in several 
venues. From the work reported in Appendix A and reports on 
dealing with blinks, the most predominant venue was the ACM 
Symposium on Eye Tracking Research and Applications (ETRA), 
with 12 papers. Beyond that there were venues like ICMI (6), IEEE 
EMBC (4), CHI (3), IEEE Access (3), and several others. Regarding 
eye tracking systems, the most popular brand is the Tobii brand, 
where 36 papers in the reviewed work used one of the Tobii eye 
trackers for their research; out of these, the Tobii 1750 (4) is the most 
popular. After Tobii, the SMI brand is also well-represented with 15 
papers. Here the SMI RED250 is the most common (4). Studies that 
have used a mobile eye tracker also seem to favor the EyeTribe (6) 
and the Tobii Pro Glasses 2 (5). 

The tasks we identifed in the reviewed work are even more 
diverse than the selection of eye trackers. The most common task 
is visual search (15) and driving simulators (15), closely followed by 
free viewing (14), video watching (9), reading (8), and input method 
(4). Here, using eye tracking as an input method is interesting as it is 
the only task (n > 1) where all reviewed work used an interpolation 
method to deal with the missing data from the eye tracker. 

3.3 Findings on Detecting Blinks 
Most (73/81) of the reviewed literature reports that they classifed 
missing data as a blink. For the Tobii eye trackers without a blink 
detector, authors often classifed blinks as points where the pupil 
size is outside a pre-determined range or when the tracker loses the 
pupil temporarily, e.g., [52, 69, 204]. Other papers (3/81) mention 
excluding data before and after the missing data. For example, 
Bafna et al. [19] specifes blinks as missing data 75-500 ms long 
and, additionally, they remove a further 200 ms before and after 
the missing data to combat the artifacts before and after the blink. 
Appel et al. [13] removed data up to 100 ms before and after a blink 
to counter artifacts, and Appel et al. [12] removed parts from the 
pupil signal that “had an unreasonably large slope right before and 
after a sequence of missing data” [12]. 

EyeLink provides users with a built-in parser1 
and SMI provides 

the BeGaze parser2. Thus, both have their own integrated parsers 

for blinks; however, not all studies we found during our literature 
review using those eye trackers report on using the respective 
parser. More specifcally, out of the surveyed papers, over half 
of the work using an EyeLink (e.g., [117, 153]) and using an SMI 
(e.g., [12, 13, 24, 34, 95, 104, 133]) did not report on using the built-
in parsers or any other parser. However, they report the missing 
data, which they handled with use-case specifcity. As such, we 
identifed that the methods used for blink detection are inconsistent 
in the current literature and improving this has a potential positive 
impact on research replicability and quality. 

3.4 Findings on Dealing With Blinks 
As discussed in Section 3.3, there are integrated solutions for de-
tecting blinks (e.g., EyeLink parser1 

and BeGaze parser2). However, 
there are no out-of-the-box solutions integrated into the current eye 
trackers that handle blinks once they are identifed. Traditionally, 
researchers dealing with missing data have so far proposed a set of 
methods, such as replacing by mean/median [168] and last observed 
carried forward [175]. However, this does not work for time-series 
data due to the underlying speed and possible acceleration of the eye 
movement. As such, the most common method identifed in our lit-
erature review applies linear interpolation (19/81) closely followed 
by removing the data containing missing data (16/81), see Appen-
dix A. However, our review revealed numerous use-case-specifc 
methods for handling missing data. Here, the most common method 
was interpolation (43) of various forms and imputation (7), followed 
by a wide range of adapted approaches. While these methods are 
less prevalent and more widespread in the reviewed literature, they 
have the advantage of retaining the data to be used in interactive 
systems. 

Interpolation. Interpolation is the most popular option in our 
review as 43/81 papers employed a form of interpolation to replace 
the gaps in the data. In the reviewed work, we identifed diferent 
kinds of interpolation, including linear (19), polynomial (2), bilin-
ear (1), spline (3), cubic spline (4), and others (14). For example, 
Kinnunen et al. [97] assumed the continuity of the data and, thus, 
applied linear 1-D interpolation independently for both axes. In 
Wang et al. [204], the authors removed data when the pupil size 
was outside a pre-defned range, after which they applied spline 
interpolation to infll the missing values. As there is no consensus 
on how to interpolate eye tracking data, the efects of such meth-

ods also need to be more adequately understood. This can lead to 
inaccurate or even wrong interactions in interactive systems with low 
reproducibility chances. 

Remove Blinks. Removing the data that contain blinks is the 
second most popular among the reviewed work (16/81). However, 
some papers reported elaborate criteria to be met to retain parts 
or all of the data afected by a blink. For example, Ishii et al. [86] 
and Nakano and Ishii [138] did not analyze samples with blinks 
longer than 200 ms; however, if the blink was shorter, then they 
cut out the missing values. Others allowed for 20% missing data 
during a trial [25, 164] or they retained trials where the missing 
data was less than 1 s [70]. While it is clear that removing all missing 
data helps the overall performance, this approach is not useful for 
interactive systems. 
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Uncommon Methods. Lastly, we identifed a series of other meth-

ods using a variety of tools and methods, e.g., imputation (7), WEKA 
(2), aggregating (4), and winsoring (1). To impute missing values, Li 
et al. [117] used an unsupervised Expectation-Maximization algo-
rithm on their data, and Cole et al. [38] used the observed session 
transition probabilities to fll in the missing data. We could not iden-
tify which specifc method is most suitable for dealing with blinks 
based on the reviewed literature. A large portion of the reviewed 
work (16) removes missing data where this exists, additionally to 
the work the removes whole participants or trials. This results in 
signifcant data loss; therefore, other ways of dealing with the missing 
data could be more appropriate. 

4 EVALUATING THE FITNESS OF 
APPROACHES 

Although our literature review uncovered trends that researchers 
use more often, there is no overall consensus for the “best” ap-
proach. Additionally, we did not fnd any evaluations comparing 
the many approaches to establish guidelines for future interactive 
systems. Thus, in the following, we compare the diferent identifed 
approaches. First, we collect a wide range of open-source eye track-
ing datasets, see Table 2. Second, we showcase the implications of 
the most common approaches to detecting and dealing with blinks. 
After that we use the acquired data to run the previously identifed 
inflling methods (see Table 1) and evaluate against each other. 

4.1 Datasets 
To motivate the importance of our work and evaluate our identi-
fed inflling methods, we acquired 11 diferent open-source eye 
tracking datasets. All datasets retrieved are part of published and 
peer-reviewed work from various venues. An overview of the ac-
quired datasets is provided in Table 2. We acquired all 11 datasets 
independently of the literature review. They are all available online 
via https://osf.io/ and https://github.com/. For direct links, see Sec-
tion 9 where we provide links to the datasets on our Eye Tracking 
Guidelines page, allowing us to extend the list with future published 
datasets. 

4.2 Pre-Processing 
We frst processed the datasets so that they all had the same format, 
which enabled us to work with the data more easily. If needed, 
we used the parsers for the EyeLink1 

and SMI
2 
data to create the 

initial tabular fles. To format all data equally, we turned all x and 
y screen gaze coordinates into degrees of visual angle, allowing 
us to compare them independently from the specifc apparatus 
used (e.g., distance to the screen and screen size). We included only 
data from the left eye whenever binocular eye tracking data was 
available. We sampled all time in milliseconds (ms); if there were 
gaps in timestamps that were bigger than one second (e.g., those 
created through pausing an experiment), then we split the data 
into diferent parts to ensure we do not associate pre- and post-gap 
data. Where there was missing data (i.e., zero or Not a Number), we 
consider the data as part of a blink. However, we did not consider 
the missing data of only one sample (e.g., 1 ms for 1000 Hz and 
33.3 ms for 30 Hz) as part of a blink as prior work reported blinks 
to last about one-third of a second [56]. Thus, we did not analyze 

such short occurrences4. With our pre-processing, we aim to reduce 
external factors not caused by a human eye blink (e.g., breaks in 
the experiment, looking away from the tracker). Hence, we argue 
that blinks primarily cause the remaining gaps. 

Figure 3: Experimental setup used for the verifcation of data 
gaps. 

4.3 Blink Verifcation 
By comparing a high-speed RGB video stream of the eye to recorded 
eye tracking data, we can ensure that blinks indeed cause the gaps. 
To maintain high ecological validity, we frst searched for publicly 
available datasets of paired data containing blinks. However, none 
of the datasets of eyes contain blinks. Thus, the data required for 
such a comparison are not publicly available. Thus, we decided to 
conduct an experiment to capture the real eye movement and the 
eye tracker data simultaneously. 

In this experiment, we used an EyeLink 1000 plus from SR Re-
search to capture the eye tracking data at 1000 Hz and a Motorola 30 
Ultra to capture the RGB video stream from the blinks at 240 fps as 
shown in Figure 3. After a nine-point calibration and validation, we 
presented a dot on the center of a ViewPixx (22.5 inch, 1920 × 1200, 
120 Hz) monitor and asked the participant to blink one time once 
this dot turned green. We had one participant perform 10 trials. The 
data from this experiment was used to verify that the missing data 
and the preceding and following artifacts follow a similar trajectory 
as real blinks5. 

5 RESULTS 
In this section, we frst report on the statistics from the surveyed 
datasets, see Table 2. Namely, we investigate the blink frequency, 
duration of missing data, and inter-blink interval6. Second, we 
report on the efective data loss that occurs through the common 
rolling window approach and the fact that windows containing 
missing data cannot be processed (i.e., zero or Not a Number). Third, 
we investigate the behavior before and after a gap to understand 
the impact of the eye closing and opening. Finally, we investigate 

4
We acknowledge that this could include data missing for other reasons; however, due 
to the vast amount of data considered in the analysis this would only amplify our 
fndings.

5
We acknowledge that these are all voluntary blinks and that there are diferences 
between voluntary and involuntary blinks, e.g., duration [79].
6
In the following, we will assume all gaps in the data, i.e., missing data, as to be part 
of a blink. 

https://osf.io/
https://github.com/
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the impact of the fve most common inflling methods found in the 
literature review, see Table 1. 

Table 2: Overview of the used datasets, listed from the oldest to the newest (and alphabetically for authors from the same year) 

Eye Tracker Screen 

Freq. Aspect Distance 
Author(s) Year Venue Company Device [Hz] Inch Ratio [cm] 

S01 Foster et al. [62] 2017 Psychol Sci. EyeLink 1000 Plus 1000 17 16:9 100 
S02 Marzecová et al. [131] 2017 Biolo. Psychol EyeLink 1000 500 19 4:3 57 
S03 Krstić et al. [107] 2018 EJPE SMI RED-m 60 15.6 16:9 60 
S04 Marzecová et al. [130] 2018 Scientifc Rep. EyeLink 1000 500 19 4:3 57 
S05 Schuetz et al. [174] 2019 ACM CHI EyeLink 1000 Plus 1000 113 8:5 180 
S06 Annerer-Walcher et al. [10] 2021 Cogn. Sci. SMI RED250 250 24 16:9 70 
S07 Felßberg and Dombrowe [59] 2022 Vision Res. EyeLink 1000 Plus 1000 27 16:9 85 
S08 Hollenstein et al. [78] 2022 LREC EyeLink 1000 Plus 1000 27 16:9 85 
VR01 Stein et al. [184] 2022 IEEE VR Tobii Pro 90 3.5 9:10 − 
VR02 Steil et al. [182] 2019 ACM ETRA Pupil Labs Add-on 30 5.7 8:9 − 
M01 Steil et al. [183] 2018 ACM ETRA Pupil Labs Pro 30 − - − 

5.1 Analysis 
In this work, we adopt a Bayesian approach for data analysis, specif-
ically employing Bayesian linear mixed models (BLMM). This ap-
proach has gained recent prominence [93, 115, 171] and ofers sev-
eral advantages over classical statistics. One of the advantages, as 
discussed by Kay et al. [94], is the incorporation of prior knowledge 
from eye tracking data. Additionally, Bayesian statistics facilitate 
efect estimation in small sample sizes and allow readers to eval-
uate efect sizes, including those close to zero, rather than solely 
determining the presence or absence of efects. Consequently, we 
utilize Bayesian parameter estimation to estimate efect sizes and 
quantify uncertainty surrounding these estimates by leveraging the 
information in our data and the applied priors. For all our models, 
we use the package brms to compute 10 Hamilton-Monte-Carlo 
chains with 20,000 iterations each and 10% warm-up samples. All 
Rubin-Gelman [65] statistics were well below 1.1 for efective sam-

ple size. 
We explored the efect of diferent weakly informative priors 

on the data. None afected statistical inference. As a result, priors 
were chosen to resemble only weakly informative priors when 
standardizing with a prior on the Gamma distribution of the data 
of (� = 5, � = 3) without allowing negative numbers (� > 0). 
Additionally, we accounted for potential variability across datasets 
by incorporating a random factor on the shape parameter. This 
approach acknowledges that diferent datasets may exhibit varying 
characteristics and allows for more nuanced modeling. By explicitly 
modeling the dataset-specifc efects, we capture the heterogeneity 
and better account for the underlying structure of the data. 

Efects were considered meaningful when there was a particu-
larly low probability (�� <= 2.5%) of the efect being zero or the 
opposite. We calculated �� through the relative proportion of pos-
terior samples being zero or opposite to the median. This metric 
has similar properties to the classical p-value and is an accepted 
substitution cf. [98, 116, 171]. Still, it quantifes the proportion of 

probability that the efect is zero or the opposite, given the data 
observed. Note that this is the reverse of the classical approach to 
inferential statistics, where one measures data probability given 
the test statistic’s null hypothesis. In addition to the median of the 
parameter, we calculated the High-Density Interval (HDI) at 95% of 
the posterior distribution for all parameters, which indicates the 
possible range of efects given the data alongside the median of 
the respective parameter. Simple mean comparisons were made 
on standardized outcome variables. Therefore, all �˜ represent an 
efect size in standard deviations from the mean (corresponding 
to Cohen’s d for simple efects of categorical predictors with two 
levels). 

Figure 4: We visualized the blink frequencies for the diferent 
types of eye trackers gathered in the dataset, i.e., mobile, 
VR, and stationary, and their respective frequencies. In the 
datasets we analyzed, we see that participants from the 30 Hz 
mobile dataset have a high blink frequency and participants 
from the 500 Hz stationary datasets have the lowest blink 
frequency. 
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Table 3: Bayesian statistics results of the priors for blink frequency, inter-blink interval, and closed-eye time (all results are 
contrasted against the whole dataset) 

Blink Frequency Inter-Blink Interval Closed-Eye Time 
Type Freq. �� ���. ���95% �� ���. ���95% �� ���. ���95% 

Mobile 30 <.001 1.549 [0.457, 2.980] <.001 1.476 [0.341, 2.843] <.001 1.388 [0.390, 2.785]
60 <.001 1.334 [0.356, 2.689] <.001 2.046 [0.569, 4.015] <.001 1.714 [0.503, 3.029]
250 <.001 1.282 [0.354, 2.521] <.001 2.816 [0.830, 4.821] <.001 3.693 [1.873, 5.323]

Statio. 
500 <.001 1.139 [0.294, 2.342] <.001 1.392 [0.316, 2.803] <.001 1.433 [0.408, 3.032]
1000 <.001 2.509 [1.491, 3.344] <.001 3.597 [1.078, 5.658] .018 1.734 [0.164, 3.216]
30 <.001 1.472 [0.427, 2.848] <.001 1.385 [0.402, 2.828] <.001 1.397 [0.373, 2.730]

VR 
90 <.001 1.358 [0.354, 2.726] <.001 1.497 [0.469, 2.973] <.001 1.520 [0.442, 2.822] 

Figure 5: We visualized the inter-blink interval for the dif-
ferent types of eye trackers gathered in the dataset, i.e., mo-
bile, VR, and stationary, and their respective frequencies. In 
the datasets we analyzed, we see that participants have no 
inter-blink interval while participants from the 30 Hz mo-
bile datasets have the inter-blink interval. Error bars indicate 
standard errors. 

5.2 Blink Frequency & Inter-Blink Interval 
In Figure 4, we present the results of the blink frequency in blinks 
per minute across the diferent eye tracker frequencies and eye 
tracking modalities, i.e., stationary, mobile, or VR. Eye trackers with 
a low frequency had a generally higher blink frequency; here, the 
30 Hz eye tracker had a mean of 49.3 blinks per minute (�� = 30.5) 
while the mean of the others is 25.9 blinks per minute (�� = 37.8). 
These results verify the fndings that a lot of factors infuence blink 
frequency, as is well established in the literature cf. Section 2.1. 
We visualize the inter-blink interval in milliseconds for the difer-
ent frequencies and types of eye trackers in Figure 5. Next, we 
investigate how the diferent types and frequency as fxed efect 
afects blink frequency in a mixed efects model with the previously 
described intercepts and priors in Section 5.1. We found that all 
combinations of eye tracker Type and eye tracker Freqency had 
a distinguishable efect on the blink frequency, see Table 3. 

5.3 Impact of Eyelid on Eye Tracking Quality 
As illustrated in Figure 1, the eyelid’s movement can infuence the 
eye tracking quality even before the tracker reaches the state that 
the eye tracker cannot recognize the pupil anymore. In this process, 
the eyelid might cover the pupil partly, but the eye tracker still 
assumes a circular pupil shape in its tracking algorithm. Thus, we 
investigate the potential impacts of the eyelid before and after a 
blink on the tracking quality. Uncovering such an infuence will 
allow us to derive cut-of timings before and after the blink to 
facilitate better overall tracking accuracy. 

For this, we investigate the eye movement speed and the speed 
variation before and after a blink, see Figure 6, 7, and 8. First, we 
looked at the change in speed before and after, see Figure 6a and 
7a. We found that the speed increases surrounding the blink, which 
diverges from the time before and after. To study the behavior, 
we ftted horizontal lines to the speed trajectory (visualized as 
dashed lines) to the data -300 to -150 ms before and 150 to 300 ms 
after the blink. This illustrates the diference between with and 
without blinks. Next, we determined the points of divergence and 
visualized them as vertical dashed lines. Thus, when the average 
speed exceeds the ftted average linked plus epsilon for the frst 
time, we determine this to be the cut-of, where the eyelid impacts 
the tracking resulting in inaccurate tracking, see Table 4. 

As the variation, expressed by the standard deviation in Figure 6a 
and 7a, shows a similar trend, we next analyze the speed variation 
using the same methods. First, we ftted a horizontal line and then a 
vertical line to determine the point of divergence. The results show 
that the variation of the eye movement speed following a blink is 
high directly after a blink and decreases over time until it stabilizes 

Table 4: Identifed time [ms] where data preceding and fol-
lowing a blink diverges from normal movement 

Closing Sequence Opening Sequence 

Freq. [Hz] Speed Var. Speed Speed Var. Speed 

60 −16.6 −0.0 66.6 50.0 
250 −4.0 −16.0 60.0 36.0 
500 −48.0 −44.0 74.0 74.0 
1000 −59.0 −70.0 59.0 118.0 
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around 0.1. This point depends on the frequency and eye tracker 
and, thus, must be individually determined. 

(a) Eye Movement Speed (b) Eye Movement Speed Variation 

Figure 6: Illustration showing variation of the recorded eye tracking data 300 ms before a blink over all diferent stationary 
frequencies. a) Mean of the eye movement speed preceding a blink for the diferent frequencies of the stationary eye trackers in 
the data, including our reference data. b) Variation of the eye movement speed preceding a blink in for the diferent frequencies 
of the stationary eye tracking in the data, including our reference data. The vertical dashed lines represent the point the points 
identifed as the frst time the line crossed the ftted function plus epsilon. In both (a) and (b), we observe a steep increase in 
speed and variation of speed before missing data appears. These deviations from normal seem to happen around -60 ms and 
-70 ms for speed and variation in speed, respectively. 

5.4 Closed-Eye Time & Length of Missing Data 
Figure 9a presents the results of the blink length across the dif-
ferent eye tracker frequencies and eye tracking modalities. Our 
results show that between frequencies and modalities, the lengths 
are distinguishable. In Figure 9b, we show the normalized length 
distribution for the stationary eye tracker frequencies. We use a 
Generalized Inverse Gaussian distribution [156] to model the distri-
butions of the lengths, see Figure 9b. Our regression models yielded 
an �2 

value of 0.93 for 1000 Hz, 0.98 for 500 Hz, 0.99 for 250 Hz, 
and 0.67 for 60 Hz. 

We investigated how the diferent types and frequencies as fxed 
efects afect blink frequency in a mixed efects model with the 
previously described intercepts and priors in Section 5. We found 
that all combinations of frequency and eye tracker type (stationary, 
mobile, and VR) had a distinguishable efect on the blink frequency. 
Our fndings are reported in Table 3. 

5.5 Baseline Analysis of Removing Sample with 
Missing Data 

In Figure 10a, we show the relation between the usable data (i.e., 
data without gaps) and window length. We show that as the window 
length increases the chance that a window contains one or more 
gaps increases. We note that the most predominant method for 
dealing with missing data in a window is to ignore it. We show 
that applying this method results in a decrease in usable data for 
further analysis. From an interactive systems point of view, this 
would hinder user interaction. The data from the diferent stationary 
frequencies follow a similar trajectory of a decrease in usable data as 

the window size increases. We also evaluate the impact of diferent 
step sizes7 

on the usable data. These follow all the same trajectory, 
which suggests that there is no impact of step size on the usable 
data

8
. 

5.6 Evaluating Inflling Methods 
To evaluate the diferent inflling methods, we used the previously 
generated distributions from Figure 9 to create artifcial blinks in 
our dataset where there were no natural blinks present. We used 
the most extreme value as an additional cut-of from Table 4 to 
simulate the additional data we should remove when dealing with 
blinks as this data would be data that contain artifacts from the 
blink. We applied this to our data from the stationary eye trackers 
and for each frequency individually to generate roughly 40.000 
blinks evenly distributed throughout the data where there are no 
blinks naturally present, i.e., 750 ms before or after the artifcial 
blink. The generated blinks are about half the actual blinks in the 
dataset. 

We calculated the error as the mean distance between the points 
generated by the interpolation methods and the actual data in de-
grees (ground truth). Following this, we applied linear, polynomial 
(3rd- and 4th-order), cubic spline, and spline interpolation methods 
over each generated blink and calculated the error. Our results show 
that the linear interpolation achieves the lowest mean error for 60 
and 500 Hz data (0.43 and 0.09 mean degrees error, respectively) 
and that cubic spline interpolation achieves the lowest mean error 
for 250 and 1000 Hz data (0.18 and 0.54 mean degrees error, respec-
tively). However, the results between linear and cubic spline are 

7
Evaluate the window every � samples.

8
We acknowledge that there are adaptive window size algorithms to deal with gaps; 
however, adaptive sizes are not traditionally compatible with RNN and LSTM neural 
network models. 
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close. Polynomial interpolation on the 4th-order performs worst 
over all frequencies. We have visualized these fndings in Figure 11. 
For more details of all the diferent errors, see Table 5. 

(a) Eye Movement Speed (b) Eye Movement Speed Variation 

Figure 7: (a) Mean of eye movement speed following a blink for the diferent frequencies of the stationary eye trackers in the 
data, including our reference data. (b) Variation of eye movement speed following a blink for the diferent frequencies of the 
stationary eye tracking in the data, including our reference data. The vertical dashed lines represent the points identifed as the 
frst time the line crossed the ftted function plus epsilon. In both (a) and (b), we observe a steep decrease in speed and variation 
of speed after missing data appear. These deviations following missing data seem to normalize around 60 ms and 120 ms for 
speed and variation in speed, respectively. 

(a) Eye Movement Speed Variation Preceding Missing Data (b) Eye Movement Speed Variation Following Missing Data 

Figure 8: (a) Distribution of speed [deg/ms] from 50 ms following missing data for the diferent frequencies of the stationary 
eye trackers in the data. (b) Distribution of the variation of speed [deg/ms] from 50 ms following missing data for the diferent 
frequencies of the stationary eye trackers in the data. All dashed lines represent an inverse Gaussian distribution ftted to the 
data with an R2 > 0.98. 

6 DISCUSSION 
In this work, we frst reviewed the literature on processing eye 
tracking data and then compared these methods to determine their 
validity. From the literature review, we found 81 papers published 
in the ACM digital library and IEEE Xplore until the end of 2022 
regarding eye tracking and dealing with missing data. We extracted 
the methods used to identify blinks and algorithms used to infll the 
missing data. Moreover, we found that the methods are inconsistent 

throughout the literature. With this in mind, we performed a series 
of experiments to determine the impact of the diferent methods. 
For this, we used publicly available datasets recorded under various 
conditions, allowing us to highlight possible bias and generaliz-
ability. In the following, we discuss the most critical issues and 
discuss potential consequences if they are left unaddressed. These 
include the implications of the baseline approach on interactive 
systems, the efect of the eyelid on eye tracking data, the implica-

tions of inflling methods on position error, and recommendations 
for processing eye tracking data. 
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(a) Closed-Eye Time (b) Closed-Eye Time Distribution 

Figure 9: (a) We visualized the closed-eye time for the diferent types of eye trackers gathered in the dataset, i.e., mobile, VR, 
and stationary, and their respective frequencies. Error bars represent the standard error. (b) We visualized the normalized 
frequency of closed-eye time for the diferent frequencies for the stationary eye trackers. The dashed line represents an inverse 
Gaussian probability density function ftted to the data. In both (a) and (b), we can see that the closed-eye time is very similar 
independent of the frequency or type of eye tracker used, which suggests it is independent of task. 

(a) Usable Data vs. Window Size (b) Usable Data vs. Step Size 

Figure 10: (a) We visualize the usable data for the diferent frequencies available in the stationary eye trackers. (b) We visualize 
the usable data for diferent step sizes, where half represents half the size of the window, the same represents the same step 
size as the window size, and one represents one step. The flled area represents the standard deviation. We observe a steep 
decrease in usable windows, where in a more than half of the data becomes not usable when creating windows of 10 seconds 
independent of frequency. In (b), we observe that step size all has a similar result in how much data is available. 

Table 5: Mean error in degrees for the diferent inflling methods over the diferent frequencies of the stationary eye trackers, 
where M stands for Mean, SD stands for Standard Deviation, LL stands for Lower Limit, and UP stands for Upper Limit for a 
95% confdence interval 

Linear Poly 3 Poly 4 Cubic Spline Spline 

Freq [Hz] M SD LL UP M SD LL UP M SD LL UP M SD LL UP M SD LL UP 

60 0.43 0.79 0.41 0.45 0.48 1.02 0.46 0.51 1.68 15.83 1.31 2.04 0.49 0.86 0.47 0.51 0.61 1.24 0.58 0.64 
250 0.19 0.21 0.19 0.2 0.3 0.3 0.29 0.3 0.31 0.74 0.29 0.33 0.18 0.18 0.17 0.18 0.25 0.27 0.25 0.26 
500 0.09 0.08 0.09 0.09 0.11 0.1 0.11 0.11 0.11 0.21 0.11 0.12 0.09 0.09 0.09 0.09 0.11 0.12 0.11 0.12 
1000 0.56 1.17 0.53 0.58 0.6 1.34 0.58 0.63 1.2 6.74 1.06 1.33 0.54 0.93 0.52 0.56 0.73 1.08 0.7 0.75 
Avg. 0.32 0.56 0.3 0.33 0.37 0.69 0.36 0.39 0.82 5.88 0.69 0.96 0.33 0.52 0.32 0.34 0.42 0.68 0.41 0.44 

https://0.20.30.30.29
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Figure 11: Error in mean distance from the ground truth in 
artifcially introduced blinks into the data over diferent in-
fll methods and frequencies for all stationary eye trackers. 
We see that the inflling using linear or cubic spline interpo-
lation overall results in the least amount of mean distance; 
additionally, 4th-order polynomial inflling results in the 
worse. 

6.1 Validity 
Compromising the internal validity of eye tracking studies is a 
critical concern as this issue may confound any conclusions drawn 
from such studies. Threats to the external validity of eye track-
ing research pertain to specifc conditions within the study rather 
than the broader nature of the study itself. Our literature review 
revealed instances where the preservation of internal validity was 
not consistently evident due to limited descriptions of procedures 
even when we only consider the data processing. For instance, we 
excluded 36 studies that did not report on missing data in their 
work, an additional 15 studies in our literature review as they did 
not describe how missing data is processed, and one study that 
reported on removing blinks but never defned blinks or reported 
on how they were detected. For those that removed missing data, it 
was only clear in a few cases if data were removed within a certain 
time span, trial, or participant. 

For the identifed papers that did report on the method of not 
processing eye tracking samples containing missing data, we only 
encountered three papers where they account for artifacts intro-
duced around missing data, e.g., because of the movement of the 
eyelid. Leaving artifacts surrounding missing data in compromises 
the internal validity of the data even if these artifacts are not neces-
sarily from eyelid movements. Where parsers were used (6 papers), 
none of these reported the settings that were used for the parsers. 
As things currently stand, 60/140 papers failed to provide sufcient 
information in this regard. As such, this presents an implication for 
the internal validity of their work and the conclusions drawn from 
such studies as they can be confounded with this issue. 

6.2 Replicability 
Refecting recent concerns regarding the lack of transparency in 
statistical reporting within various felds considering interactive 
systems [37, 84], similar issues arise when considering the replicabil-
ity of studies using eye tracking data. Across various instances, we 

observed a scarcity of clarity and essential detail necessary for suc-
cessfully replicating research involving eye tracking methodologies. 
Descriptions and methodologies often sufer from selectiveness, 
incompleteness, and a non-standardized presentation of informa-

tion. A signifcant portion of the analyzed papers lacked essential 
information regarding the specifcs of the eye tracking data analysis 
used. Furthermore, we observed missing participant characteristics 
and experimental protocols, and various other factors. 

The utilization of non-standard terminology, self-defned terms 
for eye tracking parameters, and occasional confusion between 
distinct gaze-related attributes contributed to the challenges in 
comprehending papers and, in some instances, rendered them prac-
tically indecipherable to readers. The decision to diverge from estab-
lished terminology not only complicates the understanding of these 
studies but also poses a more profound threat: it undermines the 
broader community’s ability to retrace and replicate the fndings 
presented. This paper aims to rectify this issue by clarifying the ter-
minology surrounding eye tracking and delineating the necessary 
components for efectively planning, conducting, and reporting 
studies involving this methodology. 

6.3 Understanding External Impacts on Eye 
Tracking Data 

In general, there are many reasons for blinks (cf. Section 2.1), which 
are impacted by many external factors. Especially as the mental 
workload has an efect (cf. [31, 196, 198, 208]), we have to assume a 
task dependency. With this, we expect that the datasets, recorded 
under various conditions, impact the blink frequency, inter-blink 
interval, and closed-eye time. Our Bayesian linear mixed models 
showed efects that the tracker type and frequency are good indi-
cators to show that the datasets are diferent with respect to the 
three measures (blink frequency, inter-blink interval, and closed-
eye time). Thus, a one-size-fts-all approach for detecting blinks 
in various situations is improbable. Moreover, this showcases that 
detection parameters that worked for one setup do not transfer to 
another setup. This highlights the need for adaptive approaches 
when detecting blinks in diferent interactive systems. 

6.4 Efect of Eyelid 
Preceding and following a blink, the eye tracking data become 
highly unstable. We analyzed the variation in data over the diferent 
frequencies for the stationary eye trackers. Our fndings show that 
assuming that the blink starts when it is detected by the default 
parsing software, e.g., by having missing data, and following the 
provided recommendations by their respective manual will leave 
artifacts in the data. These blink artifacts could have implications 
for the accuracy of interactive systems and, as such, we show that 
up to 70 ms before a blink and 118 ms after should be additionally 
excluded from the samples (see Table 4). 

6.5 Implications of Baseline Approach on 
Interactive Systems 

As the window size increases, the chance of a blink appearing in 
this window naturally increases. The baseline approach is to re-
move data that contain a blink, which is, in turn, the most common 
approach used in the reviewed work. Using smaller sections (e.g., 
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< 1 s) of eye tracking data allows for a large portion of the data 
to be usable. However, using larger window sizes, e.g., 10 seconds 
and beyond as used by Bixler and D’Mello [25] and Qvarfordt and 
Lee [164], results in less than half the data being usable, indepen-
dent of frequency. For interactive systems, this would mean that a 
suspension of updates to the system will depend on the selected 
window size and blink length, e.g., a window size of 10 s and a 
blink of 100 ms will suspend the update for 20.1 seconds. Given that 
larger window sizes increase the accuracy of interactive systems, 
e.g., [161], flling in the missing data presents the opportunity to 
have no or fewer unusable data windows. This, in turn, will result 
in a smoother experience in interactive systems. 

To showcase the implications of an approach that removes data 
containing blinks or simply ignores the presence of blinks, there 
will be a reduction in usable data as shown in Figure 10a. To further 
highlight why this introduces delays in the system, we highlight 
this further in Figure 12. Here, we show that all areas that are 
underlined with red are afected by at least one data point missing, 
which means that in turn, the interactive system would not be able 
to give a response during this time. Depending on the window size, 
the amount of delay would be: 

2 × window size (ms) + 

missing data duration (ms) + 

188 �� (from the artifacts before and after the missing data) − 1 �� 

A window size of 1000 milliseconds and missing data of 100 mil-

liseconds would result in a delay of 2287 milliseconds, where the 
interactive system would be unable to respond. 

6.6 Implications of the Position Error 
Given the distribution of blink length and the efect of the eye-
lid on variability, we created artifcial blinks evenly distributed 
throughout the data that do not contain blinks. We then applied 
fve interpolation methods, of which four are used in the reviewed 
literature. We calculated the error for each of these methods on the 
diferent frequencies of the stationary eye trackers. Our fndings 
show that linear and spline interpolation produces the least error in 
mean distance to the ground truth and that a 4th-order polynomial 
interpolation gives the largest error. 

Figure 12: To showcase the implications and delay an in-
teractive system would experience if fed eye tracking data 
containing missing data points, we highlight the following. 
The green area shows a window that is usable. Over time, 
this window moves toward the right where it will encounter 
missing data (e.g., through blinks). At this point, the interac-
tive system can no longer use the input because LSTM / RNN 
models cannot handle missing data. This continues while 
there is at least one missing data point inside the window 
until it once again contains a window without missing data. 

7 RECOMMENDATIONS ON PROCESSING EYE 
  TRACKING DATA

Given the diverse set of applications of eye tracking in the context of 
interactive systems, we advocate for the collaborative development 
of community-sourced guidelines tailored to the specifc needs 
and practices of researchers in and around the feld of interactive 
systems. Drawing inspiration from the approach of the Special 
Interest Group on Transparent Statistics from the HCI feld and 
previous work published at CHI, we present analogous eforts in the 
realm of eye tracking research. Our initiative has created an initial 
set of guidelines, accessible at https://eyetrackingguidelines.github. 
io. These recommendations aim to ensure a minimum scientifc 
quality for future eye tracking data analysis. 

To allow for easy use of our recommendations, we made our 
code for the above-mentioned results open source, see Section 9. 
These include the pre-processing and formatting of the raw eye 
tracking data from the EyeLink and BeGaze parsers as well as the 
output from the Tobii and Pupil eye trackers. The evaluation of the 
diferent blink metrics, i.e., blink frequency, length, and inter-blink 
interval. It visualizes the data loss for several window sizes and 
allows for visual inspection to identify additional cut-of points 
preceding and following blinks. Lastly, the code allows for inflling 
blinks using diferent interpolation methods. 

To use eye tracking in interactive systems to its fullest potential, 
we need to perform pre-processing actions beyond the abilities of 
the current parsers. Even when the included parsers mark blinks, 
certain artifacts remain in the data. Removing windows/trials/instances 
where blinks are present will signifcantly decrease available data 
and introduce a delay in interactive systems. As such, we recom-

mend the following processing steps for eye tracking data. 

(1) Do not remove data that contain blinks as it will cause inter-
action delays. 

(2) Remove data with high variation preceding and following a 
blink based on inspection of the given dataset. 

(3) Use linear or cubic spline interpolation to interpolate be-
tween blinks. 

(1). We recommend against removing data that contain blinks. 
While this is one of the most predominant approaches in the litera-
ture reviewed, it can, depending on the window size, result in over 
50% of the data becoming unusable. It can also lead to temporarily 
suspending updates to the interactive system, which takes more 
than double the time of the set window size. While we acknowl-
edge that interactive systems in human-computer interaction rely 
on blinks for various interactions, the susceptibility of blinks is 
subject to a variety of factors, like age, air pollutants, and time of 
day, among others, which could impact the accuracy of interactive 
systems. 

(2). We recommend inspecting the variation in speed [deg/ms] 
and variation in speed [deg/ms] preceding and following a blink. 
This will uncover any artifacts in the data related to blinks. The 
moment the eye tracker identifes a blink it can no longer track 
the pupil. This leaves the data from where the eyelid moves down 
and up dependent on the sensitivity and settings of the eye tracker, 
whether this is included in the blink or not. Visually inspecting the 
data allows for more careful interpretation. Using a linear function 
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on the data of 300-150 ms preceding the blink and setting an epsilon 
enables us to set a cut-of point between relevant data and artifacts. 

(3). We recommend using either linear or cubic spline interpo-
lation to interpolate within blinks. We identifed several inflling 
methods during our literature review and compared the most rep-
resented ones against one another. Using linear or cubic spline 
interpolation results in the least amount of mean degrees of error 
compared to ground truth data. 

8 CONCLUSION 
Interactive systems that employ eye tracking use several detection 
methods and algorithms to deal with the missing data introduced 
by blinks. However, we identifed that there is no consensus among 
the reviewed works for a general approach. For this, we reviewed 
all eye tracking studies until the end of 2022 that deal with blinks to 
identify the diferent blink detection methods and algorithms used 
to infll the missing data. In this work, we made four recommenda-

tions for interactive systems to handle missing data introduced by 
blinks, allowing for a smoother interaction. These include cutting 
of data with high variability preceding and following a blink, not 
removing data that contain blinks, and using linear or cubic spline 
interpolation to infll the missing data. 

9 OPEN SCIENCE 
We encourage readers to reproduce and extend our results and 
analysis methods. Therefore, our experimental setup, links to the 
collected datasets, and analysis scripts are available at https:// 
eyetrackingguidelines.github.io. 
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A APPENDIX 

Table 6: Overview of the 81 papers that reported on how they dealt with missing data, listed from the oldest to the newest (and 
alphabetically for authors from the same year) 

Author(s) Year Task Method Detector Additional info 

P61 Qian et al. [162] 2009 Visual Search Sequence Interpolate Missing Data 
P62 Oliveira et al. [141] 2009 Visual Search Interpolation Missing Data Linear Interpolation 
P63 Kinnunen et al. [97] 2010 Video Watching Interpolation Tobii Studio Linear Interpolation 
P64 Li et al. [120] 2010 Game Aggregate Missing Data 
P65 Nakano and Ishii [138] 2010 Wizard of Oz Aggregate or Split Missing Data Data were combined 
P66 Veneri et al. [199] 2010 Visual Search Interpolate Missing Data Linear Interpolation 
P67 Muñoz et al. [137] 2011 Game Remove Missing Data 
P68 Owens et al. [144] 2011 Semantic Search Remove Missing Data 
P69 Broz et al. [32] 2012 Holding a Conversation Remove Missing Data 
P70 Babiker et al. [18] 2013 Audio Stimuli Interpolate Missing Data Linear Interpolation 
P71 Bekele et al. [21] 2013 Virtual Reality Remove Missing Data 
P71 Ishii et al. [86] 2013 Holding a Conversation Aggregate or split Missing Data 
P72 Onorati et al. [143] 2013 Holding a Conversation Reconstruct Missing Data Singular Spectral Analysis 
P73 Yekhshatyan and Lee [211] 2013 Driving Simulator Interpolation Missing Data 
P74 Dechterenko and 2014 Visual Search Remove Pupil Size 

Lukavsky [46] 
P75 Gwizdka [70] 2014 Visual Search Average Missing Data 
P76 McIntire et al. [132] 2014 Screen Watching Imputation Missing Data 
P77 Stuart et al. [186] 2014 Free Viewing Interpolate 0, 0 coordintes Linear Interpolation 
P78 Tien et al. [192] 2014 Visual Attention Interpolation Missing Data 
P79 Cole et al. [38] 2015 Visual Search Imputation Missing Data 
P80 Rosa et al. [167] 2015 Video Watching Remove / Interpolate Missing Data Linear Interpolation 
P81 Taşkın and Gökçay [191] 2015 Game Interpolate Missing Data Polynomial Interpolation 
P82 Bekele et al. [20] 2016 Social Task Interpolate Missing Data Linear Interpolation 
P83 Romberg et al. [166] 2016 Free Viewing Aggregate Missing Data 
P84 Bodala et al. [27] 2017 Driving Simulator Extrapolate Missing Data I-CT flter algorithm 
P85 Fajnzylber et al. [55] 2017 Video Watching "fltered" Missing Data 
P86 Gavas et al. [64] 2017 Memory Task Interpolate Missing Data 
P87 Hutt et al. [82] 2017 Learning WEKA Missing Data 
P88 Jerčič et al. [88] 2017 Game Interpolate Missing Data Linear Interpolation 
P89 Merenda et al. [133] 2017 Driving Simulator Imputation Missing Data Satterthwaite Approx. 
P90 Ojha et al. [140] 2017 Reading Interpolate Missing Data Linear Interpolation 
P91 Raisi and Edirisinghe [165] 2017 Video Watching WEKA Missing Data 
P92 Zaid et al. [213] 2017 Manual Task Ignore Missing Data 
P93 Brambilla et al. [28] 2018 Free Viewing Interpolation / Remove Missing Data Linear or Cubic 
P94 Greiter et al. [67] 2018 Go/NoGo Interpolation Missing Data 
P95 Jia et al. [90] 2018 Free Viewing Only Clean Data Noise / Tracking Loss 
P96 Krieger et al. [106] 2018 Watching Video Remove Tobii Eye Tracker 
P97 Merenda et al. [134] 2018 Driving Simulator Imputation Missing Data Satterthwaite Approx. 
P98 Morales et al. [136] 2018 Video Watching Interpolation EyeLink Parser Cubic Spline Interpolation 
P99 Appel et al. [13] 2019 Game Interpolate / Remove Missing Data 
P100 Couceiro et al. [42] 2019 Programming / Coding Resampling Missing Data Iterative SSA 
P101 Gunawardena et al. [69] 2019 Surgical Intervention Remove Missing Data 
P102 Huang and Bulling [81] 2019 Input Method Interpolation Missing Data Linear Interpolation 
P103 Karthik et al. [92] 2019 Visual Search Replace Missing Data 
P104 Korotin et al. [103] 2019 Game Interpolation Missing Data Linear Interpolation 
P105 Saluja et al. [169] 2019 Reading Interpolation Missing Data Linear Interpolation 
P106 Sinha et al. [179] 2019 Reading Interpolation Missing Data Cubic Interpolation 
P107 Zhu et al. [222] 2019 Free Viewing Remove / Replace Missing Data 
P108 Aftab et al. [4] 2020 Input Method Interpolation Missing Data Linear Interpolation 
P109 Bafna et al. [19] 2020 Typing Task Interpolation Missing Data Linear Interpolation 
P110 Dan et al. [45] 2020 Visual Search Interpolation Missing Data Case by case 
P111 Ioannou et al. [85] 2020 Programming / Coding Interpolation Missing Data Linear Interpolation 
P112 Keshava et al. [95] 2020 Align Objects in VR Interpolation Missing Data Polynomial Interpolation 

Continued on next page 
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Table 6 – continued from previous page 

Author(s) Year Task Method Detector Additional info 

P113 Koskinen and Bednarik 2020 Operate Joystick Interpolation BeGaze Parser Linear Interpolation 
[104] 

P114 Li et al. [117] 2020 Free Viewing Imputation EyeLink Parser Expectation-

Maximization 
P115 Li et al. [119] 2020 Target Tracking Interpolation Missing Data Hierarchically Interpola-

tion 
P116 Subburaj et al. [187] 2020 Game Imputation Missing Data 
P117 Zhou et al. [220] 2020 Driving Simulator Interpolation Missing Data 
P118 Zhu et al. [221] 2020 Input Method Interpolation Missing Data Spline Interpolation 
P119 Abdrabou et al. [1] 2021 Typing Task Remove Missing Data 
P120 Aftab et al. [5] 2021 Driving Simulator Interpolation Missing Data Linear Interpolation 
P121 Bixler and D’Mello [25] 2021 Free Viewing Winsorization Missing Data Replace outliers 
P122 Hettiarachchi et al. [74] 2021 Game Interpolation Missing Data Cubic Spline Interpolation 
P123 Jun et al. [91] 2021 Drone Flying Remove Missing Data 
P124 Li et al. [118] 2021 Learning Interpolation Missing Data Billinear 
P125 Pillai et al. [159] 2021 Driving Simulator Moving Window Inflling Missing Data 
P126 Vrzakova et al. [201] 2021 Video Watching Remove Missing Data 
P127 Wang et al. [204] 2021 Driving Simulator Interpolation Missing Data Spline Interpolation 
P128 Zahabi et al. [212] 2021 Driving Simulator Approximated Missing Data 
P129 Arefn et al. [14] 2022 Visual Discriminaton Remove Missing Data 
P130 Hirzle et al. [76] 2022 Virtual Reality Interpolation Missing Data 
P131 Khan et al. [96] 2022 Video Watching Remove Missing Data 
P132 Malladi et al. [127] 2022 Free Viewing Interpolation Missing Data 
P133 Qin et al. [163] 2022 VR Task Interpolation Missing Data Cubic Spline Interpolation 
P134 Simione et al. [178] 2022 Free Viewing Remove / Interpolate Missing Data 
P135 Souchet et al. [181] 2022 Stroop task Tobii Pro I-VT software Missing Data No Settings Specifed 
P136 Stein et al. [184] 2022 VR Task Extrapolate Missing Data Linear Interpolation 
P137 Wang et al. [205] 2022 Questionaire Infll with 0 Missing Data 
P138 Zheng et al. [219] 2022 Driving Simulator Interpolation Missing Data Linear Interpolation 
P139 Zheng et al. [218] 2022 Input Method Interpolation Missing Data Nearest Neighbours 
P140 Zhu et al. [223] 2022 Driving Simulator Interpolation Missing Data 
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