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Abstract. We consider the problem of precisely de�ning UML active classes with
an associated state chart. We are convinced that the �rst step to make UML
precise is to �nd an underlying formal model for the systems modelled by UML.
We argue that labelled transition systems are a sensible choice; indeed they have
worked quite successfully for languages as Ada and Java. Moreover, we think that
this modelization will help to understand the UML constructs and to improve
their use in practice. Here we present the labelled transition system associated
with an active class using the algebraic speci�cation language CASL.
The task of making precise this fragment of UML raises many questions about
both the \precise" meaning of some constructs and the soundness of some allowed
combination of constructs.

1 Introduction

The Uni�ed Modeling Language (UML) [11] is an industry standard language for speci-
fying software systems. This language is unique and important for several reasons:

{ UML is an amalgamation of several, in the past competing, notations for object-
oriented modelling. For a scienti�c approach, it is an ideal vehicle to discuss funda-
mental issues in the context of a language used in industry.

{ Compared to other pragmatic modelling notations in Software Engineering, UML
is very precisely de�ned and contains large portions which are similar to a formal
speci�cation language, as the OCL language used for the constraints.

It is an important issue in Software Engineering to �nally close the gap between prag-
matic and formal notations and to apply methods and results from formal speci�cation
to the more formal parts of UML. This paper presents an approach contributing to this
goal and has been carried out within the European \Common Framework Initiative"
(CoFI) for the algebraic speci�cation of software and systems, partially supported by
the EU ESPRIT program. Within the CoFI initiative [7], which brings together research
institutions from all over Europe, a speci�cation language called \Common Algebraic
Speci�cation Language" (CASL) was developed which intends to set a standard unifying
the various approaches to algebraic speci�cation and speci�cation of abstract data types.
It is a goal of the CoFI group to closely integrate its work into the world of practical
engineering. As far as speci�cation languages are concerned, this means an integration
with UML, which may form the basis for extensions or experimental alternatives to the
use of OCL. That would allow for instance: { to specify user-de�ned data types that just
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have values but do not behave like objects; { to use algebraic axioms as a constraints.
These new constraints may cover also behavioural aspects, because there exist extensions
of algebraic languages that are able to cover with them [4], whereas OCL does not seem
to have any support for concurrency. The long-term perspective of this work is to build
a bridge between UML speci�cations and the powerful animation and veri�cation tools
that are available for algebraic speci�cations.

To this end we need to precisely understanding (formally de�ning) the most relevant
UML features. In this paper we present the results of such formalization work, which was
guided by the following ideas.

Real UML Our concern is the real UML (i.e., all, or better almost all, its features
without simpli�cations and or idealizations). We are not going to consider a small OO
language with a UML syntax, but just what it is presented in the o�cial OMG docu-
mentation [12] (shortly UML 1.3 from now on).

Based on an underlyingmodelWe are convinced that the �rst step to make UML
precise is to �nd an underlying formal model for the systems modelled by UML, in the
following called UML-systems.

Our conviction also comes from a similar experience the two �rst authors had, many
years ago, when tackling the problem of the full formal de�nition of Ada, within the
o�cial EU project (see [1]). There too an underlying model was absolutely needed to
clarify the many ambiguities and unanswered questions in the ANSI Manual.

We argue that labelled transition systems could be a sensible model choice; indeed,
they were used quite successfully to model concurrent languages as Ada [1], but also a
large part of Java [3].

Lightweight formalization By \lightweight" we mean made by using the most
simple formal tools and techniques: precisely labelled transition systems algebraically
speci�ed using a small subset of the speci�cation language CASL (conditional speci�ca-
tion with initial semantics).

Integrated with the formalization of the other fragments of UML In contrast
to many other papers on UML semantics, we more or less ignore the issue of class diagram
semantics here and concentrate on the state machines1. However, the ultimate goal of this
work is to have an approach by which it is easily possible to integrate semantically the
most relevant diagram types. For this reason, we are using an algebraic approach to the
semantics of state machines, since it is well known that class diagrams can be mapped
relatively easily onto algebraic speci�cations. The algebraic semantics described here
enables an algebraic access to the semantics also of active, not only of passive, classes.
Usually, an active class is statically described in the class diagram and dynamically
described in an associated statechart diagram.

The formalization of active classes and state machines has lead to perform a thor-
ough analysis of them uncovering many problematic points. Indeed, the o�cial informal
semantics of UML, reported in UML 1.3, is in some points either incomplete, or ambigu-
ous, or inconsistent or dangerous (i.e., the semantics is clearly formulated but the allowed
usages seem problematic from a methodological point of view). To stress this aspect and

to help the reader we have used the mark pattern PROBLEM to highlight them .

In Sect. 2 we de�ne the subset of the active classes with state machines that we con-
sider. Then in Sect. 3 and 4 we introduce the used formal techniques (labelled transition

1 Following UML terminology state machine is the abstract name of the construct, whereas
state chart is the name of the corresponding diagram; here we always use the former.



systems and algebraic speci�cations), and present step after step how we have built the
lts modelling the objects of an active class with an associated state machine. Due to lack
of room part of the de�nition and the complete formal model (rather short and simple)
are in [9].

2 Introducing UML: Active Classes and State Machines

The UML de�nes a visual language consisting of several diagram types. These diagrams
are strongly interrelated by a common abstract syntax and are also related in their
semantics. The semantics of the diagrams is currently de�ned by informal text only.

The most important diagram types for the direct description of object-oriented soft-
ware systems are the following:

{ Class diagrams, de�ning the static structure of the software system, i.e., essentially
the used classes, their attributes and operations, possible associations (relationships)
between them, and the inheritance structure among them. Classes can be passive, in
which case the objects are just data containers. For this paper, we are interested in
active classes, where each object has its own thread(s) of control.

{ Statechart diagrams (state machines), de�ning the dynamic behaviour of an individ-
ual object of a class over its lifetime. This diagram type is very similar to traditional
Statecharts. However, UML has modi�ed syntax and semantics according to its over-
all concepts.

{ Interaction diagrams, illustrating the interaction among several objects when carrying
out jointly some use case. Interaction diagrams can be drawn either as sequence
diagrams or as collaboration diagrams, with almost identical semantics but di�erent
graphical representation.

A UML state machine is very similar to a classical �nite state machine. It depicts
states, drawn as rounded boxes carrying a name, and transitions between the states. A
transition is decorated by the name of an event, possibly followed by a speci�cation of
some action (after a slash symbol). The starting point for the state machine is indicated
by a solid black circle, an end point by a solid circle with a surrounding line.

The complexity of UML state machines compared to traditional �nite state machines
comes from several origins:

{ The states are interpreted in the context of an object state, so it is possible to make
reference, e.g., in action expressions, to object attributes.

{ There are constructs for structuring state machines in hierarchies and even concur-
rently executed regions.

{ There are many specialized constructs like entry actions, which are �red whenever a
state is entered, or state history indicators.

In order to simplify the semantical consideration in this paper, we assume the follow-
ing restrictions of di�erent kinds. Please note that none of these assumptions restricts
the basic applicability of our semantics to full UML state machines!

We do not consider the following UML state machine constructs, because they can
be replaced by equivalent combinations of other constructs.

Submachines We can eliminate submachines by replacing each stub state with the
corresponding submachine as UML 1.3 p. 2.137 states \It is a shorthand that implies
a macro-like expansion by another state machine and is semantically equivalent to a
composite state".



Entry and exit actions Entry and exit actions associated with a state are a kind of
shortcut with methodological implication, see, e.g., [11] p. 266, but semantically
they are not relevant; indeed we can eliminate them by adding such actions to all
transitions entering/leaving such state.

Internal transitions An internal transition di�ers from a transition whose source and
target state coincide only for what concerns entry/exit actions. Because we have
dropped entry/exit actions, we can drop also internal transitions.

The following picture shows, on an example, how to eliminate entry actions and
internal transitions.
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Di�erent transitions leaving the same state having the same event trigger We
can replace these transitions with compound transitions using junction states. The
latter presentation seems better from a methodological point of view, and makes the
semantics clearer (what to do when dispatching an event is explained in UML 1.3 by
considering the transitions with the same trigger leaving a state all together). The
picture below shows on an example of this simpli�cation.

is equivalent toE [g1] / a1

S

S2

E [g2] / a2

S3
S3

[g1] / a1

S

S2

[g2] / a2

E

Multiple initial/�nal states We assume that there is always one unique initial state
at the top level (used to determine the initial situation of the class objects) and
one unique �nal state at the top level (when it is active the object will perform a
self destruction). The remaining initial/�nal states can be replaced by using com-
plex transitions. The picture below shows an example of equivalent state machines,
di�ering only in the number of initial/�nal states.
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Compound transitions We assume there are no compound transitions except the com-
plex one and compounds of length two (e.g., as those needed in the two cases above).
Indeed compound transitions are used only for presentation reasons and can be re-
placed by sets of simpler transitions.



Terminate action in the state machine Indeed it can be equivalently replaced by a
destroy action addressed to the self.

We do not consider the following features just to save space; indeed we think that
they could be modelled without much trouble.

{ Operations with return type and return actions
{ Synch and history states
{ Generalization on the signals (type hierarchy on signals)
{ Activities in states (do-activities)

3 Modelling Active Objects with Labelled Transition Systems

3.1 Labelled Transition Systems

A labeled transition system (shortly lts) is a triple (ST;LAB;!), where ST and LAB are
two sets, and !� ST� LAB� ST is the transition relation. A triple (s; l; s0) 2! is said

to be a transition and is usually written s
l
��! s0.

Given an lts we can associate with each s0 2 ST the tree (transition tree) whose root
is s0, where the order of the branches is not considered, two identically decorated subtrees
with the same root are considered as a unique subtree, and if it has a node n decorated

with s and s
l
��! s0, then it has a node n0 decorated with s0 and an arc decorated with l

from n to n0.
We model a process P with a transition tree determined by an lts (ST;LAB;!) and

an initial state s0 2 ST; the nodes in the tree represent the intermediate (interesting)
situations of the life of P, and the arcs of the tree the possibilities of P of passing from

one situation to another. It is important to note here that an arc (a transition) s
l
��! s0

has the following meaning: P in the situation s has the capability of passing into the
situation s0 by performing a transition, where the label l represents the interaction with
the environment during such a move; thus l contains information on the conditions on
the environment for the capability to become e�ective, and on the transformation of such
environment induced by the execution of the transition.

Notice that here by process we do not mean \sequential process", indeed also con-
current processes, which are processes having cooperating components that are in turn
other processes (concurrent or not), can be modelled through particular lts, named struc-
tured lts. A structured lts is obtained by composing other lts describing such components,
say clts; its states are built by the states of clts, and its transitions are determined by
composing those of clts.

An lts may be formally speci�ed by using the algebraic speci�cation language CASL
(see [8]) with a speci�cation of the following form:

spec Lts =
State and Label then

free f pred ��! : State�Label�State
axioms . . . . . .

g end

whose axioms have the form �1 ^ : : : ^ �n ) �n+1, where for i = 1; : : : ; n+1, �i is a
positive atom (i.e., either a predicate application or an equation). The CASL construct
free requires that the speci�cation has an initial semantics [8].



Assume to have a given active class ACL with a given associated state machine SM
belonging to the subset of UML introduced in Sect. 2, and assume that ACL and SM are
statically correct, as stated in UML 1.3.

We have built the lts L modelling the objects of the class ACL following the steps
below, which will be reported in the following sections.

1. check whether L is simple or structured
2. determine the grain of the L-transitions
3. if L is structured, determine its components and the lts modelling them
4. determine the labels of L
5. determine the states of L
6. determine the transitions of L by means of conditional rules (in this case, because

we are using CASL, by conditional axioms).

The constraints attached either to ACL or to SM are treated apart in Sect. 4.6, because
they do not de�ne a part of L, but just properties on it.

To avoid confusion between the states and the transitions of the state machine SM
with those of the lts L, we will write from now on L-states and L-transitions when
referring to those of L.

3.2 Is L simple or structured?

The �rst question is to decide whether L is simple or structured; this means in terms of
UML semantics to answer the following question:

PROBLEM Does an active object correspond to a single thread of control (running
concurrently with the others), or to several ones?

Unfortunately, UML 1.3 is rather ambiguous/inconsistent for what concerns this
point. Indeed, somewhere it seems to suggest that there is exactly one thread, as in
UML 1.3 p. 2-23, p. 2-149, p. 2-150 (**):

It is possible to de�ne state machine semantics by allowing the run-to-completion
steps to be applied concurrently to the orthogonal regions of a composite state,
rather than to the whole state machine. This would allow the event serialization
constraint to be relaxed. However, such semantics are quite subtle and di�cult
to implement. Therefore, the dynamic semantics de�ned in this document are
based on the premise that a single run-to-completion step applies to the entire
state machine and includes the concurrent steps taken by concurrent regions in
the active state con�guration.

Otherwise, UML 1.3 seems to assume that there are many threads, as in p. 2.133, p. 2-144,
p. 3-141:

A concurrent transition may have multiple source states and target states. It
represents a synchronization and/or a splitting of control into concurrent threads
without concurrent substates.

and in p. 2-150:

An event instance can arrive at a state machine that is blocked in the middle
of a run-to-completion step from some other object within the same thread, in a
circular fashion. This event instance can be treated by orthogonal components of
the state machine that are not frozen along transitions at that time.



In this paper we stick to the interpretation suggested in (**), so each active object
corresponds to one thread. However a perhaps better way to solve this point is to in-
troduce two stereotypes: one-thread and many-threads, to allow the user to decide the
amount of parallelism inside an active object.

3.3 Determining the granularity of the L-transitions

Using lts means that we model the behaviour of processes by splitting it into \atomic"
pieces (the L-transitions); so, to de�ne L, we must determine the granularity of this
splitting, i.e., of the L-transitions.

PROBLEM By looking at UML 1.3 we see that there are two possibilities corresponding
to di�erent semantics.

1. each L-transition corresponds to performing a group of transitions of the state ma-
chine triggered by the occurrence of the same event starting from a set of active con-
current states. Because L-transitions are mutually exclusive, this choice corresponds
to a semantics where L-transitions are implicitly understood as critical regions.

2. each L-transition corresponds to performing a part of a state machine transition; the
atomicity of transitions (run-to-completion condition) required by UML 1.3 is guar-
anteed by the fact that, while executing the various parts of the transition triggered
by an event, an object cannot dispatch another event. In this case, the parts of the
state machine transitions performed by the same or di�erent objects may be executed
concurrently.

The example in Fig. 1, where we assume here that there is another object O2 with an
operation OP resulting in a printable value, shows an instance of this problem.
Choice 1 corresponds to say that in any case pairs of identical values will be printed,
whereas choice 2 allows for pairs of possibly di�erent values (becuase the value returned
by OP can be di�erent in the two occasions due to the activity of other objects).

S1

E1 / PRINTER.print(O2.OP(3));
        PRINTER.print(O2.OP(3));

S

E 

Fig. 1. A simple State Machine

We think that choice 2 is better; however we could similarly model also 1.

3.4 Determining the L-Labels

The L-labels (labels of the lts L) describe the possible interactions/interchanges between
the objects of the active class ACL and their external environment (the other objects
comprised in the model). By looking at UML 1.3 we �nd that the basic ways the objects



of an active class interact with the other objects are the following, distinguished by us
in \input" and \output":

input:
{ to receive a signal from another object
{ to receive an operation call from another object
{ to read an attribute of another object (+)
{ to have an attribute updated by another object (+)
{ to be destroyed by another object (+)
{ to receive from some clock the actual time (see [11] p. 475)

output:
{ to send a signal to another object
{ to call an operation of another object
{ to update an attribute of another object (+)
{ to have an attribute read by another object (+)
{ to create/destroy another object

UML 1.3 does not consider explicitly the interactions marked by (+), and does not
say anything about when they can be performed (e.g., they are not considered by the
state machines).

PROBLEM When may an object be destroyed?

A way to settle this point is to make \to be destroyed" an event, which may dispatched
when the machine is not in a run-to-completion-step and may appear on the transitions
the state machine.
PROBLEM The interactions corresponding to read/update attributes of other objects
raise a lot of questions about the UML semantics.
May an object have its attributes updated by some other object?
If the answer is yes, then when such updates may take place? For example, is it allowed
during a run-to-completion-step?
Are there any \mutual exclusion" properties on such updates? or may it happen that an
object O1 updates an attribute A of O while O is updating it in a di�erent way, or that
O1 and O2 updates simultaneously A in two di�erent ways?
May an active object have a behaviour not described by the associated state machine
(see UML 1.3 p. 2-136), because another object updates its attributes?
In the following example, another object may perform O.X = O.X + 1000, changing
completely the behaviour speci�ed by this state machine.

INC / [ X < 100] X = X+1;DEC / [ X > 0] X = X-1; S1

START / X = 0;

STOP

S

Notice also that reading/updating attributes of the other active objects is an implicit
communication mechanism, thus yielding a dependency between their behaviours that is
not explicitly stated.



A way to overcome this point may be to fully encapsulate the attributes with the
operations, i.e., an attribute of a class may be read and updated only by the class oper-
ations. As consequence, the expressions and the actions appearing in the state machine
may use only the object attributes, and not those of other objects.

Then an L-label will be a triple consisting of a set of events received from outside,
the received time, and a set of events sent outside; because, due to the above choice, the
are no more the interactions marked by (+).

3.5 Determining the L-States

The L-states (states of the lts L) describe the intermediate relevant situations in the life
of the objects of class ACL.

By looking at UML 1.3 we found that to decide what an object has to do in a given
situation we surely need to know:

{ the object identity;
{ the set of the states (of the state machine SM) that are active in such situation;
{ whether the object is in a run-to-completion step, and in such case which are the
states that will become active at the end of such step, each one accompanied by the
actions to be performed to reach such states;

{ the values of object attributes;
{ the status of the event queue.

Thus the L-states must contain such informations; successively, when de�ning the tran-
sitions we discovered that, to handle change and time events, we need also to know

{ the sequence of the L-states reached by the object during its past life.

The L-states are thus speci�ed by this CASL speci�cation

spec L-State =
Ident and Configuration and Attributes and Event Queue and Time then

free types

State ::= Ident : hCon�guration;Attributes;History;Event Queuei j
Ident : terminated

History ::= � j hState;Timei & History
. . . . . .

where Ident : terminated are special elements representing terminated objects.
A con�guration contains the set of the states that are active in a situation and of

those states that will become active at the end of current run-to-completion step (if any),
the latter are accompanied by the actions to be performed to reach such states.

spec Event Queue =
Set[Event] then
sort Event Queue
preds no dispatchable event : Event Queue
%% checks whether there is no a dispatchable event

2 : Event�Event Queue
%% checks whether a given event in the queue may be selected for dispatching
ops put : Set[Event]�Event Queue! Event Queue
%% adds some events to the queue

remove : Event�Event Queue! Event Queue
%% removes an event from the queue

. . . . . .



PROBLEM UML 1.3 explicitly calls the above structure a queue, but it also clearly
states that no order must be put on the queued events (UML 1.3 p. 2-144) and so it is
really a multiset. This choice of terminology is problematic, because it can induce a user
to assume that some order on the received events will be preserved.
The fact that the event queue is just a bag causes other problems: an event may remain
for ever in the queue; time and change events may be dispatched disregarding the order
in which happened (e.g., \after 10" dispatched before \after 5"); a change event is
dispatched when its condition is false again; two signal or call events generated by the
same state machine in some order are dispatched in the reverse order.

To �x this point, we can either change the name of the event queue in the UML
documentation in something recalling its true semantics, or de�ne a policy for deciding
which event to dispatch �rst.

In an UML model we cannot assume anything on the order with which some events
are received by an object (as the signal and operation calls); we conjecture that this was
the motivation for avoiding to order the events in the queue. However, we think that it
is better to have a mechanism ensuring that when two events are received in some order
they will be dispatched in the same order, also if in many cases we do not know such
order.

The speci�cations of the other components of the L-states are reported in [9].

4 Determining the L-Transitions

An L-transition, i.e., a transition of the lts L, corresponds to

1. either to dispatch an event,
2. or to execute an action,
3. or to receive some events; such events are either received from outside (signals and

operation calls) or generated locally (self sent signals and operation calls, change and
time events),

4. or to be destroyed by dispatching a special event.

Moreover, (3) may be also performed simultaneously to (1) and (2), because we cannot
delay the reception of events.

It is important to notice that the L-transitions of and the transitions of the state
machine SM are di�erent in nature and are not in a bijective correspondence. To clarify
such relationship we partly report in Fig. 2 the labelled transition tree associated with
the simple state machine of Fig. 1, where it is possible to see that one state machine
transitions correspond to many L-transitions.

The L-transitions are formally de�ned by the axioms of this algebraic speci�cation

spec L-Spec =
L-Label and L-State then

free f pred ��! : State�Label�State

axioms . . . . . . cond ) s
l

��! s0 . . . . . .

In the following subsections we give the axioms corresponding to the four cases above To
master complexity and to improve readability we use several auxiliary functions in such
axioms, whose name is written in sans serif font. Some relevant problems come to light
when de�ning some of such functions, and thus we consider them explicitly in Sect. 4.5.
The others are reported in [9].
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Fig. 2. A fragment of a labelled transition tree

4.1 Dispatching an Event

If the object is not in a run-to-completion step (checked by predicate not frozen), an
event ev is in the event queue ready to be dispatched (ev 2 e queue), then there is an
L-transition, with the label resulting from the events received from outside in evs, and
the time t, where the history has been extended with the current state, and all received
events are put in the event queue, as described by Receive Events.

Recall that Dispatch(ev; conf; e queue) = conf0; e queue0 means that dispatching event
ev in the con�guration conf changes it to conf0 and changes e queue to e queue0.

not frozen(conf) ^ ev 2 e queue ^ Dispatch(ev; conf; e queue) = conf0; e queue0 )

id : hconf;attrs;history; e queuei
hin evs;t;;i
��������! id : hattrs; conf0; history0; e queue00i

where
e queue00 = Receive Events(e queue0; in evs;attrs;history; t)

history0 = hid : hconf; attrs; history; e queuei; ti & history

4.2 Executing an action

If the object is in a run-to-completion step (checked by predicate frozen), and performs
an action, then there is an L-transition, with the label resulting from the events received
from outside in evs, the time t, and the set of events generated in the action to be
propagated outside out evs, where the attributes are updated due to executed action,
the history has been extended with the current state, and all received events are put in
the event queue, as described by Receive Events.

Exec(id; attrs; conf) = conf0; attrs0; out evs; loc evs means that the object id with con-
�guration conf executes an action changing its con�guration to conf0, updating its at-
tributes to attrs0 and producing the set of output events out evs and the set of local
events loc evs.

frozen(conf) ^ Exec(id; attrs; conf) = conf0;attrs0;out evs; loc evs )

id : hconf;attrs;history; e queuei
hin evs;t;out evsi
�������������! id : hattrs0; conf0;history0; e queue0i

where
history0 = hid : hconf; attrs; history; e queuei; ti & history

e queue0 = Receive Events(e queue; in evs[ loc evs; attrs; history; t)

4.3 Receiving some Events

If the object is not in a run-to-completion step (checked by predicate not frozen), the
event queue is empty, then there is an L-transition, with the label resulting from the



set of events received from outside in evs and the time t, where the history has been
extended with the current state, and all received events are put in the event queue, as
described by Receive Events.

not frozen(conf) ^ no dispatchable event(e queue) )

id : hconf;attrs;history; e queuei
hin evs;t;;i
��������! id : hattrs; conf;history0; e queue0i

where
e queue0 = Receive Events(e queue; in evs;attrs;history; t)

history0 = hid : hconf; attrs; history; e queuei; ti & history

4.4 Being destroyed

We consider a destruction request as an event and assume that an object cannot be
destroyed while is in a run-to-completion step.

not frozen(conf) ^ destroy 2 e queue )

id : hconf;attrs;history; e queuei
hin evs;t;;i
��������! id : terminated

4.5 Auxiliary functions

Receive Events : Event Queue�Set[Event]�Attributes�History�Time! Event Queue

Receive Events(e queue; evs; attrs; history; t) = e queue0 means that e queue0 is e queue
updated by putting in it all received events: the signal and operation call events are
given by a function parameter (evs), the time events are detected using t and history (by
the function TimeOccur), and the change events are detected by using attrs and history
(by the function ChangeOccur).

PROBLEM May operation calls to other objects appear within the expressions of
change and time events?
If the answer is yes, then we can have more hidden constraints on the mutual behaviour
of objects (e.g., a synchronous operation call in the expression of a change event may
block an object).
We assume no, and this is the reason for the above simple functionality of Receive Events.

Receive Events(e queue; evs;attrs;history; t) =

put(TimeOccur(t; history) [ ChangeOccur(attrs;history) [ evs; e queue)

We report the de�nitions of TimeOccur and of ChangeOccur in [9].

Dispatch : Event�Con�guration�Event Queue! Con�guration�Event Queue

Dispatch(ev; conf; e queue) = conf0; e queue0 means that dispatching event ev in the con-
�guration conf changes it to conf0 and changes e queue to e queue0.

It is de�ned by cases, and here we report the most relevant ones, the others are
reported in [9].

Some transitions triggered by an event Assume that in the state machine SM there are
the following branched transitions triggered by E starting from the states belonging to
Sset

[cond  ] / act

SS

S
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1 1
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Note that inheritance of transitions between nested states and overriding may be handled
here by deciding which transitions to consider.

If the active states are Sset, and condiqi holds for i = 1; : : : ; h (h � r), then the object

will start a run-to-completion step going to perform actiqi and to reach state Si
qi
, for

i = 1; : : : ; h (the actual parameters of the event are substituted for its formal parameters
within the actions to be performed).

active states(conf) = Sset ^ h
i=1Eval(cond

i
qi [pj=xj];attrs) = True )

Dispatch(E(p1; : : : ; pn); conf; e queue) = conf0; remove(E(p1; : : : ; pn); e queue)

where
conf0 = run(: : : run(conf; act1q1 [pj=xj];S

1

q1 ) : : : ; act
h
qh
[pj=xj];S

h
qh
)

active states and run are operations of the speci�cation Configuration returning
respectively the active states of the state machine and recording the start of a run-to-
completion step, going from an active state into another one performing a given action.

PROBLEM What to do when the dispatched event is an operation call for whom also
a method has been de�ned in the class ACL.
The solution in this case is just to prohibit to have a method for the operation appearing
in some transition, and it is supported, e.g., by [11] p. 369 and other UML sources ([10]).

PROBLEM A similar problem is posed by the case below: what will happen when
someone calls method Op, whose body is described by the note attached to its name in
the class diagram? On one hand, assuming that such call is never answered, may lead to
produce wrong UML models, because the other classes assume that Op is an available
service, since it appears in the class icon. On the other hand, answering to it (perhaps
only when the machine is not in a run-to-completion-step) seems in contrast with the
role of the state machine (UML 1.3 p. 2-136).

{ X = X - n; 
O1.Op’(n);  }

S

Op1(n,m) / 
X = m * n;

S1

Op1(n,m) / 
X = m+n;

Op1(int n, int m)

C

int X = 0;

Op(int n)

In general operations with an associated method seem to be problematic for the active
classes, and so it could be sensible to drop them.

No transitions triggered by a deferred event Assume that in the state machine SM there
are no transitions starting from states belonging to Sset triggered by E and that E is
deferred in some elements of Sset.
PROBLEM UML 1.3 does not say what to do when dispatching E in such case. The
possible choices are:
{ remove it from the event queue
{ put it back in the event queue
{ put it back in the event queue, but only for the states in which it was deferred.
Here we assume that it is deferred, and that after it will be available for any state;
however, notice, that we could formally handle also the �rst cases, whereas to consider
the last we need to assume that there are many threads in an object with the relative
event queues (one for each active state).

If the active states are Sset, then the event E(p1; : : : ; pn) is left in the event queue for
future use.

active states(conf) = Sset )

Dispatch(E(p1; : : : ; pn); conf; e queue) = conf; e queue



4.6 Constraints

Constraints may be attached to any element of a UML model. For what concerns the
fragment of UML considered in this paper we have constraints attached to the class icon
(e.g., invariants) and to the operations (e.g., pre-post conditions), in the class diagram,
and attached to the state machine (e.g., invariants). The language for expressing the
constrains is not �xed in UML (also if OCL is the most used), however the semantics of
the constraints is precisely settled, indeed UML 1.3 p. 2-29,2-30 states:

A constraint is a semantic condition or restriction expressed in text. In the meta-
model, a Constraint is a BooleanExpression on an associated ModelElement(s)
which must be true for the model to be well formed. . . .Note that a Constraint is
an assertion, not an executable mechanism. It indicates a restriction that must
be enforced by correct design of a system.

Such idea of constraint may be easily formalized in our setting: the semantics of a con-
straint attached either to ACL or to SM is a property on L. The formulae of CASL allow
to express a rich set of relevant properties, recall that the underlying logic of CASL is
many sorted �rst-order logic, and that CASL extensions with temporal logic combina-
tors, based on [4] are under development. Moreover the constraints expressed using OCL
may be translated in CASL without too many problems.

Assume we have the constraints C1, . . . , Cn attached either to ACL or to SM, then
then the UML model containing ACL and SM is well formed i� for i = 1; : : : ; n, L j= �i,
where �i is the CASL formula corresponding to Ci. Techniques and tools developed for
algebraic speci�cation languages may help to verify the well formedness of UML models.

PROBLEM The use of constraints without a proper discipline may be problematic, as
in the following case, where the constraint attached to the icon of class C is an invariant
that must hold always, and so must be respected also by the transitions triggered by
the calls to OP and OP1. These inconsistencies may be hard to detect, because the
problematic constraints are in the class diagram, while state machine violating them is
given elsewhere.

C

int X, Y = 0;

Op(int n);
Op1();

{ X > Y }
class diagram:

S

Op(n) /
X = n;

S1

Op1/ 
Y = Y+1

state chart:

In UML there are also other constraint-like constructs posing similar problems; as the
query quali�cation for operation (requiring that an operation does not modify the state
of the object), or the \speci�cations" for signal receptions (expressing properties on the
e�ects of receiving such signal). Also in these cases the behaviour described by the state
machine may be in contrast with them.

We think that a way to settle those problems is to develop a precise methodology for
using these constraints, making precise their role and when to use them in the develop-
ment process.

5 Conclusions and related work

The task of formalizing UML has been addressed using various available formal tech-
niques, as we will discuss below. Most of these attempts are complementary, because
they approach the task from di�erent viewpoints and aims.



In this respect our work has several distinguishing features. First of all we are using
a very elementary and well-known machinery, namely lts (which are at the basis of for-
malisms like CCS), and conditional algebraic speci�cations. As happened for Ada, [1],
this simple model provides a powerful setting for revealing ambiguities, incompleteness
and perhaps questionable features, both from the purely technical and the methodolog-
ical point of view. For example, we have discussed several naturally arising questions
concerning UML, such as \what is the behaviour of an object with several active sub-
threads?", and \does the run to completion execution of a state machine transition imply
that a transition is a kind of critical region?"

Furthermore we have used a modular framework where the various possible interpre-
tations of the aspects of UML (and of its many variants) may be made precise and the
various problems exempli�ed and discussed also with users lacking a formal background
(a lightweight formal method approach).

Within the \Precise UML" group and also outside, several proposals for formalizing
UML or parts of them have been presented; we briey report on some paradigmatic
directions.

Some papers are addressing speci�c questions; for example [5] shows how to use graph
rewriting techniques to transform UML state machines into another simpli�ed machine
(a kind of normal form); but, e.g., the execution of actions is not considered. That paper
could be seen as providing a method for eliminating what we called shortcuts in Sect. 2.

Some other papers try to formalize UML by using a particular speci�cation language;
for example, as in [6], using Real-Time Action Logic, a form of real time temporal logic.
With respect to these approaches we put less emphasis on the speci�cation language and
more on the underlying model, because we think that in this setting it is easier to explain
UML features (also the possible problems) and to derive a revised informal presentation.

The relevance of the underlying model for making precise UML has been considered
in [2], where a di�erent model, a kind of stream processing function, is used. But the
main aim there is methodological: how a software engineering method can bene�t from
an integrative mathematical foundation. While one of the main results of our work could
be a basis for a revised reference manual for UML.

Finally, we have not considered the large number of papers on the semantics of clas-
sical state machines (as those supported by the Statemate tool), because the semantics
of the UML state machines is rather di�erent; e.g., in the former many events may occur
simultaneously, whereas that cannot happen in UML (see [11] page 440).

We plan to go on analysing UML, to give a sound basis for our work in the CoFI
project, trying to give an underlying formal (lightweight) model to the other constituents
of a UML-system, i.e., to instances of passive classes and the system itself, and to consider
the other kinds of diagrams, as class, sequence and collaboration.
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