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Abstract. Driving is a sensitive task that is strongly affected by the
driver’s emotions. Negative emotions, such as anger, can evidently lead
to more driving errors. In this work, we introduce a concept of detecting
and influencing driver emotions using psycho-physiological sensing for
emotion classification and ambient light for feedback. We detect arousal
and valence of emotional responses from wearable bio-electric sensors,
namely brain-computer interfaces and heart rate sensors. We evaluated
our concept in a static driving simulator with a fully equipped car with
12 participants. Before the rides, we elicit negative emotions and evaluate
driving performance and physiological data while driving under stress-
ful conditions. We use three ambient lighting conditions (no light, blue,
orange). Using a subject-dependent random forests classifier with 40 fea-
tures collected from physiological data we achieve an average accuracy of
78.9% for classifying valence and 68.7% for arousal. Driving performance
was enhanced in conditions where ambient lighting was introduced. Both
blue and orange light helped drivers to improve lane keeping. We discuss
insights from our study and provide design recommendations for design-
ing emotion sensing and feedback systems in the car.
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1 Introduction

Driving is a sensitive task, deeply embedded in our everyday lives. While modern
cars are designed to reduce the driver’s physical effort through assistive systems
and features, the demand on focus and cognitive abilities is still high. Even as
we move towards the era of (semi-) automated driving, we expect that drivers
will still need to maneuver in various situations and take over control. Hence, it
is important to understand and react to the driver’s state [40, 56].

The driver’s state does not only comprise cognitive abilities or how sleepy or
focused they are, but also includes their emotional state. Prior research shows
that emotions have a strong impact on driving performance and capabilities,
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and negative emotions while driving (e.g., sadness, anger) can lead to unde-
sired consequences and driving errors [15]. Extreme positive emotions like over-
excitement, where the driver’s arousal (i.e., activation) state is very high, can also
have negative effects on driving [65, 27, 16, 61]. Hence, monitoring and reacting
to driver emotion is an important rising area of automotive HCI research.

With wearable sensors and sensing capabilities embedded in modern cars
we are a step closer to realizing the vision of having a ubiquitous sensing envi-
ronment inside the car. Using sensors, researchers can detect driver drowsiness
through camera-based methods and physiological sensing [28, 62], driver stress
through GPS traces [59], or the driver’s cognitive load and interruptibility us-
ing physiological sensors [31, 56]. While the importance of maintaining balanced
emotional states while driving has been recognized, there is little work on closing
the loop by not only sensing emotions, but also providing feedback [25, 41, 65].

We introduce the concept of a full sensing and feedback loop in automotive
contexts using wearable physiological sensors and ambient light. We look into
the use of light-weight psycho-physiological sensors as an implicit emotion de-
tection method: Consumer-level bio-electric signals such as electroencephalog-
raphy/electromyography (EEG/EMG) and heart rate (HR) sensors to detect
emotional arousal and valence. These sensors have proven their ability to de-
tect emotional and cognitive states with acceptable accuracies [4, 17, 23, 56]. On
the feedback side, we explore the use of ambient light as an emotional feedback
modality. Light was shown to have an effect on moods and emotions, e.g., by
influencing the circadian system [10]. Ambient lighting in the car has been ex-
plored as a means of providing a more comfortable interior, through warning
signals of upcoming traffic or to calm down the driver [35]. Combining input
and output modalities we aim to assess the complete concept.

We investigate the effects of easy and stressful driving scenarios under elicited
negative emotions on driver performance. In an experiment (N = 12), we ex-
plore two different ambient light colors (blue and orange) and their effects on
the driving performance, physiological data, and self-reported emotional state.
Results show that ambient lighting feedback can positively impact driving per-
formance and lead to more focus or relaxed states. We envision a future where
the car becomes an emotional feedback companion for the driver which attempts
to support them by reacting to their emotional state.

Contribution Statement This paper makes the following contributions: First,
we introduce our concept and vision of the car as an emotional sensor and
feedback companion. We then present an evaluation of the concept in a static
driving simulator with a real car, to investigate the influence of (a) negative
emotions during easy and stressful rides and (b) ambient lighting on driving
performance, physiological data, and self-reported emotional state. Third, we
provide recommendations for designers of emotional feedback systems in cars.



Detecting and Influencing Driver Emotions using EEG and Ambient Light 3

2 Background & Related Work

When considering emotions in the car, we see three related research aspects,
namely: the effect of emotions in driving scenarios, the detection of emotions
using psycho-physiological sensors, and finally, in-car responses to regulate and
influence driver emotions. We therefore divide prior work that influenced our
research into these three main groups.

2.1 Emotion in Driving Scenarios

The emotional state of drivers has a strong impact on their driving performance
[15, 20, 21, 29]. Prior work identified emotional states which influence driving and
relate to driving safety [9, 27]. These include aggressiveness, happiness, anger,
fatigue, stress, sadness, confusion, urgency, and boredom.

When driving a car, the driver’s tasks are typically divided into three classes [9]:
(1) Primary driving tasks include all necessary tasks in order to keep the vehi-
cle on track such as steering, lane selection, accelerating, braking, and stabiliz-
ing, (2) Secondary tasks comprise activities to improve driving performance or
safety (e.g., blinking, or activating wipers and headlights), and (3) Tertiary tasks
consist of all other tasks that are performed while driving including changing
temperature, adjusting radio settings, interacting with a cellphone or talking to
other passengers. The aforementioned emotions differently impact the driver’s
tasks: Primary tasks are strongly related to safe driving and are usually com-
promised by negative emotions. Secondary and tertiary tasks affect the driver’s
comfort more than ensuring safe driving [9]. However, these factors often lead
to a change in emotion or a shift in attention that endangers safe driving.

According to Russell’s model of affect [52], emotions can be defined on two
axes, valence and arousal: Valence refers to whether the emotion is more positive
or negative, and arousal refers to the amount of activation in the emotion [52].
Using this model, research found positive emotions (i.e., a more positive valence)
to result in a better driving performance and happy drivers to produce fewer
accidents [20, 21, 29]. However, extremely positive emotions (having a very high
level of arousal / activation) can also negatively effect safe driving [3, 21]. Yerkes
and Dodson [63] found in an experiment that the best human performance values
are measured with a medium level of arousal (activation), keeping in mind that
the optimal level depends on task difficulty. Coughlin et al. [12] applied this
model to the automotive domain.

Looking at negative emotions, prior work determined that aggressiveness and
anger (i.e., low valence, high arousal) as well as sadness (i.e., low valence, low
arousal) all negatively impact driving behavior and are shown to increase the risk
of causing an accident [61, 13]. Sadness usually is accompanied by resignation
and passiveness, resulting in longer reaction times not just in critical situations,
but also by reducing the driver’s attention [13]. The low arousal state may also
result in fatigue or sleepiness, which is a very dangerous precondition since it
negatively affects all abilities that are necessary for safe driving [28, 62].



4 M. Hassib et al.

As for all other tasks that require cerebral capacity, stress is very likely to
occur while driving. The primary driving task itself is often a stressful task.
Moreover, drivers often experience a higher workload due to additional tasks
beyond driving: additional factors or tasks such as following a car, making faster
progress (changing lanes during rush-hour traffic), receiving phone calls, the
need to arrive on time, or communicating with passengers, increase the mental
workload [56]. High mental workload comes with high arousal, which reduces
driver performance [39, 46, 56, 59].

2.2 Driver Emotion Detection

The steady development of accurate emotion recognition techniques allows its
application in different contexts, including driving. Eyben et al. [15] state four
major modalities for emotion recognition in automotive contexts: audio (i.e.
speech), video, driving style, and physiological measurements. However, not ev-
ery measurement technique is suitable to detect every emotion. Prior work inves-
tigated the use of audio recording to detect anger and nervousness by employing
speech features such as volume and pitch [14, 15, 41]. A disadvantage of speech
in the car is the necessity for drivers to constantly speak or express themselves in
an audible way. Emotion recognition from driving style was explored by different
researchers to detect states of stress, high cognitive workload, interruptibility,
and drowsiness [31, 59, 62]. High arousal states were found to result in more
actions, such as frequent lane changes or having a large longitudinal variance,
whereas low arousal states usually result in less active driving. Riener et al. [48]
recognized nervousness from posture and motion in the seat. Their hypothesis
was that nervous drivers move more than relaxed ones.

The emotional and cognitive states of humans is reflected through physi-
ological signals which can be detected using, for example, body-worn sensors
providing fine-grained feedback. Implicit emotion recognition while driving us-
ing psycho-physiological sensors was investigated by several researchers [47, 55].
For example, heart rate gives an indication of the driver’s state of arousal [30,
56]. Lower heart rates indicate a more relaxed state, whereas higher heart rates
occur during high driver activation. Respiration rate is also connected to arousal
states, slower and shallower breathing indicates a relaxed state whereas alerted
or active states result faster breathing and indicate emotional excitement [15].
Skin conductance levels (SCL) are associated with measures of emotion, arousal,
and attention [25, 56]. EEG signals measured from the top of the scalp give in-
formation about the cognitive and emotional state of the user [8, 23, 49].

Katsis et al. [30] used EMG, HR, respiration, and SCL to classify stress, eu-
phoria, and disappointment in car-racing drivers. De Waard et al. [60] conducted
a field study to investigate the effect of driving on different types of roads on the
heart rate variability (HRV) and consequently the mental demand of drivers.
Solovey et al. used machine learning classifiers with features from HR, SCL,
and driving performance to detect the driver’s mental workload [56]. Healey
et al. [24] classified stress levels using HR, EMG, SCL, and respiration during
driving on highways and urban roads. Jahn et al. [26] conducted a large-scale
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study and concluded that heart rate changes reflect emotional strain. Collet et
al. [11] collected heart rate and skin resistance data during driving on a closed
track and concluded that both physiological measures increased when perform-
ing additional tasks such as phone conversations. EEG sensing was used to detect
drowsiness while driving [8] and to detect cognitive states in simulated virtual
reality driving [34]. Schneegass et al. [54] presented a real-world driving study
in which ECG, SCL, and skin temperature data was collected while participants
drive in differing road environments. They found that SCL varied significantly
across road types [54].

2.3 In-Car Responses to Regulate & Influence Emotions

While the larger body of automotive affective computing research is concerned
with reliably detecting emotions, reflecting and regulating emotions once de-
tected remains a challenge. Research introduced multiple mitigation strategies
to either increase the driver’s awareness of their emotional state [25] or intro-
duced design suggestions to help shifting the driver’s state to a more desirable
one [65]. Zhu et al. [65] and Fakhrhosseini et al. [16] investigated the use of music
to relieve anger situations while driving. Braun et al. explored the viability of
ambient light, visual feedback, voice interaction, and an empathic voice assis-
tant as strategies to regulate sadness and anger while driving [6]. Nass et al.
investigated mirroring voice with driver emotions and found that when drivers’
emotions matched the car’s voice emotion, they had fewer accidents, focused
more on the road and spoke more to the car [41]. Harris and Nass researched be-
havioral and attitudinal effects of cognitively re-framing frustrating events using
voice prompts [22]. They found that voice prompts telling drivers that the actions
of others on the road were unintentional reduced driver frustration and negative
emotions [22]. Roberts et al. [50] studied the differences between warning users
through visual and auditory alerts in real-time or post-hoc. They found drivers
to be more receptive to post-hoc critic [50]. Hernandez et al. envision a concept
of a reflective dashboard, making drivers aware of their stress levels measured
through skin conductance sensors by showing red or green light. They showed
that people slow down upon red light [25].

2.4 Summary

Related work shows that negative emotions impact driving performance. Re-
searchers investigated the use of physiological sensors to gain insight into driver
emotions, and, more recently, started to explore different design opportunities to
reflect, relieve, or mitigate negative emotions. In our work, we present a concept
which combines emotion detection and reflection in the car. We investigate the
feasibility of using lightweight EEG and heart rate sensors to detect negative
valence while driving, and the effects of using dashboard ambient lighting to
reflect and influence emotions.
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3 Concept and Vision

We envision the car as a companion which senses, reflects, and communicates
feedback to the driver in a subtle and seamless manner. Our concept uses psycho-
physiological sensors for continuously detecting the driver’s emotional state with-
out jeopardizing drivers’ attention by asking repeatedly for subjective feedback
(e.g., by using questionnaires). To provide emotional feedback to the driver we
use ambient lighting on the dashboard through LEDs to provide subtle, yet per-
ceivable feedback. The intention is that this light shifts the driver’s emotions
towards a desirable state through emotional awareness and regulation. Below we
discuss both input and output modalities used in our concept.

3.1 Emotion Detection: Psycho-physiological Sensing

Researchers explored different psycho-physiological correlates that enable emo-
tion recognition [4]. Signals captured from the human body reveal a plethora of
information about users’ current emotional, physical and cognitive states. In our
concept we rely on EEG/EMG and heart rate sensing wearables. The prolifera-
tion of consumer-level wearable sensors into the market in suitable form factors
allowed researchers to further explore their use in HCI [23].

In our concept, we use both consumer-level EEG and heart rate sensors for
emotion detection. Whereas heart rate has been successful in detecting arousal
rates [17], EEG has been successful in detecting emotional valence [4, 34]. Phys-
iological sensors in general allow for collecting fine-grained unbiased emotional
information, without adding further workload on users which is critical when
driving a car. In addition, compared to camera-based techniques, using physi-
ological sensors is not sensitive to light conditions or occlusions. On the other
hand, physiological sensing, is person-dependent and prone to be influenced by
muscle and movement artifacts [57].

3.2 Emotion Feedback: In-Car Ambient Light

For the output modality, we chose ambient lighting as a subtle way to visualize
feedback in the car. Using different lighting techniques in the car is not a new
concept in itself. Many modern cars include ambient lighting to provide a feed-
back about different states (e.g. doors open, car locked), or as reading lights (for
example, BMW Moodlight5). Outside the car, ambient lighting is also used in
other road environments such as tunnels6. This familiarity makes it a useful and
suitable modality to augment the car’s interior with further information that
can easily be perceived by the driver.

Prior work investigated using ambient lighting in the car for signaling, for
increasing awareness [36], enhancing night vision [51], or signaling upcoming road

5 https://legacy.bmw.com/com/en/newvehicles/x/x6/2014/showroom/design/

ambiente_light.html, accessed February 2018
6 http://www.thornlighting.com/download/TunnelINT.pdf, accessed September

2018
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Fig. 1. A driver in our simulator study to evaluate our concept, wearing the EEG and
heart rate sensors during the blue (left) and orange (right) ambient lighting conditions.
The sensors were used to detect the driver’s emotions while the ambient light was used
to influence driving behavior. Both light colors improved driving performance compared
to a baseline ride due to their warning (orange) and calming (blue) effects.

conditions [33]. Löcken et al. present a survey on in-car ambient lighting [35].
However, ambient lighting in the car has rarely been used to reflect and influence
the driver’s emotional state.

In our concept we chose two ambient lighting colors, a cool color (blue) and
a warm color (orange): Blue ambient lighting is related to vitality, energy, and
power. Additionally, it is perceived as a calming and pleasant color but barely
arousing emotions [37]. Red and orange are associated with a higher arousal
level [35]. To differentiate the warm color stimulus from a warning signal (e.g.
such as traffic lights), we chose orange instead of red to increase arousal. To
evaluate our concept, we conducted a simulator study that integrates different
emotion evoking rides and uses psycho-physiological sensors for emotion detec-
tion and ambient light conditions for regulation and reflection.

4 Simulator Study: Emotional Driving

To evaluate our concept, we conducted a driving simulator study equipped with
a real car. In the study we tested the effect of driving performance under negative
elicited emotions during easy and stressful rides, and different ambient lighting
conditions. Our main goals were: (1) to analyze psycho-physiological responses
during actual driving context and the feasibility to classify emotions in this setup
using light-weight wearable sensors; (2) to analyze the effect of negative emotions
while driving easy and hard rides; and (3) to investigate the effect of ambient
lighting on driving performance and emotional arousal and valence.

4.1 Apparatus

Emotion Elicitation In this study we focused on driving starting in a negative
emotional state. As we have presented in the related work section, negative
emotions such as sadness have a negative effect on driving performance.

To ensure that drivers were in a negative state before the start of the driving
tasks, we used the DEAP database [32] which consists of 120 excerpts of music
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videos from different music genres that are rated according to valence and arousal
on the SAM scale [5]. This database was already used and evaluated with medical
grade EEG data collection and promising results were found: In a lab study,
Koelstra et al. extracted 40 videos from the database which showed the strength
of elicited emotions [32]. For our study, we chose four videos from the dataset
that were ranked lowest. These videos (#23, #24, #28, and #30) were all rated
in the low arousal and low valence quadrant [32].

Driving Simulator and Ride Description Our static driving simulator con-
sisted of a fully equipped stationary car (BMW i3), a projector, and speakers.
The projector showed the driving scenario on a 5 m×3 m wall. We used four
drives in our study: one easy baseline drive where the driver had a car-following
task on an almost empty highway, and three stressful car-following drives where
the driver was on a busy highway and faced several annoying driving maneuvers
from other drivers. Each drive was six minutes long.

Baseline drive: The simulation was modeled according to SAE J2944 standard
criteria [19]. The driver follows another vehicle in the center of the lane, with
constant speed and headway, without lane changes, on a straight highway.

Stressful drives: This concept was adapted from Schmidt et al. [53] who de-
signed a number of traffic scenarios to induce negative emotional states. The
rides contain multiple lane changes and various stressful events, such as a
close encounter with trucks or a construction site with narrowed lanes. Par-
ticipants were also instructed to follow a designated vehicle in the center of
the lane and keep a constant and safe distance.

Data Collection During the study we collected physiological data, driving
performance, and emotional ratings. To collect and record EEG/EMG signals, we
used a Muse brain-sensing headband7. This headband uses four electrodes placed
on the frontal and parietal lobes according to the 10–20 positioning system,
namely: AF7, AF8, TP9, and TP10. The device provides access to raw EEG
and relative EEG frequency bands, blinks, and jaw clenches. The data is sent
to a computer via Bluetooth. To measure participants’ heart rate, we used a
Polar H7 chest strap sensor8. The sensor sends HR information via Bluetooth
low energy at a rate of 1 Hz. All data streams and task triggers were combined
in an experimenter interface, where consistent timestamps were assigned.

To collect ground truth data about driver emotions in a driving context, we
used the automotive self-assessment method (ASAM) [7]. Using a 9-point SAM
would have been quite intrusive during the rides. In this case, users would need
to choose a SAM rating from radio buttons during driving. On the other hand,
asking users to verbally indicate their emotional ratings whilst driving can lead
to biased results due to the experimenter being there to collect the answers.

7 https://www.choosemuse.com/
8 https://www.polar.com/us-en/products/accessories/H7_heart_rate_sensor
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Fig. 2. Three images showing the simulator study setup: (A) The projected driving
scenario during an overtake. The distance to the followed vehicle is shown in yellow (B)
The dashboard of the car showing the ambient lighting LEDs around the wheel and
along the passenger side. On the right, the tablet is shown depicting the continuous
ASAM scale. (C) The driving simulator showing the stationary car and the projected
driving scenario.

Hence, we fitted a tablet to the right of the driver with two continuous
scales which can easily be reached and clicked by the driver with the right hand.
Figure 2 (B) shows the interior of the car, depicting the tablet, the scales, and
a smiley face in the middle. The top scale, arousal, is reflected in the eyes of
the smiley face in the middle which goes from a sleepy face to an awake face.
The bottom scale depicts the valence and it adjusts the mouth of the smiley
going from negative to positive. The scales are from 1–100. We adjusted the
sensitivity of the scales so that the driver can click anywhere over or under
the top or bottom of the scale and it would adjust accordingly. The tablet was
always within arm’s reach. Finally, we collected driving data through the driving
simulator. This included speed and acceleration, distance to followed car, lane
variations, and crashes.

Dashboard Ambient Light We used Philips Hue9 LED light stripes with
1,600 lumen to create ambient light insight the car. Connected over the Philips
Hue bridge, we selected the colors of the light strips with the corresponding
mobile app. We used a 2 m strip of the Hue LEDs which were fixed around the
dashboard as shown in Figure 1 and Figure 2 (B). As explained in the concept
section, we evaluated the effect of two colors, blue and orange.

9 https://www.meethue.com/, last access: 2018-09-19
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Fig. 3. Study procedure block diagram showing each step with durations. The baseline
relaxation phase and easy drive were always fixed in the beginning. The order of the
color conditions during the stressful drives was counter balanced between participants.
In the end a debriefing session and semi-structured interview were conducted.

4.2 Study Design

We used a repeated measures design with two independent variables, namely,
driving scenario (4 levels) and light color condition with three levels (no light,
blue light, orange light). As explained previously, we had four main drives –
one baselines drive and three stressful drives. The duration of all drives was six
minutes. During the baseline drive, no ambient light was triggered. One stressful
drive was in the no light condition, where no light was triggered, one was in the
blue light condition, and one in the orange light condition.

Figure 3 illustrates a block diagram of the procedure of the whole study with
durations. The light was triggered in fixed intervals of one minutes and lasting
for 30 seconds each time. ASAM ratings were triggered at 1.5 minute intervals
constituting four ASAM ratings per drive. The order of the rides was counter-
balanced to reduce learning effects. Figure 4 depicts the process of triggering
light and ASAM experience sampling questions during the stressful drives, with
(a) showing the light conditions and (b) the no light condition.

4.3 Participants and Procedure

Twelve participants took part in our study (4 females, 21–61 years, M = 31, SD =
11.4). Participants were mostly engineers or students, all had driving licenses.

After our participants arrived at the lab we explained that the purpose of the
study was to collect physiological data while driving in different scenarios and
showed them the sensors. We introduced how we collect the subjective ASAM
feedback on the mounted tablet during the ride and explained that the partici-
pant’s input will be triggered several times during each ride with a short beep
sound. Participants did not know a priori about the use of the installed ambient
light. Before the study, the participants signed a consent form.
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Fig. 4. The procedure of one run from the stressful drives which included the color
condition (no light, blue, orange). (a) depicts timings for the blue and orange light
conditions, and (b) depicts timings for the no light condition. The timing of the ASAM
triggers was exactly the same as for the blue/orange/no light as the figure shows.

We first asked participants to put on the sensors and ensured good contact.
Next, participants adjusted the car seat and started a short test drive to get
used to the car and simulation. The scenario used for this ride was an empty
highway. A test ASAM question was triggered on the tablet with a short beep
and participants were requested to answer it while driving. When participants
stated to be comfortable with driving, we started the study.

The first part of the study included a one minute relaxation task to collect
baseline EEG and HR measurements. Afterwards, participants watched the first
music video on the projection wall while they were seated in the car and received
an ASAM prompt at the end of the video clip. The first ride was then the baseline
ride for six minutes. We reminded the participants that they should keep a
distance between 50 to 70 meters to the car lead vehicle. After the end of this
ride, the participants continued with the three other video-ride combinations
with the different color conditions. The order of the videos and the ambient
light conditions were randomized. After the study we conducted a short semi-
structured interview to gather feedback about their perceptions of the rides and
the ambient lighting conditions. Particpants were asked whether the emotion
elicitation worked, if and how they perceived the different lighting modes, and
whether they think any of these stimuli influenced their driving performance or
stress levels. The duration of the study was around 1 hour.

5 Emotional Driving Study Results

In the following we discuss the results from our study, including the analysis of
the subjective in-car experience sampling emotion ratings, the classification of
physiological data, and finally the driving performance analysis.

5.1 Emotional Ratings

We collected 480 ratings from the twelve participants, 240 for each arousal and
valence. Four ratings per drive and one rating per music video making up 20 rat-
ings for each arousal and valence from each participant. We calculated the mean
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and standard deviations of the arousal and valence scores from the continuous
1–100 ASAM ratings. Our results show that, first, the music videos were indeed
successful in putting participants in a negative valence before each ride, with a
mean rating of 48.5 (SD = 23.0) for arousal and 40.25 (SD = 18.04) for valence.
Participants rated the easy baseline rides with a mean of 57.3 (SD = 18.34) for
arousal and 52.5 (SD = 16.5) for valence. They rated stressful drives with no
ambient lighting almost the same on the arousal scale (M = 57.9, SD = 20.16)
but lower on the valence scale (M = 48.2, SD = 15.24), indicating that they
were in a more negative mood during the stressful rides.

Looking at the ambient lighting conditions, we found that participants rated
both arousal and valence higher than for the no ambient lighting condition for
both the orange and the blue lights. The mean arousal for blue light was 61.5
(SD = 18.34), and the mean valence was rated 53.4 (SD = 17.38). For the
orange ambient lighting condition the mean arousal was 61.04 (SD = 16.5), and
the mean valence was rated 52.04 (SD = 16.8).

Since the scales for arousal and valence are nonparametric, we used nonpara-
metric tests to test for significance (Friedman and Wilcoxon tests). Wilcoxon
sign-rank test for pairwise comparisons yielded no significant results except for
valence between videos and the blue light condition (p=0.003), and valence of
light and no-light condition (p=0.02). The results overall show an increase in
valence in the ambient lighting conditions compared to the no light condition
under the same stressful driving scenario.

5.2 EEG and HR Classification

For the analysis of the heart rate we used the data collected via the Polar chest
strap. The data from three participants was removed due to hardware issues.
We averaged the heart rate from the last minute for each drive per person to get
insights into the overall change in heart rate depending on the drive type [53].
The mean baseline heart rate was 67.4 bpm (SD = 8.4). For the easy drives, the
mean heart rate was 69.6 bpm (SD = 7.4). The stressful drives all increase the
heart rate means from the baseline and easy drives with the stressful drive in
the no light condition having the highest average of 71.8 bpm (SD = 7.7). The
stressful drive under the blue light condition had a mean of 70.2 bpm (SD = 6.6)
and finally the stressful drive with orange light achieving a mean of 71.4 bpm
(SD = 5.4).

Although the data from only nine participants was considered in the analysis,
we see that heart rates increased for the stressful drives compared to the baseline
and easy drives. Additionally, the blue light condition achieved lower heart rates
than both the orange and the no light conditions.

For drives in the ambient lighting conditions, we analyzed the 30 second seg-
ments which had blue or orange light compared to the 30 second segments before
or after. A Wilcoxen sign-rank test found significant effects on the heart rate be-
tween the 30 seconds before the orange segment and the 30 seconds during the
orange segment (Z = −1.955, p = 0.05). Whereas we did not find significant
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differences for the blue segments and the segments before them, we found signif-
icant differences when comparing the blue segments to the segments after them
(Z = −2.037, p = 0.038). This shows that the blue and orange ambient lighting
had indeed an effect on heart rate. Overall, heart rate decreased in the stressful
rides with ambient lighting compared to the no light stressful ride.

For the analysis of the EEG data, we first extracted the EEG frequency band
powers provided by the Muse headband, which were common average referenced
and band-passed between 0.1 Hz and 30 Hz and notch-filtered at 50 Hz. We first
epoched the EEG data into 2.5-second windows. We calculated the 2.5-second
mean of the spectral powers for each electrode and frequency resulting in 20
features. We calculated 20 more features from asymmetry differences and asym-
metry ratios that were successful in prior work [64]. The asymmetry differences
for each frequency band on each electrode pair (TP and AF) were calculated
as follows: AsymDf = fRight − fLeft where AsymD represents the asymmetry
difference and f are the left (AF7, TP9) and right side (AF8, TP10) mean spec-
tral powers. Calculating all asymmetry values for all frequency bands produces
another 10 features. We calculated the asymmetry ratios of the frequency bands
according to the formula AsymRf = fRight/fLeft, where AsymR is the ratio
between two frequency bands and f are the left (AF7, TP9) and right side (AF8,
TP10) mean spectral powers resulting in 10 more features (40 features in total).

We labelled the data according to the aggregated ASAM scores collected from
the digitized ASAM ratings presented on the tablet to obtain a score between
1 (low arousal/valence) to 4 (high arousal/valence). We chose a random forest
classifier and classified the data using Weka10. The classification algorithm was
chosen due to its success application in other EEG classification tasks [23, 64].
We performed a person-dependent classification with a 10-fold cross validation.

The results are promising for classifying 4-class arousal and valence ratings.
For arousal, all four classes were represented through our participants’ ASAM
ratings. F1 scores have an average of 68.7% over all four classes. For the valence
classification, F1 scores have an overall average of 78.9% for all four classes,
albeit the absence of two of the classes (classes 1 and 4 ) completely from three
participants and the representation of only one class for one participant (P10).

5.3 Driving Performance Analysis

We calculated mean headway variability as well as standard deviation of lane
position (SDLP) for each tested concept and ride. Headway variability is in-
fluenced by the behavior of preceding traffic, like lane changes, and provides
a value of how well a driver is following the car in front [1]. We observed a
mean headway variability of 52.98m (SD=5.63m) for the baseline ride and a
significantly higher value of 73.00m (SD=10.56m) for the stressful ride with-
out lights (F = 14.65, p < 0.001). Orange and blue lights during the ride did
not lead to significant differences to either baseline or no-light condition with
67.49m (SD=11.69m) and 61.00m (SD=8.14m), respectively. If we look at

10 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 5. Results from the driving performance analysis. Top: The overall SDLP during
the orange and blue light conditions showing the variations between light on and light
off segments. Bottom: The mean and SD of headway variability (left) and SDLP (right)
for each of the rides. The two right most bars show lower values during the segments
with the orange or blue lights on.

the subsections of each ride where light was displayed, we can, however, see sig-
nificant differences to all rides (Figure 5, left). Orange light led to a headway
variability of 32.82m (SD=19.79m) and blue light to 42.74m (SD=17, 59m).
This is a substantial decrease in headway variability when lights are displayed.

The standard deviation of lane position (SDLP) is a measure of lateral move-
ment during the ride which is considered a core metric for assessing driving
performance in simulations and provides high test-retest reliability [42, 58]. We
report insignificant differences between the four rides with SDLPs from 0.47m to
0.49m (Figure 5, middle). Here again, the segments of the ride where light was
shown improved the driving performance significantly (F = 19.38, p < 0.001).
When orange light was displayed, a SDLP of 0.28m (SD = 0.04m) was mea-
sured and blue light performed comparably with 0.28m (SD = 0.07m).

At first glance, we suspected the data was influenced by sequence effects as
lights were always shown during the ride and not at the very start. Yet, we
could verify the effect by visualizing the ride progress and associated SDLP
values. Figure 5 (right) shows the values for sequences with and without light
compared to the polynomial trend of the stressful ride without lights. We can
clearly see that SDLP is lower when lights are turned on and higher if off.
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5.4 Qualitative Feedback

We collected feedback through semi-structured interviews after the study. All
participants stated that the drives were quite stressful, due to all the overtak-
ing and catching up, and following the car. This indicates that the rides were
successful in putting participants in a challenging situation.

When we asked participants how they perceived the different ambient lighting
conditions, we got varying opinions. Several participants stated that they surely
perceived the lights but did not think it had any relation or effect on their driving
performance or mood (P1, P2, P4, P5). Two participants stated that they felt
the lights were alerting them to be more focused on the road and avoid getting
bored, distracted, or sleepy, regardless of the color of the light (P3, P7). One
participant stated that the effect of the driving scenario on him is greater than
the effect of any ambient lighting regardless of the color (P11). Two participants
indicated that the orange light made them more alarmed, since it uses the same
color metaphor as alerts (P9, P4). One participant stated that the orange color
made him more ’critical’ of his driving, thinking back at what he did wrong and
what he can do better in the following phase (P9). Two participants stated that
the blue light made them feel more relaxed, comfortable yet focused. However
they were not sure if that really had an effect on their driving (P8, P10).

Most participants perceived blue light as relaxing and providing a nice feel to
the interior of the car, whereas orange was perceived as an alarming, undesirable
light, except for short periods of time to make users focus more on the road.

5.5 Limitations and Lessons Learned

We explored the feasibility of using psycho-physiological sensors and ambient
lighting in a real vehicle. For this, we utilized light-weight wearable sensors
for emotion recognition. We acknowledge that this setup could have introduced
more artefacts in the measured physiological data than a controlled context. We
used a machine learning approach with signal filtering algorithms to pre-process
the data aiming to reduce artefacts. However, more complex signal processing
approaches for more rigorous artefact filtering would be required in a scenario,
e.g., with a moving car), to compensate for movement artefacts.

For three participants, heart rate was not recorded properly. Hence, we decide
to exclude this feature from classification. We acknowledge that using features
from heart rate information such as heart rate variability (HRV) could further
enhance the classifier model [56].

We used videos to elicit emotions at the beginning of each ride to have
consistent emotional baselines across all participants. We only elicited negative
emotions on the low arousal and low valence level as a starting point before the
beginning of each drive. In a real scenario the emotional states of the user may be
more diverse, for example, highly excited or very angry. To keep our study con-
sistent and confined in timing, we deliberately focused on certain combinations
of arousal and valence. Future work could look at more combinations.

Finally, eliciting emotions for studies is a challenging task. Future work could
look at using other methods for doing so.
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6 Discussion & Design Recommendations

We discuss our findings and provide recommendations to designers of emotional
feedback in the car. We provide insights regarding implicit emotion sensing and
privacy, the use of ambient lighting as emotional awareness or influencing modal-
ity. Finally, we suggest how the findings from our studies can be used in ubiqui-
tous road environments and for semi-autonomous driving scenarios.

6.1 Emotion Sensing: Privacy Considerations

The use of physiological sensing to detect emotions has been subject to recent
research. It is no longer confined to laboratory settings and experiments but
slowly finds it way into day-to-day life contexts. This creates the need for several
privacy considerations. Emotions, naturally, are very private [44]. People have
the freedom to hide their emotions by not talking about them or keeping a
neutral facial expression purposefully.

However, overriding or faking emotions that are collected through physio-
logical sensing is quite difficult [2, 38, 44]. Does this mean that future affective
systems diminish the choice of self-expression and desired state of self presenta-
tion (cf. Goffman’s work on self representation [18])?

In our first investigation of the concept, we did not consider the car a social
setting shared with other people. Albeit that, we got feedback from our semi-
structured interviews that tapped into this area. One participant even mentioned
that he was feeling watched, although he knew that no one is currently looking at
his sensed data and neither is it shared with anyone. Multiple other participants
stated that they felt as if the car is warning them about themselves or criticizing
their driving (mostly in the orange light condition). Note, that in our study, the
drivers were the only people in the simulator and no other drivers or passengers
were in the car. This means, the emotional feedback was limited to the driver.
This suggests that, counter-intuitively, situations were the user is driving alone
should be subject to investigation, looking into how emotional states can be
presented in a privacy-preserving manner [45]. In addition, this is also relevant
in situations were other passengers are present.

We encourage designers of emotional feedback systems to alter the feedback
depending on the context. For example, when using ambient lighting, designers
can limit the location of the feedback light to the front of the driver only when
multiple passengers are in the car. This however, may affect how the light affects
the driving performance. Future work should further investigate scenarios with
passengers, considering in particular their relationship to the driver.

6.2 Ambient Lighting: Awareness or Influence

Our drivers did not know a priori what the ambient lighting meant. Qualitative
feedback showed that multiple participants thought that the light was triggered
in reaction to either their sensed physiological data or their subjective emotional
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feedback. Multiple participants stated that the orange light, owing to its close-
ness to red, indicated that something was wrong, and raised their awareness.
They stated that they definitely focused and drove better afterwards. This was
also reflected in the driving performance analysis where the lowest variability
in headway and in lane positions was achieved during period of orange light.
In contrast, participants stated that the blue light was there to influence their
emotional state and driving performance making them more relaxed.

Through our study we cannot determine if one type of feedback, awareness or
influence, worked better. While our participants drove better under the orange
condition, which multiple participants felt was an awareness cue, several partic-
ipants stated that they did not find the orange light very comfortable. On the
other hand, the blue drives were also successful in reducing driving errors, and
also in reducing the heart rate. This shows that it indeed had a calming effect
on the drivers. This is in line with findings from prior work. For example, Nass
et al.’s work on mirroring in-car voice to current emotions [41] which proved to
work better using a contrasting tone to the current emotion.

Designing emotional feedback, be it ambient lighting or a different form, can
fall into either category. While we only evaluated the use of two colors during
emotional driving scenarios, it was clear that there is indeed an effect based on
the choices of colors. Future work should investigate the mental models associ-
ated with the different forms of feedback, or variations in one form (e.g. colors
in ambient lighting scenarios) as well as personally customized color choices. De-
signers of emotional feedback systems should ensure that users have the correct
mental model of the system.

6.3 Ambient Lighting in the Wild

Through our studies, participants repeatedly mentioned their familiarity with
ambient lighting as a modality, from its recent integration in home and car
environments. We see this as an opportunity for providing and influencing emo-
tional states on the road. Several participants mentioned that night lights on the
streets and in particular in tunnels can use this concept. A possible idea would
be to use blue lighting in tunnels, e.g., to calm drivers down, especially those
not comfortable with driving in narrow and dark places.

Another suggestion is to use car-to-car communication systems to trigger
lighting in or outside of the car, depending on the traffic state. For example,
when there is traffic congestions or an accident, the predicted emotional state of
the drivers arising from these traffic situations could be considered. Extending
this concept to other types of vehicles, such as buses and trains, by equipping
the vehicle with LED lights can not only influence the driver, but also other
passengers whose wellbeing influences driving performance through decreasing
distractions [43]. In the aviation industry, ambient light similarly supports the
flight experience and helps to arrive relaxed and with less jetlag11.

11 http://www.a350xwb.com/cabin/, last access: 2018-09-20
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7 Conclusion and Future Work

In this work we explored the concept of using physiological sensing, namely EEG
and HR, as emotion sensing during driving scenarios, and ambient lighting as
emotional feedback. In a simulator study with a real car we investigated (1) the
feasibility of classifying emotions based on physiological data collected in context,
and (2) the effect of different ambient lighting conditions on the emotional state
and driving performance during stressful driving scenarios. Our findings show
that it is possible to use light-weight sensors to classify emotional arousal and
valence in a driving context with an acceptable accuracy. We also found that
using ambient lighting in the car enhances driving performance. Participants
found that blue light relaxed them and that orange light made them more critical
of their performance.

Future work could explore the design of different ambient lighting colors and
locations. We intend to explore scenarios with multiple passengers in the car.
In addition, we are interested in exploring the use of physiological sensors and
ambient lighting in a real road driving scenario. Also, embedding more sensing
technologies (e.g., measuring the skin conductance level, SCL) may allow higher
classification accuracies and more fine grained information to be achieved.
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