Bringing Physics to the Surface

Andrew D. Wilsonl, Shahram Izadiz, Otmar Hilligesz, Armando Garcia-Mendozaz, David Kirk*

"Microsoft Research
One Microsoft Way
Redmond, WA 98052

2Microsoft Research Cambridge
7 JJ Thomson Avenue
Cambridge, CB3 0FB

{awilson, shahrami} @microsoft.com, otmar.hilliges@ifi.lmu.de, {armandog, dakirk } @microsoft.com

ABSTRACT

This paper explores the intersection of emerging surface
technologies, capable of sensing multiple contacts and of-
ten shape information, and advanced games physics en-
gines. We define a technique for modeling the data sensed
from such surfaces as input within a physics simulation.
This affords the user the ability to interact with digital ob-
jects in ways analogous to manipulation of real objects. Our
technique is capable of modeling both multiple contact
points and more sophisticated shape information, such as
the entire hand or other physical objects, and of mapping
this user input to contact forces due to friction and colli-
sions within the physics simulation. This enables a variety
of fine-grained and casual interactions, supporting finger-
based, whole-hand, and tangible input. We demonstrate
how our technique can be used to add real-world dynamics
to interactive surfaces such as a vision-based tabletop,
creating a fluid and natural experience. Our approach hides
from application developers many of the complexities inhe-
rent in using physics engines, allowing the creation of ap-
plications without preprogrammed interaction behavior or
gesture recognition.

ACM Classification: HS5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors, Algorithms

Keywords: Interactive surfaces, game physics engines

INTRODUCTION

Emerging interactive surface technologies allow users to
interact with the digital world by directly touching and ma-
nipulating onscreen content. People who use such systems
often comment that this ability to touch digital content adds
a physical or tangible quality to the interaction, making the
virtual feel more real. Many interactive surface-based ap-
plications attempt to further highlight this “pseudo-
physicality” by carefully designing interface objects that
exhibit a sense of real-world behavior. One example is the
common rotate and translate behavior found in many table-
top applications, where the interaction is analogous to mov-
ing a sheet of paper on a flat surface with one or more fin-
gers [17, 18]. Although such an interaction may feel realis-
tic, it is very much preprogrammed. For example, the way

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

UIST 08, October 19-22, 2008, Monterey, California, USA.

Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

67

in which a digital photo rotates or translates is defined by
specific interaction logic. Such techniques thus possess an
inherent scripted nature which may break down once the
user interacts with the system in ways unanticipated by the
developer.

Figure 1. Some examples of physics-enabled inte-
ractions supported by our technique. Gathering and
piling objects (top left), interacting with a ball using
collisions and friction (top right), folding a cloth-like
mesh (bottom left, middle), and tearing a mesh (bot-
tom right).

In this paper we take a different approach for supporting
pseudo-physical interactions on surface technologies—
systems that are often capable of sensing multiple touch
points and possibly even more sophisticated shape informa-
tion. Specifically, we utilize physics engines used in com-
puter games that simulate Newtonian physics, thus enabl-
ing interaction with digital objects by modeling quantities
such as force, mass, velocity, and friction. Such engines
allow the user to control and manipulate virtual objects
through sets of parameters more analogous to those of real-
world interactions.

While physics engines are comprehensive, they are also
complex to master. Many coefficients and parameters are
exposed to application developers, and controlling the si-
mulation via user input is non-trivial, particularly when
considering more than a single contact point. We present a
simple yet powerful technique for modeling rich data,
sensed from surface technologies, as input within the phys-
ics simulation. Our approach models one or more contact
points, such as those sensed from a multi-touch surface
[7,14], and also scales to represent more sophisticated
shapes such as outlines of the whole hand or tangible ob-
jects on the surface [20,25]. This allows the user to interact
with objects by friction forces and collisions, but avoids

exposing users and application programmers to the com-
plexities of the physics engine.

We demonstrate the applicability of the technique using a
commercially available games physics engine and a proto-
type vision-based interactive surface. We highlight some of
the interactions such an approach affords, for example ga-
thering multiple digital objects or fine control of a virtual
ball using friction and collision forces, as shown in Figure
1. Our system creates natural and fluid physics-based inte-
ractions “for free”—i.e., without the need either to explicit-
ly program this behavior into the system or to recognize
gestures. We also demonstrate the ability of advanced
physics simulators to enable user interaction with more
complex materials such as soft bodies and cloth, as shown
in Figure 1.

We have experimented with various alternatives for simu-
lating surface input within the physics world, the trade-offs
of which are discussed in this paper. Our aim is to allow
practitioners to understand the nuances of these alternatives
so that they may further explore the intersection between
interactive surfaces and physics. We also discuss both early
experiences using our technique and some of its limitations.

RELATED WORK

Much work has recently been published on interactive sur-
faces, and particularly on direct-input tabletops [7,14,25].
Some of this work examines physics-like interactions. For
example, Kruger et al. [17] explored simple notions of fric-
tion and motion to allow an object to be translated and ro-
tated using a single point of contact. Other systems [12,22]
have implemented gestures such as flicking, throwing, and
pushing to add velocity and inertia to onscreen objects.
Beyond tabletops, a number of interactive systems have
explored the physicality of objects as a principle around
which interaction is organized. Electronic files stack like
real documents [19], move out of the way as if they have a
solid form [23], peel back like paper [8], and move as if
alive [5]. Rather than employing a full physics model, such
systems use pseudo-physics in minimal ways to support
subtle interaction possibilities. The present work looks to
address a richer set of physics-enabled behavior, and focus-
es on problems related to input.

Various attempts to provide richer and more realistic 3D
interactions have also been explored in the context of inter-
active tabletops [13]. Stahl et al. [24] describe a tabletop
where objects float to the surface when accessed and sink
back to the ground when no longer used. Hancock et al.
present a set of methods to compensate for off-axis viewing
[16] on multi-user tabletops, as well as techniques for shal-
low-depth interaction [15]. These systems allow basic ma-
nipulation of 3D objects but do not model interactions
based on a physics simulation.

Realistic dynamics simulation has a long history in graph-
ics and animation communities. Baraff [3] gives an over-
view of the main concepts for calculation of rigid-body
dynamics. More recently, real-time collision detection and
response with stable friction calculations became feasible
[4]. Erleben et al. [9] provide an overview of current tech-

68

niques and advancements that led to the development of
sophisticated physics engines for simulation and gaming,
such as PhysX, Havok, Newton, and ODE. However, these
techniques have yet to reach the user interface and interac-
tion research communities broadly.

One notable exception is BumpTop [1], which uses a phys-
ics engine to add real-world dynamics to the Tablet PC
desktop. It supports notions such as collisions, mass, and
inertia, and higher level constructs such as piling. The work
nicely demonstrates some of the capabilities of a modern
physics engine. However, the approach is based on a single
point of input and menu-based selection. Compared to the
rich means available for manipulating physical objects, this
single-point input model can be limiting.

Multiple inputs are considered in the application of an early
physics engine by Baraff with the Responsive Workbench
[10]. This system simulates a 3D bimanual assembly task
using two 6 DOF input devices and a stereoscopic display.
An object may be manipulated with one hand by placing
eight springs connected to the corners of a virtual cube ri-
gidly attached to the user’s hand. Bimanual interactions are
supported by the superposition of forces from both hands.
Thus, when one hand is released, the object snaps to the
position and orientation of the other.

Interactive surfaces, particularly vision-based systems
[14,20,25,26], allow the capture of rich sensor data that not
only includes multi-touch data but also detailed shape in-
formation, such as images of the users’ entire hands or oth-
er tangible objects near the surface. We present a technique
for modeling this rich and diverse sensor input,
representing these effectively as friction and contact forces
in the physics simulation. These capabilities augment and
extend the single contact model utilized in BumpTop and
the bimanual approach in Responsive Workbench, support-
ing single-touch, multi-touch, contour-based, and tangible
input using a single technique.

INTERACTIVE SURFACE INPUT

A contact on an interactive surface (e.g., a fingertip touch-
ing the surface) is most easily represented as a discrete 2D
point. In the case of vision-based interactive surfaces,
neighboring sensor pixels are usually grouped into conti-
guous regions or connected components [6], with the idea
that each component corresponds to a contact. The center
of the component is then easily calculated. This approach
thus reduces each contact to a point-based representation,
regardless of shape.

This point representation of contacts allows application
developers to think in terms of familiar point-rectangle hit-
testing algorithms typical of traditional cursor-based sys-
tems, but it imposes significant limits on interaction. First,
point-based hit testing may fail to catch the user touching a
virtual object if the contact is not compact, as when the user
places a large part of their hand on surface. In this case, the
center point may lie outside the target object. Secondly,
tracking point-based contacts to deduce motion can lead to
difficult problems related to correspondence. For example,
consider two fingers that move so near to each other that

they now appear as a single contact. The choice of which of
the original contacts to eliminate can result in very different
motion interpretations. Finally, reducing contacts to points
prevents users from drawing on the full spectrum of mani-
pulation styles found in everyday life. Consider the mul-
tiple grasping strategies illustrated in Figure 2, for example.
Each gives a different feeling of control in the real world.
Ultimately, it seems that point-based systems encourage the
exclusive use of index fingers on interactive surfaces.

Figure 2. Multiple grasping strategies for rotating a
resting object.

One approach for preserving more information about con-
tact shape is to determine the bounding box of the contact,
or the major and minor axes of an ellipse model that ap-
proximately fits the shape. These approaches work well for
compact contacts (e.g., fingertips) and certain hand poses
[27], but less so for complex shapes and their motion. Al-
ternatively, the shape may be represented more precisely as
a polygon mesh by calculating each contact’s contour,
represented as a closed path [11]. Another technique is to
take pixels lying near the contour by computing the spatial
gradient using a Sobel filter [11].

These approaches allow us to support even more sophisti-
cated representations of user input. We would like to com-
bine this broad fidelity of input with advanced physics si-
mulations to expand the vocabulary with which we can
manipulate digital objects. Our aim is to make manipula-
tion of digital objects less scripted, using rich and varied
interaction techniques and strategies.

PHYSICS SIMULATIONS

Today’s physics engines enable the creation of real-world
mechanics and behavior in graphical applications while
hiding computational complexity. They employ many
physics concepts such as acceleration, momentum, forces,
friction, and collisions. In addition to rigid bodies, many
systems model particles (for smoke, dust, and so forth),
fluids, hair, and clothes. Virtual joints and springs give “rag
doll” characters and vehicles appropriate articulation, and
materials can be programmed with specific properties—so
that ice is slick, for example. The present work primarily
concerns contact forces, such as those due to collisions and
friction between simulated bodies.

The handling of collisions is typically divided into collision
detection, the determination of whether two rigid bodies are
in contact, and collision response, the application of appro-
priate forces if they are in contact. For example, the colli-
sion of a cube falling on the floor may be detected by con-
sidering the intersection of the faces defining the cube with
those of the floor. The change in motion of the cube as a
result (the response) is a function of mass, inertia, velocity,
the point of contact with the floor, and other factors.

69

Friction forces resist motion when the surface of one body
stays in contact with the surface of another. If two surfaces
are moving with respect to each other, kinetic friction op-
poses the forces moving the bodies. If two surfaces are at
rest relative to each other, static friction opposes forces that
would otherwise lead to the motion of one of the bodies.

SURFACE INPUT WITHIN A PHYSICS SIMULATION

In order to interact appropriately with virtual objects in a
physics engine, surface contacts must be represented within
the simulation. These engines have enormous potential and
flexibility. Accordingly, there are many strategies for mod-
eling surface input in the physics world. We briefly de-
scribe these strategies here, and give more detail later.

e Direct force: A force is applied where a contact point
touches a virtual object. The force direction and magni-
tude is calculated from the contact’s velocity and size if
available.

e Virtual joints and springs: Each contact is connected to
the virtual object it touches by a rigid link or spring, so
that the object is dragged along with the contact.

e Proxy objects: Contact points are represented as rigid
bodies such as cubes or spheres. These bodies are an ap-
proximation of the contacts, and interact with other vir-
tual objects by collisions and friction forces.

o Particles: Where additional information about a contact’s
shape is available, multiple rigid bodies—or particles—
are combined to approximate the shape and motion of the
contact more accurately. This allows for better modeling
of interaction with the whole hand or other contacts such
as tangible objects.

o Deformable 2D/3D mesh: Another approach for model-
ing more sophisticated shapes is to construct 2D or even
3D meshes if appropriate sensors are available.

It would seem that a deformable 3D mesh of the hand
would achieve the highest degree of fidelity. But a number
of difficulties exist with this approach. First, most interac-
tive surfaces provide sensing at or near the surface only,
not full 3D shape. Similarly, because the manipulated ob-
ject exists only on the (flat) display surface, the 3D shape
of the hand, if captured, would not conform to the object
and so would not reflect the shape of a real hand grasping a
real object. Finally, constructing such an animated mesh is
difficult, requiring robust tracking of features and accurate
deformation of the 3D object.

That leaves us with a key question that motivates this pa-
per: How does one best use surface input to interact with
advanced physics simulations in useful ways? We describe
our rationale and experiences in implementing and evaluat-
ing the above alternatives. The main contribution of this
paper is a novel Particle Proxy technique that retains most
of the benefits of mesh-based representations—in particu-
lar, a high fidelity of interaction—but is considerably easier
for application programmers to implement.

Applying External Forces Directly

A typical strategy for moving an object on an interactive
surface in response to touch is to continually update its

position to match the touching contacts’ position. Generally
we will refer to this manner of moving objects by setting its
position and orientation directly generally as kinematic
control.

Within a physics simulation, however, the most common
way for an application to control the movement of a rigid
body is to apply one or more forces. For example, a space-
ship in a game might have thrusters on either side of its
body. The ship may be propelled forward by applying for-
ward force at the location of both thrusters. If one of the
forces is applied in the opposite direction, the ship will
turn. Rotation is the by-product of forque, which occurs
when forces are applied off-center (of mass) because dif-
ferent “parts” of the body are moving at different speeds.

From a programmer’s point of view, this approach is very
different than moving the ship by setting its position. To
effect kinematic control within a physics simulation, we
must calculate the precise force and torque required to
move the object into its target position. This method of
positioning an object ensures correct collision response
with other bodies in the simulation. In comparison, directly
setting the position of the body within a simulation can lead
to unstable and unpredictable results. Absolute positioning
might be analogous to teleporting a real object from one
location to another. Issues such as interpenetration whereby
objects become partially embedded in each other, can arise.

A natural strategy for moving an object to follow a contact
on an interactive surface is therefore to consider that each
contact imparts a friction force to the body it touches ac-
cording to the contact’s motion (and presumed mass).
These multiple friction forces may be applied to the body,
as in the example of the spaceship. Unfortunately, to calcu-
late the forces necessary to match a contact’s movement, all
other external forces acting on the body must be taken into
account and counteracted. These may include friction
forces and collision responses that are difficult or impossi-
ble for application developers to obtain.

This difficulty extends to considering forces corresponding
to surface contacts. In the case of multiple contacts, the
correct friction forces corresponding to each contact must
be determined simultaneously. Consider the case where one
or more of the contacts exhibits static friction. Recall that
static friction exerts a force that counteracts forces that
would otherwise lead to a body’s motion. For example, if
one contact “pins” an object so that it will rotate due to the
motion of another contact (e.g, Figure 2, left), the applica-
tion of correct friction force due to one of the contacts re-
quires knowing the friction force due to the other.

In fact, at the heart of any physics engine is a sophisticated
constraint solver that addresses this very problem. Without
essentially constructing a new solver within the physics-
engine, or without access to internals of the existing solver,
it would seem impossible to correctly apply contact forces
directly. Even if it were possible to change the solver or
embed another, such an approach would go against the spi-
rit of the present work, wherein an existing full-featured
physics engine is leveraged rather than built from scratch.

70

One possible solution is to treat all frictions as kinetic. But
this poses a problem in the “pinning” example. Because
kinematic friction forces only act in the presence of relative
motion, the counteracting force that keeps the “pinned” part
of the object stationary must first move. Thus, this ap-
proach results in a somewhat viscous and slightly unpre-
dictable feel when moving objects.

Connecting to Objects with Joints and Springs

Another kinematic approach, used in systems such as
BumpTop [1], is to connect virtual objects and an input
contact using a joint. Think of this as an invisible piece of
rope of predefined length that is tied to the object at a par-
ticular anchor point. The object is then pulled along using
this rope.

By attaching a joint off-center, the object is subject to both
force and torque—allowing the object to move and rotate
using a single connection. In our earlier pinning example,
one joint attaching a stationary contact point to one corner
of the object would serve as a pivot point. A second joint
attaching a second moving contact point to an opposing
corner would cause the object to spin around the first con-
tact point.

This approach is not well suited for multiple simultaneous
contact points, particularly those pulling in opposite direc-
tions. Whereas in the real world, multiple contacts pulling
in opposite directions on an object would result in the fin-
gers sliding, or the object deforming or tearing, neither be-
havior is supported by joint constraints on a rigid body. It is
thus easy for multiple rigid constraints to overconstrain the
simulation, resulting in numerical instability and unpredict-
able behavior.

Springs can in part alleviate some of these issues by provid-
ing more flex in the connection. However, a trade-off exists
between the elasticity of the spring and how responsive the
connected object is to contact motion (springs should be
fairly short and rigid to allow for a faster response). Prob-
lems of numerical stability and uncontrolled oscillations are
likely [10]. Another approach is to allow the joint or spring
to break in these situations, but this can easily lead to situa-
tions where objects fly out of the user’s reach.

SETTING THE SCENE FOR A NEW TECHNIQUE

We have so far described two techniques that one would
typically employ in single-point physics-enabled applica-
tions, and discussed the limitations of both in terms of
modeling multiple contacts. The modeling of such input is
challenging but only part of the story with respect to the
limitations of these approaches.

First, as we described earlier, contacts are not always dis-
crete 2D points, and it may be desirable to match the shape
of the contact input closely. It is unclear how one would
model more sophisticated shapes and contours with either
of these initial approaches. Second, the above techniques
address the case where the user touches the object directly,
thereby moving the object by friction forces. Neither of
these approaches addresses the movement of objects by
collision forces, i.e., from contact forces applied to the side
of the object (as in Figure 2, middle).

The next section presents a technique which handles fric-
tion and collision forces in the same framework and is easi-
ly extended to handle shapes of arbitrary contour. In doing
so, it addresses many of the difficulties of the previous
techniques.

Proxy Objects

The idea of proxy objects is to incorporate into the physics
simulation a rigid body for each surface contact. These
bodies are kinematically controlled to match the position of
the surface contacts and can be thought of as incarnations
of contact points within the physics simulation. Because
they are regular rigid bodies, they may interact with other
rigid bodies in the usual ways: either by collision or fric-
tion.

The proxy approach carries various benefits such as hiding
the complexity of force calculations (in fact, hiding almost
all physics aspects) from the programmer, while avoiding
the difficulties of the previously described approaches. It
leverages collision as well as friction forces (both static and
kinetic) to model rich interactions such as pushing, grab-
bing, pinching, and dragging. Proxy objects interact with
other objects in the simulation through the means provided
by the engine. Finally, this approach avoids unnecessary
strain on the solver (e.g., inserting extreme force values)
and resulting unstable simulation states.

Proxy objects are created and positioned for each point of
contact. Most simply, a single shape primitive such as a
cube or sphere may be used for each contact. When a con-
tact initially appears, a ray casting calculation is performed
to determine the 3D position of the proxy so that it touches
the underlying object, as shown in Figure 3. An interesting
alternative to using a sphere or cube as a proxy shape is to
create a thin capsule, box, or cylinder which stretches from
the 3D camera near plane to the surface of the touched ob-
ject (see Figure 4). This kind of proxy will collide not only
with objects resting on the same plane as the touched object
(or “floor”), but also objects that are in mid-air, or stacked
on other objects. Such behavior may correspond more
closely to user expectations.

Surface contacts

Figure 3. Proxy objects (red) are placed in the 3D
scene, one per contact (left image), by ray casting.

As the sensing system provides updates to a contact posi-
tion, the corresponding proxy object is kinematically con-
trolled to match the updated position. This is done, as de-
scribed earlier, by applying the necessary forces to bring
the proxy object (of known mass) to the updated position of
the contact. This scheme allows users to leverage collision

71

forces to push objects around or grab objects by touching
them from two opposing sides.

A small change in the kinematic control enables the proxy
object to exert friction forces when it lies on top of another
rigid body (as wher the user touches the top surface of a
virtual object, for example). In particular, only forces tan-
gential to the touched object are applied to match the con-
tact position. As with regular dynamic bodies, gravity is
still included as an external force. In the case where gravity
is directed into the surface, the proxies thus exert down-
ward force onto other objects and cause friction forces.
This hybrid kinematic-dynamic control of the object can be
implemented by direct addition of forces to the proxy rigid
body, or by a prismatic joint constraint on the body’s mo-
tion. The simulated weight of the finger on the object may
be adjusted by changing the mass of the proxy object, while
the material properties of the virtual objects may be ad-
justed by changing static and kinetic friction coefficients.

The main advantage of the proxy object technique is that it
leverages the built-in capability of the physics engine to
simulate both friction and collision contact forces. Most
significantly, because the calculation of contact forces is
handled entirely by the built-in physics engine solver, the
combined effect of simultaneous static and kinetic friction
forces due to multiple proxy objects is handled correctly.
These friction forces enable users to translate and rotate
objects (through opposing forces) that they touch directly.

From Points to Contours: Particle Proxies

Thus far we have approximated each touch point as a single
proxy object. This permits a simple, fast implementation,
and lends itself to sensing systems that report only contact
position and no shape information, as well as applications
that favor interaction with the fingertip or stylus.

Some interactive surfaces provide shape information, such
as an oriented ellipse, bounding box, or full polygonal con-
tour. The idea of the particle proxy is to model the contact
shape with a multitude of proxy objects (“particles”) placed
along the contour of the contact (see Figure 4). Particles are
added and removed as contours change size and shape. A
practical implementation involves creating a new set of
proxy objects for the contour at the beginning of each simu-
lation frame, and destroying all proxy objects after the
physics simulation has been updated. Even though the
proxies will be destroyed after the physics update, each
enacts collision and friction forces during the update.

Figure 4. Particle proxies approximate the shape of
multiple contacts. Left: applying friction from the
top, and collision from the side to grip a block. Mid-
dle: Long proxy particle objects (red) illustrated.
Right: Particle proxies accommodate non-flat ob-
jects. Here we model each proxy as a long capsule.

The advantage of the particle proxy approach is twofold.
First, collisions appear to be more correct because they
more closely follow the shape of the contact. This is partic-
ularly important when using the flat or side of the hand,
tangible objects, or generally any contacts other than fin-
gertips (see Figure 5). Similarly, the distribution and mag-
nitude of friction forces on the top of an object are more
accurately modeled. For example, the flat of the hand may
exert more friction than the tip of a finger (Figure 2, right)
by virtue of having more particles assigned to it. Likewise,
a single contact turning in place can exert friction forces to
rotate an object. Unlike the single proxy model, each par-
ticle is placed (ray cast) separately, so that a contact can
conform to irregularly-shaped 3D virtual objects (Figure 4).

As in the single proxy object model, each particle is kine-
matically controlled to match the movement of the contact
to which it belongs. Generally, the velocity of a point on
the contour can be computed by examining the contact’s
contour in the previous frame. This calculation may be
simple, as with an ellipse model, or more complex, as with
a polygonal contour.

Figure 5. Top left: Particle proxies approximate the
shape of multiple contacts and physical objects
(cup, notepad). Top right: Sobel image shows con-
tact contours. Bottom: Particles (red) as they project
into the 3D scene.

From Tracking to Flow

One difficulty in basing velocity calculations on tracked
contacts is that tracking can fail, particularly when the user
is using less constrained grasping postures such as the edge
or flat of a hand rather than the more cursor-like index fin-
ger. In these cases, components can split and merge in ways
that do not correspond to how we see the physical input,
leading to erroneous velocity calculations, and ultimately in
the case of our physics simulation to unpredictable motion.

An alternative approach is to calculate the motion of the
particle independently of any tracked contact information.
For example, local features of the image may instead be
tracked from the previous frame to calculate velocity. Sim-
ple block matching of the sort used in optical flow [2] is
one such technique (see Figure 6).

When using local motion estimates, the tracking of discrete
contact objects and exact contours may then be avoided

72

altogether by placing proxy particles at image locations
with high spatial gradient (e.g., Sobel filter [11]). These
pixels will lie on contact contours. The particle proxy tech-
nique is summarized as:
compute Sobel image from surface input
for each pixel with high spatial gradient:
ray cast into scene to determine initial particle position
add particle rigid body to physics simulation
compute contact motion at particle (e.g., from flow)
compute corresponding tangential motion in scene
apply force to particle to match scene motion
apply downward force (gravity) to particle
update physics simulation
destroy all particle rigid bodies
The instantaneous, piecewise nature of the shape and mo-
tion calculations of the flow-based particle proxy method
possesses important advantages. First, the friction and con-
tact forces lead to more stable physics simulation results
than if shape and motion were calculated from discrete
tracked objects. Second, because the technique makes few
assumptions regarding the shape or movement of contacts,
it imposes few limits on the manipulations a user may per-
form, whether leading to collisions, friction forces, or com-
bination thereof.

Surface motion

— X

|
n
P

Scene motion

Figure 6. Computing flow of a particle. Surface mo-
tion at a point x; is computed by comparing succes-
sive edge images. Corresponding tangential motion
in the scene is computed by ray casting image point
x; into the 3D scene, to obtain 3D point p:. Point pi+1
is found by projecting image point x¢+1 onto the tan-
gent plane formed by pt and object normal n.

NEW PHYSICS-BASED INTERACTIONS

Our goal in introducing more detailed surface input types
into a physics simulation is to enable a wide variety of ma-
nipulation styles drawn from real-world experience. While
we have only begun to explore some of the possibilities
that these techniques afford, here we consider a few which
we believe are noteworthy.

Manipulation Fidelity

The ability to exploit detailed shape and motion informa-
tion has broad consequences when considering the manipu-
lation of even the simplest objects. Free-moving virtual
objects can be moved by any one of a variety of strategies
that combine collisions against the contours of hands and
fingers with static and kinetic frictions. Because all three
kinds of forces can be employed simultaneously, the over-
all impression is one of unusually high fidelity. An interest-
ing example is the manipulation of a ball that is free to roll
on the surface: it may be compelled to roll, spin, stop, or

bounce in a surprisingly precise fashion, using a single
light touch, multiple touches, or the flat of the hand for
stopping power (Figure 1). Physical objects can also be
integrated at no cost, allowing a variety of interesting tang-
ible behaviors (see Figure 7 for some examples).

Gathering

The ability to sense and process contours, as well as distri-
bute friction forces piecewise across the virtual space,
enables the manipulation of many objects at once, much as
one might move a group of small objects spread across a
table (see Figure 1, top left). Users may use the edges of
their hands (or even arms) to collide against many objects
at once, or use the flats of multiple hands to apply friction
forces. For interactive surfaces able to sense physical ob-
jects, an interesting possibility is to use a ruler to move and
align multiple objects.

Manipulating Objects in 3D

Modeling virtual objects and input in 3D enables interest-
ing yet familiar interactions. For example, a flat object rest-
ing on a larger flat object may be moved by tapping its side
or applying friction. Depending on the masses and frictions
involved, it may be necessary to hold the larger object in
place. It is thus important for the designer to tune masses,
frictions, and appearances to match user expectations.

If the interaction is limited to collision forces from the side
and friction forces from the top, however, the manner in
which a user may place the smaller object on top of another
is unclear. Ramps, see-saws, and other constructions are
possible, if somewhat contrived. In certain cases it may be
possible to flip one object onto another through the applica-
tion of sufficient friction forces to one side of the object.

When the objects to be stacked are thin, such as cards
representing documents [23, 1], one approach is to give the
top and bottom surfaces of each object a cambered shape
that allows the user to raise one side by pressing down on
the other. The user may then move another like-sized card
under the tilted card (Figure 7, top left). This behavior cor-
responds to our awareness that in the real world even “flat”
objects such as cards and paper have some 3D shape that is
often intuitively exploited to manipulate them.

Figure 7. A cambered card is slid on top of another
by pushing one side while holding the bottom card
in place (top left); tangible objects interact with the
digital: e.g., the side of a physical piece of card
used to gather up objects (top middle), or a real cup
used to pin down a cloth (top right); tearing a mesh
in two by applying opposing forces (bottom).

73

Cloth and Soft Bodies

We have used rigid bodies such as boxes and spheres to
explain our interaction techniques. However, in the real
world many objects are not rigid but are instead soft, mal-
leable, and can deform or dissolve when forces are exerted
on them. Examples include rubber, clothes, and paper.

In addition to rigid body dynamics, most available physics
simulations offer some form of support for soft body, cloth,
and fluid simulation. As all interactions in our model are
conducted through collision or friction forces, the model
can be applied to arbitrary virtual objects. For example, it is
possible to crumple a piece of cloth with a grasping interac-
tion using all the fingers of one hand. The crumpled cloth
can then be straightened by pushing down with the flat
hand. One can even tear paper-like objects apart by apply-
ing forces in opposing directions on two corners (Figure 7).

Another possible application would allow soft volumetric
bodies to be squished so as to fit into cavities or com-
pressed so as to slide underneath other objects. Soft mate-
rials could also be used for terrains; deformation could be
triggered by users digging their fingers into the terrain,
using their whole hands to form valleys, or using a cupping
gesture to create elevations. More open-ended and free-
form interactions with particle systems (e.g., simulating
sand) and fluids can be imagined in a gaming context.

USER STUDY

To further understand and evaluate the utility of the tech-
niques described in this paper, an exploratory experiment
was performed. The following questions were addressed:
Are users able to comprehend and exploit the openness of
interaction that the physics model affords? Is the interaction
of sufficient fidelity? Is it discoverable and predictable? Do
users notice and value the added fidelity, or do they just
expect kinematic control? Ultimately, how do users express
their expectations in the physics-enabled manipulation?

The study exposed 6 participants to 3 simple physics-
enabled tasks (as shown in Figure 8), and analyzed various
behavioral and experiential aspects of interaction during
task completion. The 3 male and 3 female participants
came from a range of backgrounds, and all had normal (or
corrected to normal) vision and no mobility impairments.
The experiment was conducted on an early prototype of
Microsoft Surface [20], using the Nvidia PhysX gaming
physics engine [21]. This allowed sensing of multiple fin-
gertips as well as outlines of hands and forearms.

The experiment utilized a 3x3x2 within-subjects (repeated
measures) design. Each participant worked through the
three puzzles in each of three interaction techniques: Joints,
Proxies, and Particles. Pilot testing included a fourth condi-
tion, Direct Forces, but this was dropped during further
testing (as explained below). For techniques that do not
intrinsically support collisions, a simple collision model
based on kinematic objects was applied, allowing interac-
tions from the top and the sides of an object. In addition,
we hypothesized that the presence of visual feedback show-
ing users precisely where their input is applied might im-
prove the discoverability of each technique. Visual feed-

back of Joints was represented as red lines drawn from the
contact point to the anchor point on the object (these disap-
peared if the joint was broken); Proxies as red cubes at each
center point where contact was sensed; and Particles as
smaller red cubes per pixel in the contour image. We ran
each technique with and without visual feedback as our
third independent variable.

The task setup (see Figure 8) was as follows. In Task 1,
each of four spheres and rectangles were placed exactly on
matching targets; each object disappeared upon proper
placement. In Task 2, an assortment of objects of different
shapes, sizes, and masses were sorted onto the left or right
portions of the screen depending on their color. In Task 3, a
cylindrical object was steered from a set starting position
(far top right of photo) to a target (shown in red) by passing
several waypoints (shown in blue) without dropping the
object from a platform (which caused the task to restart).

The tasks were presented in the same order to each partici-
pant, whereas the order of interaction techniques was coun-
terbalanced across participants using a Latin-square design.
Experimentation occurred in two main phases (with visual
feedback of the input and without), presentation of which
was, again, counterbalanced across participants. During the
experiment, participants were not given any direct instruc-
tion, but had several attempts to try out each new puzzle.
Participants performed each task twice (excluding any
training), under experimental conditions, to provide an av-
erage completion time for each condition. Participants were
interviewed informally after completing their session.

;.

Task 1 Task 2 Task3

Figure 8. Task 1: Exact positioning of boxes and
spheres. Task 2: Sorting by color. Task 3: Steering.

Early Issues with Direct Forces

Initially, the Direct Forces technique was implemented by
applying a smooth velocity at a given contact point on the
object, computed as a measure of the displacement between
the contact’s current and last positions (i.e., kinetic fric-
tion). This seemed a fair approximation for modeling sur-
face input as direct forces. However, our pilots questioned
the efficacy of this technique. Specifically, users found it
difficult to complete tasks that involved accurately posi-
tioning objects; i.e., moving and then stopping an object at
the target location. Moving the object could be performed
reasonably, but to stop it the user needed to counteract the
motion in the opposite direction. This often led to excessive
velocity applied in the reverse direction, causing objects to
“overshoot” the target. Consequently, performance with
this technique was so poor that we felt it needed no further
evaluation. Based on these issues and feedback from the
pilots, we excluded this technique from analysis.

Initial Results and Observations
Although this was only an initial exploration, we observed
many promising interactions and forms of gesture within

74

the study. Users seemed aware of the potential of this new
type of environment and exploited the physics-based sys-
tem’s facilitation of experimentation, and we observed
many new interaction strategies.

Kinematic Control and the Curse of the Single Finger
Figure 9 shows the completion times for all tasks. Joints
provide kinematic control that closely mimics drag-and-
drop behavior, and thus facilitate easy positioning of ob-
jects. This is reflected in the results. After some experimen-
tation, there was a moment when users discovered that the
object was under familiar kinematic control. Users com-
mented that “my hands are like magnets” or “I can press
hard and stick my fingers.” Of course, pressure and mag-
netism were not factors at play here (in fact, post-study
interviews revealed that participants were unsure of the
general principle behind the Joints technique). Neverthe-
less, users performed the task rapidly after discovering the
object was somehow fixed to their fingers.

120 Joints
5 e ® Proxy
o
= ® u Particles

g

60
(] .
o = Joints
‘O'J' 40 (FB)
§ 20 " Proxy
= (FB)

0 ® Particles

Task 1 (FB)

Figure 9. Task completion times. FB denotes condi-
tions in which visual feedback of the user’s input
was provided.

Task 2 Task 3

However, the quantitative results tell only part of the story.
During the study we also observed many limitations with
the kinematic approach. The discovery of this type of es-
sentially drag-and-drop behavior in the Joints condition led
users to predominately interact with a single finger and
with a single object at a time. Even rotations of an object
were predominantly undertaken using a single finger [17].

Experimentation with multi-fingered or bimanual tech-
niques was therefore rare in the Joints condition. During
informal interviews, users commented that the condition
was “limited” and “less satisfying” than the other tech-
niques even though they performed the tasks rapidly. Al-
though it is too preliminary to draw significant conclusions,
it does suggest the need to measure more than task comple-
tion time when evaluating such physics-based techniques.

Users also had a poor understanding of how collisions were
supported in a kinematic approach such as Joints. We ob-
served many instances where accidental collisions caused
by hit-testing on the side as opposed to the top of the object
would cause an object to move away from the user and
cause a great deal of confusion. This makes us revisit
whether a kinematic-plus-collision model makes any sense
to the user at all: Why indeed should an object only be
sticky when you touch its top as opposed to its sides? This
actually led some users to infer that objects were magne-
tized in a way that supported both attraction (when touch-
ing the top) and repulsion (when colliding with the sides).

Using Feedback to Go Beyond Kinematic Control

As shown in the results, feedback did not play a significant
role in the Joints condition, as one might expect given the
familiarity of the approach. Feedback played a more signif-
icant role for Particles in Task 1. After some training time,
users discovered they could interact with more than just
their fingertips. Bimanual “cupping” and “throwing and
catching” techniques were devised to rapidly move objects
to target positions (Figure 10). These strategies, and the
general level of fine control, enabled users in the Particle
condition to obtain completion times comparable to more
kinematic approaches. During interviews, users reflected
positively about the interactions Particles afforded.

However, these types of contour-based bimanual interac-
tions could not be utilized with Proxy objects—although
participants did try. In fact, in many cases, a hand gesture
on the surface would be poorly approximated as a single
proxy (the center of mass of the contact shape), causing
objects to slip through a hand or causing other peculiar hit-
testing behavior. Multiple fingers were used to reorient
boxes effectively, but overall, bimanual control was rare.

I

Figure 10. Using contours of the hand to move mul-
tiple boxes (top left); provide a barrier to change
ball motion and position smoothly over target (top
middle, right); throw and catch an object from a
greater distance (bottom).

While the “drag and drop” nature of Task 1 clearly favored
kinematic control such as that offered by the Joints ap-
proach, Task 2 offered a clear advantage to concurrent ma-
nipulation of multiple objects for rapid sorting. As might
therefore be expected, use of both Proxy and Particles tech-
niques, which seemingly promoted multi-touch interaction,
led to faster completion times in this task (Figure 11).

Figure 11. Two-handed and multi-fingered strate-
gies adopted in the proxy and particle conditions.
Coarsely moving objects using both hands (left),
two-fingered rotation by applying torque to align a
box (middle); fine-grained movement of two objects
using a single finger of each hand (right).

Coming to Grips with Non-planar Objects

Another specific trade-off in our design was that the rigid
body cubes in the Proxy condition only provided an effec-
tive means for interacting with flat objects. They provided

little grip of spherical objects (or more complex 3D mesh-
es). This was clearly evident in the final task where the
Proxy cubes struggled to keep the cylindrical object under
control, as shown in Figure 8. In this task, we found users
often reverted to point-based interaction to control the
small non-planar object; the use of contours was infrequent.
However, our initial results suggest that Particles still out-
perform Proxy objects for these purely point-based interac-
tions. This suggests that for scenarios where touch-only
input is available, the Particle model subsumes the single
Proxy object model.

DISCUSSION

The results of the user study and general experimentation
suggest that while the more familiar kinematic approaches
(somewhat inevitably) offer more predictable control in
some situations, the particle proxy approach can offer com-
parable performance while providing new modes of inte-
raction (such as cupping the ball in Figure 10). That our
study participants were able to devise new manipulation
strategies from limited feedback and training is encourag-
ing. With more time, we expect users to further draw on
their experience with real-world manipulations.

There are a number of ways in which our interactive sur-
face simulation does not match the physics of the real
world. In suggesting that we abandon familiar, kinematic
point-based control in favor of strongly physics-based
techniques, an important consideration is whether users are
able to negotiate these differences.

First, while in the real world one might apply more or less
force to control friction, our system has no sense of how
hard the user is pressing. When using particle proxies, the
amount of friction applied is instead proportional to the
number of proxies applied to the object, which itself is re-
lated to the surface area of the touch. For example, a single
finger moving across an object will apply less friction than
multiple fingers. Not surprisingly, this distinction was gen-
erally lost on study participants, who often tried to press
harder to bring an object under their control. Similarly, our
users would sometimes apply multiple fingers to an object
when they wanted precise movement. Because of the in-
evitable imprecision of the simulation, the object would
move too unpredictably for very fine control. In many of
these cases, it would have been better to use a light (small)
touch rather than a full grip.

Second, grasping a virtual object by placing contacts on
either side can be difficult if not impossible in many of our
techniques. Such manipulations require persistent resting
contacts to be placed on virtual objects. The particle-based
approach, in which each proxy is created every frame,
places the proxy corresponding to a grasping finger on top
of the object, thus defeating attempts to grasp it. The single
proxy object approach uses persistent proxies, and so al-
lows grasping of an object resting on the floor. It may be
possible to extend the particle approach to allow proxies to
persist at a given depth when it seems appropriate, or to
explore a hybrid approach in which both the particle and
single proxy techniques are used simultaneously.

Grasping may be difficult to replicate for more fundamental
reasons. Virtual objects exert no counteracting force against
the fingers, so it is difficult to know how “hard” the fingers
are pressing on an object. Grasping an object in order to lift
it out of the plane may be challenging to depict directly on
an interactive surface with a 2D display. Similarly, the sen-
sation of moving the hand across an interactive display
surface is the same regardless of the simulated material,
and whether the contact exerts static or kinetic friction.

Some of these problems may be addressed by improving
the basic sensing techniques. For example, our system may
be able to sense pressure by interpreting the gray levels of
the input image as light touches or heavy touches. For
proxy-based techniques, this could be implemented by
changing the mass of the proxy. New range-sensing cam-
eras [26] providing per-pixel depth information may also be
appropriate. Per-pixel depth might be used to construct a
rich 3D model of the hand, opening new opportunities in
modeling grasping behavior. It might also assist in grasping
an object in order to lift it up and place it on another object.

Clearly one need not completely replicate the physics of
object manipulation in order to construct useful applica-
tions exhibiting physics-inspired behavior. The appropriate
degree to which the techniques in this paper are applied
depends on the application. A game might naturally exploit
detailed physics throughout, while a graphical layout appli-
cation might be very selective. Joint constraints provided
by physics engines may be used to constrain motion, for
example, to ease alignment tasks. While joints can be used
to simulate the real-world counterparts of traditional GUI
sliders, dials, buttons, and the like (as suggested by [10]),
some aspects of traditional interactions do not naturally
lend themselves to a physics implementation. Changing the
size of an object dynamically, for example, does not lend
itself to rigid-body simulation.

CONCLUSION

We have introduced a number of techniques to incorporate
interactive surface input primitives into a real-time physics
simulation. Our techniques take advantage of the fidelity of
sensing provided by vision-based interactive surfaces, with
the goal of enabling in a virtual domain the range of object
manipulation strategies available to us in the real world.

ACKNOWLEDGMENTS
We thank Nic Villar for producing the accompanying vid-
€o.

REFERENCES

1. Agarawala, A. and Balakrishnan, R. 2006. Keepin' it real:
pushing the desktop metaphor with physics, piles and the pen.
CHI 2006, 1283-1292.

2. Barron, J., Fleet, D., Beauchemin, S., and Burkitt, T. 1992.
Performance of optical flow techniques. Computer Vision and
Pattern Recognition, 236-242.

3. D. Baraff, 1989. Analytical methods for dynamic simulation
of non-penetrating rigid bodies, SIGGRAPH Computer
Graphics, 223-232.

4. D. Baraff. 1994. Fast contact force computation for
nonpenetrating rigid bodies. SIGGRAPH Computer Graphics,
23-34.

76

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Chang, B.-W., and Unger, D. 1993. Animation: from cartoons
to the user interface. UIST '93, 45-55.

Chang, F., Chen, C.-J., and Lu, C.-J. 2004. A linear-time
component labeling algorithm using contour tracing
technique, Computer Vision and Image Understanding, vol.
93, no. 2, 206-220.

. Dietz, P. and Leigh, D. 2001. DiamondTouch: a multi-user

touch technology. UIST 2001, 219-226.

. Dragicevic, P. 2004. Combining crossing-based and paper-

based interaction paradigms for dragging and dropping
between overlapping windows. UIST 2004, 193-196.

. Erleben, K., Sporring, J., Henriksen, K., and Dohlman, K.

2005. Physics-Based Animation. Charles River Media, Inc.
Frohlich, B., Tramberend, H., Beers, A., Agrawala, M., and
Baraff, D. 2000. Physically-based manipulation on the
responsive workbench. /[EEE VR Conference 2000, 5-11.
Gonzalez, R., and Woods, R. 2007. Digital Image Processing:
Third Edition. Prentice Hall.

GeiBler, J. 1998. Shuffle, throw or take it! working efficiently
with an interactive wall. CHI Ext. Abstracts, 265-266.
Grossman, T., and Wigdor, D. 2007. Going deeper: a
taxonomy of 3D on the tabletop. Second IEEE Internat'ional
Workshop on Horizontal Interactive Human-Computer
Systems, 137-144.

Han, J.Y. 2005. Low-cost multi-touch sensing through
frustrated total internal reflection. UIST 2005, 115-118.
Hancock, M., Carpendale, S., and Cockburn, A. 2007.
Shallow-depth 3d interaction: design and evaluation of one-,
two- and three-touch techniques. CHI 2007, 1147-1156.
Hancock, M., Carpendale, S., Supporting Multiple Off-Axis
Viewpoints at a Tabletop Display. 2007. Second IEEE
International Workshop on Horizontal Interactive Human-
Computer Systems, 171-178.

Kruger, R., Carpendale, S., Scott, S., Tang, A. 2005. Fluid
integration of rotation and translation, CHI 2005, 601-610.
Liu, J., Pinelle, D., Sallam, S., Subramanian, S., and Gutwin,
C. 2006. TNT: improved rotation and translation on digital
tables. Graphics Interface 2006, 25-32.

Mander, R., Salomon, G., and Wong, Y.Y. 1992 A ‘pile’
metaphor for supporting casual organization. CHI '92, 627-
634.

Microsoft Corporation. Microsoft Surface.
http://ww.surface.com. 2007.

NVIDIA Corporation. NVIDIA PhysX.
http://www.nvidia.com/object/nvidia_physx.html. 2008.
Reetz, A., Gutwin, C., Stach, T., Nacenta, M., and
Subramanian, S. 2006. Superflick: a natural and efficient
technique for long-distance object placement on digital tables.
Graphics Interface 2006. 163-170.

Robertson, G., Czerwinski, M., Larson, K., Robbins, D.,
Thiel, D., and van Dantzich, M. 1998. Data mountain: using
spatial memory for document management. UIST '98, 153-
162.

Stéhl, O., Wallberg, A., Soderberg, J., Humble, J., Fahlén, L.
E., Bullock, A., and Lundberg, J. 2002. Information
exploration using the pond. In Proc. CVE, 72-79.

Wilson, A. 2005. PlayAnywhere: a compact interactive
tabletop projection-vision system. UIST 2005, 83-92.

Wilson, A. 2007. Depth-sensing video cameras for 3D
Tangible Interaction. Second IEEE International Workshop on
Horizontal Interactive Human-Computer Systems, 201-204.
Wu, M, and Balakrishnan, R. 2003. Multi-finger and whole
hand gesture interaction techniques for multi-user tabletop
displays. UIST 2003. 193-202.

