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ABSTRACT
Today’s workplaces are dynamic and complex. Digital data
sources such as email and video conferencing aim to support
workers but also add to their burden of multitasking. Psycho-
physiological sensors such as Electroencephalography (EEG)
can provide users with cues about their cognitive state. We
introduce BrainAtWork, a workplace engagement and task
logger which shows users their cognitive state while work-
ing on different tasks. In a lab study with eleven participants
working on their own real-world tasks, we gathered 16 hours
of EEG and PC logs which were labeled into three classes:
central, peripheral and meta work. We evaluated the usabil-
ity of BrainAtWork via questionnaires and interviews. We
investigated the correlations between measured cognitive en-
gagement from EEG and subjective responses from experi-
ence sampling probes. Using random forests classification,
we show the feasibility of automatically labeling work tasks
into work classes. We discuss how BrainAtWork can support
workers on the long term through encouraging reflection and
helping in task scheduling.
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INTRODUCTION
Workplaces and work attitudes are getting more complex with
the large array of data sources (e.g., email, calendars) that
support workers in multitasking [4, 6, 12]. However, this in-
crease in sources of information also overwhelms and over-
loads workers [4]. This has encouraged researchers to study
how workers in dynamic workplaces behave during a typi-
cal working week [12] and provided theoretical frameworks
in which workers divide their work [6, 12]. Prior work ex-
plored ways to support the experience of workers. For ex-
ample, MoodTracker [11] shares moods among co-workers
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and AffectAura uses multiple environmental and physiologi-
cal sensors to promote reflection in the workplace [13]. These
approaches increase productivity and reflection quality.

Recent research showed that knowledge about one’s own state
can boost productivity, empathy, and help in changing behav-
iors [7, 11]. This increasing interest in self-awareness is evi-
dent in the growing quantified-self movement which utilizes
long-term data collections for increasing health or well-being.
With physiological and activity sensors becoming ubiquitous,
it is not only possible to log activities, but also cognitive (e.g.,
engagement) and affective (e.g., happiness) states. Mapping
life events to long term monitoring of cognitive and affective
states positively influences decision making and helps reflect-
ing upon and increasing productivity [13].

While previous work utilized information about the user’s
emotional valence [13], arousal and stress [10], or employed
explicit subjective methods (e.g., questionnaires) to probe
cognitive state [12], in this work we focus on implicitly-
sensed cognitive state information. We study the impact of (1)
presenting users with their cognitive state implicitly sensed,
along with (2) a mapping to the workplace activities per-
formed at the time the data was recorded. In specific, we uti-
lize Electroencephalography (EEG) signals from the frontal
lobe of the brain which are able to detect shifts in engage-
ment and workload [3] and map them to workplace activities
logged through a PC logger. Properties of EEG signals such
as the different frequency bands provide cognitive informa-
tion with a high temporal resolution that can be related to
real-world stimuli [3, 14]. HCI research recently showed the
feasibility of using consumer EEG sensors for sensing user’s
engagement in several domains [1, 8, 9, 16, 17, 18]. This
provides an opportunity for exploring the coupling of EEG
and computer-based tasks in a typical workplace to provide
insights about cognitive state while working.

We contribute BrainAtWork, an implicit cognitive sensing
system that logs activities performed on a computer as well as
the engagement and relaxation levels of the user. We evaluate
the utility of BrainAtWork’s dashboard and discuss how it can
be used in the long term to automatically classify workplace
tasks, enhance self-reflection, and promote productivity.
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Figure 1. (a) Session view showing EEG Engagement (blue), relaxation (green) as a line graph. Working spheres are depicted using dashed lines,
PC activity depicted using grayscales. Summary of window and task activity is shown as pie charts. Names of tabs, programs and tasks are written
vertically on the top graph. (b) Average engagement and relaxation scores per task view shown when users click on the corresponding signal type.

SYSTEM
BrainAtWork tracks tasks and task engagement in a work en-
vironment (see Figure 1). It fuses input from a consumer
EEG device and computer task logging to provide users with
a web-based dashboard of their activity and cognitive engage-
ment which they can explore, edit, and reflect on.

Task and Activity Logging
BrainAtWork automatically logs PC activity, programs, and
active windows/tabs. PC activity is classified into: Active,
Idle, or Away. The idle state is set if there is no key-
board/mouse activity for 30 seconds, and the away state is set
if there is no activity for more than five minutes. Users can ex-
plicitly label tasks, in real-time or post-hoc, into three major
working spheres, a concept that was introduced by Gonzales
and Mark [6]. Central working sphere tasks are concerned
with the main core of the work. In the Peripheral working
sphere, tasks are related to the central task (e.g., setting up
a development environment). Meta working sphere tasks are
unrelated to the work core (e.g., browsing social media).

EEG Logging
The system uses the Neurosky Mindwave1 device to collect
EEG signals from the frontal lobe (FP1, 10-20 System) at
512 Hz. This brain region is related to learning and cognitive
states such as engagement [3, 5]. A Fast Fourier Transform
(FFT) is applied on the raw EEG data to extract the different
frequency bands which we use to calculate cognitive engage-
ment. Prior research [15] provided a formula to calculate cog-
nitive engagement using the α(7−11Hz), β(11−20Hz), and
θ(4− 7Hz) frequency bands, where E, representing engage-
ment, is calculated as:E = β

α+θ (1). The EEG Engagement
index reflects visual processing and sustained attention [3]
and can identify changes in attention related to stimuli due
1http://neurosky.com

to its high temporal resolution [3, 14]. This equation was
successfully utilized in conjunction with the Neurosky Mind-
wave to calculate cognitive engagement [8, 16, 17].

We calculate one-second engagement scores E (cf., Equa-
tion 1). Employing an algorithm similar to [17], we filter
the signal from muscle artifacts (e.g., blinking) by calculating
the median of five-second moving windows of the engage-
ment score E. We apply an Exponentially Weighted Mov-
ing Average filter with a smoothing factor of 0.2 based on
prior tests to acquire the filtered E score EEWMA. Based on
the minimum Emin and maximum Emax engagement scores
achieved by the end of each recording session, we calcu-
late a normalized engagement score between 0 and 100 as
Enorm = EEWMA−Emin

Emax−Emin
∗100 (2) which is then used for plot-

ting engagement scores on the BrainAtWork dashboard. In
addition to the calculated cognitive engagement, we display
the Neurosky EEG meditation score (between 0–100) , which
indicates the level of meditation2. We plot both the engage-
ment and meditation scores on the dashboard (cf., Figure 1).
While this is a simple way of reducing artefacts which allows
us to have an online system, future work should address this
by further employing more rigorous filtering algorithms.

BrainAtWork Dashboard
The logged information is presented on a web-based personal
dashboard (Figure 1). Users can add and edit tasks that were
missed or not logged. Users can explore their task engage-
ment and active programs/tabs, as well as see summaries of
the logged activity, brain data, and working spheres. Users
can choose between the display of a second by second fluctu-
ation of their logged brain activity (Figure 1 – a) or an average
engagement or relaxation per task (Figure 1 – b).

2http://neurosky.com/biosensors/eeg-sensor/
algorithms/
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STUDY
Using a mixed methods study design, we conducted a lab
study with real workplace tasks to evaluate BrainAtWork
and understand users’ reflections on their cognitive state. Our
system logged all PC activity, working spheres, and EEG
data. To collect information about the perceived type of
task participants are working on (i.e., Central, Peripheral, or
Meta), we asked the participants to explicitly label the type
of task whenever they moved from one task to the other using
the experience sampling method. For this, we used pop-ups
that participants receive right after they change/enter a new
task (and potentially a new working sphere) to probe their
perceived rating of their current engagement, the disruption
caused by the pop-up (i.e., to investigate the interruptibility
in certain situations), and their current state of interruptibility.
Additionally, participants receive a pop-up every 6–11 min-
utes which is the time span in which a regular disruption oc-
curs at a workplace [19]. Each pop-up had three Likert items:
How engaged were you prior to this message (1=not engaged
at all, 7=highly engaged)? How disrupting do you find this
message (1=not disrupting at all, 7=highly disrupting)? How
ready are you at this moment to be interrupted (1=not ready
at all, 7=highly ready)?

We used the think-aloud protocol to explore participant’s re-
flections on their work tasks, cognitive engagement, and the
usability of BrainAtWork’s dashboard after the study. We
asked participants to rate the usefulness of each feature of the
system through a questionnaire (1=not useful at all, 7=highly
useful). To assess the usability of the system, we used the
System Usability Scale (SUS) [2]. Finally, we conducted
semi-structured interviews to gather qualitative feedback.

Participants and Procedure
We recruited 11 (4 females) participants aged between 18
and 31 (M=24,SD=3.85) through university mailing lists.
A prerequisite was to have a software development project
that the participant intends to work on and that participants
would bring their own laptops to have a familiar work setting.
Participants were students of computer science, biology, and
physics. After introducing the study and asking the partici-
pants to sign consent forms, we setup BrainAtWork software
on their machines and explained them the basic functionality.
Participants familiarized themselves with the system prior to
the study. We conducted the study in a quiet room where
we left participants to work on their personal software devel-
opment projects and told them that they are free to work on
whatever tasks they have . We encouraged them to refrain
from excessive movement while working to reduce artifacts.
The total duration of the study was 2.5 hours with 90 minutes
of logging, 30 minutes of setup, and 30 minutes for question-
naires, think-aloud protocol, and a semi-structured interview.

RESULTS

Logged Tasks and Activity
Participants used on average 7 (SD=3) different programs,
performed on average 133 program switches and 311 win-
dow switches. Overall, we logged 990 minutes of EEG data.
Participants were active 93.3% (SD=6.5) of the time, idle

for 6.6% (SD=6.2) and away for 0.2% (SD=0.4) of the time.
They spent on average 70.6% (SD=26.6) of the time working
on Central tasks, 16.1% (SD=13.9) on Meta tasks and 13.5%
(SD=18.8) on Peripheral tasks. Throughout the study, partic-
ipants performed Central tasks (e.g., programming, database,
web development), Peripheral tasks (e.g., setting up the de-
velopment environment, writing documentation), and Meta
tasks (e.g., social media browsing, reading news websites).

System Usability and Qualitative Results
BrainAtWork achieved an SUS score of 74.7 (above aver-
age usability [2]). Participants rated the following features as
very useful (Med=5): average EEG data per working sphere
(SD=0.7), time spent on each working sphere (SD=0.8),
summary of used programs, windows and switches (SD=0.6)
and the log containing program names (SD=1.1). They found
the overall average EEG data less useful (Med=4) when unre-
lated to working spheres (SD=0.6), minimum and maximum
of EEG data (SD=0.6) and when EEG data is related to tasks
defined by the users (SD=0.8) and PC activity (SD=1.4).

One researcher transcribed and analyzed the recorded data
from the think-aloud protocol and extracted specific themes.
All participants found the system easily understandable and
found the main elements of the system such as the used pro-
grams, pie-chart summaries, editing and deleting entries to be
useful and self-explanatory. Two participants found it hard to
understand the difference between the tab/window changes
(depicted by dots on the x-axis, cf. Figure 1) and the pro-
gram changes, depicted by the program name. All partici-
pants mentioned that the provided tooltips are very helpful.

Participants commented on their perceived and logged en-
gagement, relaxation, and PC activity data. P1 stated that
overall she was very relaxed, and noted that “(I) was more
relaxed while coding (central) than during other activities”
and that she was not aware that she spent that much free time,
referring to a 27% of time being spent on meta tasks. P4 men-
tioned that his engagement was highest during programming,
however his relaxation was average during the same task. He
stated that he was focused but not too strained and was in-
terested in seeing this effect in the data over time. P6 feels
that his engagement dropped over time which could also be
seen in his data. P7 mentioned that “my relaxation increased
during a break using the mobile phone and drops again when
I am doing (programming) exercises”. P7 noted that he was
working on a repetitive programming task that was not very
challenging and noticed in the graph that his engagement in-
creased when he detected a coding error in his task. Finally,
participants stated that they would use the system for their
own research (P4, P5), for scheduling daily tasks and observ-
ing their performance over time (P4, P7 and P9). P10 sug-
gested using the system to compare different working envi-
ronments (e.g., working from home versus at the workplace).

To summarize, qualitative feedback from participants indi-
cated that they found the system reflects their cognitive state
(P4, P6, P7) and can help them boost their productivity by
quantifying the time spent on different tasks and scheduling
their breaks according to their cognitive state (P1, P4, P5, P9).



P
Random Forest Classification Results

INSTANCES CENTRAL PERIPHERAL META
C P M PR RC F1 PR RC F1 PR RC F1

1 3605 81 1344 0.93 0.97 0.80 0.92 0.73 0.81 0.89 0.99 0.84
2 3262 0 1718 0.95 0.96 0.96 - - - 0.92 0.91 0.91
3 4704 0 198 0.98 0.99 0.99 - - - 0.78 0.60 0.68
4 3967 129 985 0.934 0.98 0.95 0.90 0.83 0.86 0.89 0.73 0.80
5 3419 823 3 0.96 0.98 0.97 0.89 0.83 0.86 1.00 0.68 0.80
6 2535 261 2281 0.87 0.86 0.88 0.90 0.79 0.85 0.86 0.86 0.86
7 4347 303 1029 0.95 0.98 0.96 0.83 0.64 0.72 0.93 0.88 0.91
8 7258 571 889 0.99 0.99 0.99 0.94 0.92 0.93 0.90 0.89 0.90
9 3071 1840 614 0.88 0.90 0.89 0.84 0.85 0.85 0.76 0.66 0.71
10 3279 132 100 0.99 0.99 0.99 0.95 0.94 0.94 0.78 0.69 0.73
11 4989 0 54 0.99 0.99 0.99 - - - 0.56 0.19 0.28

Table 1. Participant-dependent classification using random forests to
classify working spheres (Central, Peripheral, Meta) using three fea-
tures (cognitive engagement, attention, meditation). Col. 1 depicts par-
ticipant number, col. 2-4 depict number of instances per working sphere,
col. 5-13 depict the precision PR, recall RC and F1 scores per class.

Engagement, Working Sphere, and Experience Sampling
Each participant responded on average to 25 (SD= 15.3) ex-
perience sampling probes which appeared at task boundaries
(when users changed working spheres) and at random times
(6–11 minutes) with a total of 255 probes for all participants.

We analyzed the participants’ responses to the experience
sampling questions provided at a task or working sphere
change. Participants find that the first few moments after
starting a Meta task are most suitable for receiving a notifi-
cation or an interruption (Med=1, SD=1.3). Next came Pe-
ripheral tasks (Med=2, SD=1.9) followed by Central tasks
(Med=4, SD=2.1). They rated the disruptiveness of the
experience sampling probe at the beginning of the task at
Med=2 for Meta tasks and at Med=4 for both Central and
Peripheral. We used a ten second time window to calcu-
late the average normalized engagement before receiving the
experience sampling probe. At the beginning of a Cen-
tral task, participants perceived their engagement as high
(Med=4) with an EEG engagement score of 28%. For Meta
tasks, the engagement score was 21% (perceived engage-
ment: Med=3). For Peripheral tasks the engagement score
was 27% (perceived engagement: Med=2).

We calculated the average normalized engagement per work-
ing sphere. Participants were engaged most in Central tasks
with a mean engagement of 28.7% (SD=12), followed by
Meta (M=28.0%, SD=9) and Peripheral tasks (M=20.0%,
SD=17). We calculated Pearson correlations among the re-
sults of the experience sampling probes, working spheres and
cognitive engagement scores. We found significant correla-
tions between all experience sampling items: perceived inter-
ruptibility and perceived engagement (r = .753, p = .001),
perceived disruptiveness and interruptibility (r = .894, p <
.001), and perceived engagement and disruptiveness(r =
.762, p < .001) which are consistent with prior literature find-
ings [19]. We also found positive significant correlations be-
tween all items of experience sampling probes and type of
working sphere: perceived engagement (r = .262, p < .001)
perceived interruptibility (r = .352, p < .001) and perceived
disruptiveness (r = .311, p < .001).

Classification of Working Spheres
We used a random forest machine learning classifier to clas-
sify working spheres based on measured EEG features. We
used three features: the 1-second engagement score calcu-
lated as previously explained and the meditation as well as
attention scores provided by the Neurosky software. Classi-
fication results are shown in Table 1. Three participants did
not label any tasks as peripheral (P2, P3, P11). The results
show that classification is possible with high accuracy for the
three classes using the three features. However, Meta tasks
had lower F1 scores where it was often confused with cen-
tral tasks which was also apparent in the average engagement
scores for these tasks. This is in line with feedback from par-
ticipants that they were sometimes more engaged in browsing
social media than in central tasks if the task itself was boring.

DISCUSSION
In this work, we investigated the use of an EEG dashboard
and task logging coupled together in a workplace scenario.
Quantitative findings show that it is possible to automati-
cally classify working tasks into the three working spheres
of central, peripheral, and meta using cognitive engagement
calculated through EEG. Experience sampling and correla-
tions showed the strong relation between working spheres and
engagement. This can be used to infer opportune moments
for interrupting workers or suggesting breaks using the pro-
posed BrainAtWork system. The collected data shows that
the combination of type of working sphere and current cogni-
tive engagement levels have influence on the person’s desire
to be disrupted. Literature has addressed the automatic de-
tection of interruptibility status of workers using PC logging
data or using physiological sensors [19]. However, using a
combination of cognitive information and PC logging may
provide further insights into interruption handling. For ex-
ample, showing notifications to the user or co-workers when
entering a new meta task versus not showing notifications in
the middle of central tasks. Qualitative findings showed how
participants reflected on their performance, activity, cognitive
engagement, and relaxation levels as well as see potential use
of this technology in their daily lives for task scheduling and
changing work locations to boost engagement. A limitation
of our work is the use of a single electrode EEG device using
basic artifact reduction techniques. However, we chose this
device to increase the simplicity and usability of our concept
dashboard to be able to explore close to real-world scenarios.
However, future work in this direction should consider using
more complex devices and filtering algorithms.

CONCLUSION AND FUTURE WORK
We presented BrainAtWork an engagement and task log-
ging dashboard for workplace environments. Through a study
where participants worked on their real-world tasks, BrainAt-
Work provided helpful insights and was perceived as a useful
and potential way to help workers schedule their tasks. We
proved the feasibility of using EEG engagement to classify
types of tasks and will extend this work by adding automatic
classification and investigating using BrainAtWork to share
availability with coworkers. We also plan to conduct a long
term study where BrainAtWork is used daily for reflection.
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