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Preface 
 
Message from the Organizers 

 
 
CONTENT 
 

This report provides an overview of current 
research trends in the field of collaborative 
visualization on interactive surfaces. It is based 
on a workshop (CoVIS 2009) held at 
VisWeek 2009 and consists of three main parts:  
 
(i) the preface of authors, motivating and 
clarifying the underlying challenges;  
 
(ii) a research agenda which we derived from 
fruitful discussions during the workshop; and  
 
(iii) the peer-reviewed papers which were 
presented at the workshop. 
 
The report comprises interdisciplinary aspects 
form the fields of information visualization, 
scientific visualization, visual analytics as well as 
CSCW and HCI. It is meant to help other 
researchers better understand the role and the 
growing impact of interactive surfaces as an 
emerging technology for supporting 
collaborative visualization and visual analytics 
settings. 
 
 
MOTIVATION 
 

It is common for small groups of people to 
gather around visual displays of information to 
discuss or interpret the information to form 
decisions. Groups can share the task load of 
exploring large and complex datasets and can 
share various interpretations of a dataset when 
working together. However, tools to support 
synchronous collaboration between several 
people in their data analysis are still relatively 
scarce. Traditionally, visualization and visual 
analytics tools have been designed from a 
single-user perspective and for desktop 
computers. While hardware such as multi-touch 
displays and network capabilities—that lend 
themselves especially well to collaboration—
have emerged, software support for 
collaboration around visualizations is still 
relatively scarce. One of the reasons is that 
single-user systems do not necessarily translate 
well to collaborative scenarios or interactive 
surfaces and require specific re-design. The 
design of digital systems for collaboration 
around visualization and visual analytics 
systems, therefore, poses additional challenges: 
we need to better understand (a) how people 
collaboratively work with visual representations 

of data and which methods they use to solve 
information analysis tasks as a team, and (b) 
what the exact design requirements are for 
collaborative visual analysis scenarios.  
 
THE WORKSHOP 
 

Technical Scope 
We discussed these topics during a workshop at 
VisWeek 2009 in Atlantic City, USA. The 
workshop was open for discussion on issues 
pertaining to the design of collaborative 
information visualization, scientific visualization, 
and visual analytics systems on interactive 
surfaces and specifically on topics related to: 
• the design of information visualization, 

scientific visualization, or visual analytics 
interfaces and environments for co-located 
collaborative work, 

• design of interactive visual representations 
for collaborative work on interactive surfaces, 

• the use of interactive surfaces to visualize 
and interact with information and data 

• social components in collaborative visual 
analysis environments 

• aspects of cognition in multi-user 
visualization and visual analysis 
environments 

• evaluation of collaborative information 
visualization, scientific visualization, and 
visual analytics systems, 

• multiple and coordinated views for 
collaborative visualization and data analysis 
systems, 

• design of multi-display environments for 
information analysis work, 

• collaborative visualization and visual 
analytics applications, 

• collaborative sensemaking, 
• experiences with traditional collaboration in 

information and data intensive fields. 
 
Format 
 

The workshop was held as a half day event and 
we received ten peer-reviewed position papers 
of up to four pages in length each presented by 
one of the authors. The workshop was organized 
as an open event previous to the 
VAST/InfoVis/Vis conferences. Approximately 90 
participants from academia and industry joined 
us during the workshop sessions. The workshop 
included two sessions with different foci: 
Interaction and Design Considerations. The 
paper presentations were short (10 minutes) and  
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after each session we included specific time for 
discussions about “future directions in 
collaborative visualization”. We discussed 
upcoming challenges, problems, and 
possibilities and how they could be classified as 
well as specific solutions and approaches that 
can help to address the main issues mentioned, 

including the feasibility of proposed solutions 
and their respective strengths and weaknesses. 
In doing so, we gathered a lot of interesting and 
generalizable aspects which we summarized into 
a research agenda (see next section). 
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Research Agenda 
 
Collaborative Visualization on Interactive Surfaces (CoVIS) 

 
 
Discussions at CoVIS’09 revealed several future 
directions in collaborative visualization on 
interactive surfaces. In the following, we 
describe the main findings derived from these 
discussions and show their specific meaning for 
the visualization research community. Based on 
this and on current literature we propose a set of 
valuable topics for future research: 
 
 
ROLE OF INTERACTION / TOUCH 
 
Interaction with Visualizations with multiple 
people on touch-sensitive displays poses several 
interesting new challenges. In collaboration it is 
common that people work together using 
different types of data, representations, and 
using unique views of the data. Streit et al. [9] 
discuss challenges related to this problem and 
propose a multi-user, multi-level interaction 
paradigm by specifically separating data and 
view domains and proposing specific transitions 
between both. Annotation of data and views is an 
important type of interaction for collaborative 
systems to support and was discussed by [7].  
In addition, moving visualization interaction 
from mouse to touch-based interactions offers 
both advantages and challenges. Isenberg et al. 
[4] discuss advantages of intuitive interaction 
with a flow visualization, support for awareness 
of interaction in the group, and support for free-
form data exploration. Touch interaction also 
offers the possibility and challenges of designing 
new data interaction widgets as shown by 
Flöring et al. with their TaP system [1]. Jeong et 
al. discuss the possibility to interact with 
existing representation types but allowing the 
modification of multiple data dimensions at once 
using multi-touch interaction [5] which may offer 
a new data analysis experience. 
When appropriate interactions have been 
designed for collaborative visualization tools, it 
is important to consider the generation and 
visualization of interaction histories for group 
work. Collaboration often occurs asynchronously 
with people dropping in and out of an analysis 
session. Sarvghad et al. [8] discuss a set of 
design objectives and challenges for 
collaborative history tools.  
Overall, these are just some of the multiple new 
challenges that arise as information 
visualizations are being moved from the single-
user desktop to multi-user multi-touch 
environments.  

ROLE OF MULTIPLE DISPLAY 
ENVIRONMENTS (MDES) 
 
Often, there will not be a single but multiple 
displays representing the data. These multiple 
display environments (MDEs), on the one hand, 
can be static installations of multiple, possibly 
heterogeneous displays such as interactive 
tables, desktop monitors and projectors. 
Waldner et al. [10] for instance use these three 
display types in a system for multiple view 
visualizations.  
On the other hand, users will most likely bring 
their own devices such as laptops, smartphones 
or tablet PCs along rising up the question of how 
to harness these dynamically, formed device 
setups. Streit et al [9], for instance, outline a 
system where the user can bring their own 
laptops and incorporate them into a MDE. Fuchs 
et al. [2] discuss a strategy for automatic device-
based adaptation of visualizations considering 
different affordances of displays in dynamically 
forming MDEs. This strategy can be used to 
distribute visualization onto heterogeneous 
displays. 
In general, to support collaborative visualization 
it is important to better understand how 
designers can make optimal use of multiple 
display resources and what specific 
requirements have to be met in order to support 
visual analysis of massive datasets in MDEs. 
 
 
 
ROLE OF USERS 
 
Another question about designing future 
visualization systems on interactive surfaces is 
who the users will be. It is important to consider 
different roles in collaborative visual analysis 
such as observers, interactors, latecomers, 
distractors or discussion leaders, to think about 
the relation between diverse devices and diverse 
users, and derive implications based on these 
aspects. 
Additionally, previously found aspects of 
collaboration around shared surfaces have to be 
included, mainly the separation between public 
and private content and support for social 
protocols. Also, user identification allows 
following a single user's actions and providing 
undo- and other history-related mechanisms or 
merging these different interaction histories for 
summarizing etc. 
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Kim et al. [6] present a model for user 
identification and the subsequent idea of 
interaction workspaces that allow a clear 
separation and personalization for multiple users 
around an interactive surface. 
Isenberg et al. [3] describe several factors of the 
data exploration context (public vs. work setting) 
which influence users' goals, tasks, and 
objectives when using a collaborative data 
exploration tool. 
All in all, further progress in hardware and 
conceptual models is necessary to give the 
central aspect of user identification in virtual 
collaboration the same place as in real-world 
scenarios.   
 
 
ROLE OF DESIGN PROCESSES 
 
The process of designing a visualization system 
has a strong influence on its utility, usability and 
usefulness. Iterative processes using paper, low 
fidelity and high fidelity prototyping for repeated 
evaluation have been proposed and evaluated as 
useful tools in other communities. 
Understanding whether current methods still 
work for visualization applications on interactive 
surfaces or if they have to be refined, rethought 
or renewed is an important future challenge. 
Paper prototyping, for instance, will definitely be 
influenced by the collaborative, highly 
interactive and surface-oriented nature of 
systems.  
To learn more about the real-world utility of our 
tools, our community also has to think about 
user-centered, participatory and contextual 
design approaches. An important aspect will be 
to understand how collaborative visual analysis 
can contribute to solve real problems, from real 
users and in real environments. “Designing it 
with the people not for the people” should be a 
central design guideline for building valuable 
tools. 
 
 
ROLE OF EVALUATION 
 
Evaluation is central to gaining an 
understanding of interactive systems. In the 
context of collaborative visualization this does 
not only include usability evaluation of final tools 
or interaction techniques but also studies that 
inform the direction of the field itself. It is 
important to explore task sets for which 
measurements can be performed that allow us to 
gain insight into people’s use of and 
performance with the provided interfaces. 
Because collaborative visualization often targets 
information exploration with visual 
representation, however, evaluation cannot only 
design controlled studies but also needs to 
embrace methodologies such as qualitative and 
observational studies. Also important is the 
location, the results from field studies may differ 
considerably from laboratory studies. For 

example, Mayar et al. [7] conducted a qualitative 
study of off-screen note-taking behavior around 
a digital tabletop display during collaborative 
data analysis tasks. They identified several roles 
of notes and open questions in how to design for 
note taking in collaborative visualization. 
 
 
 
DIFFERENCES BETWEEN SCIVIS, INFOVIS, 
AND VAST 
 
The three different domains in visualization, 
scientific visualization, information visualization, 
and visual analytics differ considerably in the 
tools and visualization means they typically 
employ and the interactivity they usually 
provide. This has effects on collaborative 
visualization as a field. For example, in scientific 
visualization it is often important to interact with 
the 3D visualization space itself and important 
visualization elements have a location in space. 
Interacting with these on an interactive 2D 
surface is a challenge. Also, multiple people 
interacting with a global 3D space will cause 
conflicts. In information visualization, in 
contrast, the data typically does not have an 
inherent mapping into spatial domains, so that 
the visualization creates this mapping. This 
means that visualizations can be designed to 
better work on interactive surfaces, and also to 
support multiple interacting people. Visual 
analytics as the third domain centers its research 
agenda on using computational support for 
discovering information in huge amounts of 
data. Here the question is how to control the 
computational support using interactive surfaces 
and provide the necessary interfaces to the 
people who are exploring the data. Finally, a 
challenge also consists in trying to combine 
elements from all three domains, to allow people 
to collaboratively and interactively gain insight 
into today’s complex datasets. 
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Interaction Workspaces: Identity Tracking for Multi-user
Collaboration on Camera-based Multi-touch Tabletops

KyungTae Kim, Tejas Kulkarni, and Niklas Elmqvist, Member, IEEE

Fig. 1. Mockup screenshot of a bus route map application with two users (left), each one with a personal interaction workspace (right).

Abstract—The ability to distinguish between individual users in collaborative visualization is important for avoiding interference and
facilitating cooperation. However, identification can be difficult on camera-based tabletops, where we typically cannot distinguish
which tracked touch points belong to which user. Additional mechanisms are needed, such as video input, capacitance, or social
and software protocols. We propose a model for the identification process on tabletop displays, and then use this model to suggest
a software-based mechanism called interaction workspaces for supporting user identification. An interaction workspace is a movable
and resizable region on the full visual space that belongs to a particular user, and inside which only that user is assumed to interact.

Index Terms—Digital tabletop displays, multi-touch, identity tracking, single-display groupware, horizontal interaction.

1 INTRODUCTION

Collaborative visualization may often benefit from the system being
able to distinguish between the identities of the different users collab-
orating on the system [14], both in order to avoid interference between
their respective actions as well as to faciliate role-specific operations
nad cooperation between the users [3, 5, 15, 16]. Consider a scenario
with two users working on developing a bus route map for an urban
area on a single-display groupware [17] device (Figure 1). When user
A tries to sketch a route from point P1 to P2, while user B sketches a
route from point P3 to P4, a system without user identification might
recognize these two gestures as coming from a single user and may
perform an incorrect operation, such as zooming the whole map. (Re-
fer to Figure 2)

P1P2 P3 P4

When two users are
trying to move objects
in opposite direction.

System without
Identification

System with
Identification

P1P2 P3 P4

P1P2 P3 P4

User A User B

One user?
Two users?

Fig. 2. Example showing that system could interpret the data in different
ways.
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E-mail: elm@purdue.edu.
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Another situation where user identity becomes critical is when multi-
ple users are working on developing unique routes in the same visual
space. Without user identification, if one user wants to undo modifica-
tions to the routes, the system will not be able to distinguish between
modifications by different users. The system may inadvertently affect
other users’ work in that space, causing interference between the users.

Multi-touch [9] tabletop displays are becoming increasingly popular
for this kind of co-located collaborative work [8] due not only to the
natural user interface afforded by the user’s own fingers [6], but also
by virtue of camera-based tabletops being relatively inexpensive and
easy to build [7]. However, while tabletop displays that rely on ca-
pacitance tracking, such as DiamondTouch [2], do support user iden-
tity, the more inexpensive camera-based tabletops [7] (of which Mi-
crosoft Surface is an example) do not. Camera-based tabletops merely
track multi-touch data in the form of “blobs”, which represent points
of contact on the tabletop surface by objects such as fingers. In or-
der to distinguish this multi-touch data as belonging to different users,
these systems must be augmented with additional mechanisms. Ex-
amples of such mechanisms include simple distance-based heuristics,
camera-based image processing [3], social protocols [10], or software
mechanisms such as storage bins [12] or user territories [13]. How-
ever, all of these mechanisms are currently independent and cannot
easily be combined, compared, or contrasted.

In this position paper, we propose to model the identification problem
as a general transformation process which accepts multi-touch data
and classifies this into multi-user multi-touch data. The identity clas-
sifier itself depends on the available hardware, software, and physical
properties of the tabletop system. The model is general enough to
describe all of the above known identification mechanisms for table-
top displays. Extending on previous work, we also propose a sim-
ple software-based classifier called interaction workspaces that permit
fine-grained access control of the visual space by restricting users to
personal work areas (Figure 1), but which relies on a social protocol
for high-level access control (i.e., protecting your own workspace).

This position paper is structured as follows: First, we discuss the back-
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ground of multi-user systems and the existing literature. We then de-
scribe the design of our process model that assigns unidentified blobs
to their respective owners. We go on to present our extension to
software-based identity classifiers: interaction workspaces. We close
the paper with our conclusions and plans for future work.

2 BACKGROUND

As computers become more integrated in society, there has been in-
creasing demands for co-located collaboration in multi-user environ-
ments [14]. However, traditional desktop computers typically use a
standard keyboard and mouse setup that allow only a single active user
at a time, rendering them unsuitable for multi-user collaboration [17].

Recent advances in both display and input technology has made a new
generation of collaborative devices available for co-located collabora-
tion [14]. Among these, digital tabletop displays are particularly suit-
able for co-located collaboration due to their similarity to traditional
tabletops, their natural interaction using fingers or styli, as well as their
obvious collaborative affordances [2, 18]. Furthermore, camera-based
tabletop displays, such as FTIR [7], are inexpensive and relatively sim-
ple to build. However, a necessary—but, as we shall see below, not
sufficient—requirement for these devices to support multiple concur-
rent users is that they first support multiple concurrent touch points on
the display. This property is known as multi-touch sensing [7, 9].

2.1 Recognizing User Identity

Multi-touch systems are generally quoted as also being multi-user ca-
pable due to being able to distinguish between multiple points of con-
tact, regardless of whether these points stem from a single user or mul-
tiple users. However, this is a qualified truth. While capacitance-based
tracking, such as DiamondTouch [2], can trivially distinguish contact
points for up to four users, camera-based tabletops generally cannot.
They detect each point of contact (from a finger, hand, or other object)
as a “blob” on the surface of the tabletop, but have no way of assigning
a user identity to each individual blob [7].

However, the ability to recognize and track user identity in co-located
collaboration may be critical to resolve interference and conflicts be-
tween users. For example, a system with no identity tracking will not
be able to tell the difference between a single user interacting with both
hands, or two users each interacting with a single hand. On a higher
level, the lack of identity tracking may cause conflicts for shared ob-
jects on the display, and does not support assigning roles to users.
Groupware has typically relied on social protocols—spoken or unspo-
ken conventions between users about object ownership—for managing
these problems, but this is not sufficient for many situations [5, 10].

2.2 Classification of Touch Technologies

As argued above, there is clearly a distinction between supporting mul-
tiple concurrent touch points and supporting multiple concurrent users.
In Figure 3, we classify existing touch technologies based on the num-
ber of concurrent users (single or multiple), as well as the number of
concurrent touches they support per user (single or multiple).

As we can see, camera-based multi-touch systems (as well as and mo-
bile touch screen devices such as the iPhone), fall under the category
of multi-touch single-user systems. These types of system face the
problem of user identification as described above. A select subset of
touch technologies, such as primarily DiamondTouch [2], are not only
multi-touch but also multi-user systems.

2.3 Multi-user Multi-touch Tabletops

Most single-display groupware [17] projects in the literature which
need multi-touch and multi-user support utilize the aforementioned

Single Multi

S
in

g
le

M
u
lti

Touch

U
se

r

Car GPS
Tablet PC

SMARTBoard

iPhone
Camera Based
Tabletops(FTIR,
MS Surface)

DiamondTouch

Fig. 3. Classification of existing touch technologies depending on their
multi-touch and multi-user capabilities.

DiamondTouch [2] tabletop, developed by Mitsubishi Electric Re-
search Laboratories (MERL). The device supports up to four unique
users, each capacitively connected with a receiver in their chairs, and
detects touch points as users close the circuit by touching the table sur-
face. Because of this design, the display needs to be front-projected.

Despite the widespread success of the DiamondTouch device, both in
research as well as industry applications, this tabletop is limited to a
specific form factor, whereas camera-based tabletop technologies are
more flexible in terms of size, and also more inexpensive to build [7].
Front-projection may also be a problem due to shadows from the users’
hands obscuring the display, especially in crowded settings. Hence, for
situations where a large interaction surface or support for many par-
ticipants (or both) are required, DiamondTouch may not be the ideal
choice, regardless of the excellent general features of the device.

2.4 Separating Multi-touch Data into Multiple Users

Clearly, the vast majority of multi-touch technologies are not true
multi-user capable. At the same time, camera-based multi-touch table-
tops of this kind have considerable potential for co-located collabora-
tive work, given that the user identification problem can be solved.
To achieve this, we propose a process model that transforms multi-
touch data, in the form of touch points coordinates, into multi-user
multi-touch data—separating blobs into their respective users—using
an identity classifier (Figure 4). We define an identity classifier as a
function to that maps unidentified finger blobs to its respective owners
using different kinds of inputs.

Fig. 4. Identity classification process for recognizing multiple users in a
single-user multi-touch tabletop.

In the following section, we suggest several methods of implementing
identity classifiers, most of which will be heuristic-based in nature.

2.5 Identity Classifiers

Distance-based: Perhaps the most straightforward identity clas-
sification heuristic is based on calculating distances between blobs and
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then connecting them according to the minimum distances. The intu-
ition is that finger blobs belonging to a single hand are typically clus-
tered close together, and two hands belonging to a single user are cor-
respondingly clustered close together. According Epps et al. [4], users
use their index finger or spread hand for about 80% of the time while
interacting with a multi-touch tabletop. This behavior could be ex-
ploited to further enhance the performance of the classifier. Of course,
this simple heuristic breaks down in the face of complex cooperative
interactions between users, such as crossing arms or performing very
large-scale gestures.

Camera-based: A powerful hardware-based classification
heuristics rely on augmenting the camera-based tabletop with addi-
tional cameras—typically placed above or below (in this case, seeing
through the surface to the participants hands above) the tabletop—and
performing image processing on the live video feed. One possible
implementation is to add an infrared camera above the surface and
an infrared light source with different wavelength than that used in
the acrylic of the FTIR tabletop, allowing the camera to track the
movement of the users. Once rough coordinates of user hands are
acquired, the classifier calculates the distance between blobs and these
hands, assigning them to the right owner.

Dohse et al. [3] present a similar hardware setup based on a visible
spectrum camera mounted above a FTIR tabletop that tracks hands us-
ing skin color segmentation techniques. This way, both the robustness
of the multi-touch functionality can be increased, as well as user iden-
tities be tracked and used to differentiate touch points. The approach
has the added capability of being able to detect hover gestures that are
executed without actually touching the tabletop surface.

Territory-based: A software-based identification heuristic is to
divide the surface of the tabletop into discrete territories [13], and
to regard any interaction occurring in a territory as belonging to the
owner of that territory. This relies on social protocols enforced not by
the system but by the collaborating users themselves, something which
may not be sufficient in many situations [10]. Furthermore, the strict
and non-flexible division of the visual space detracts from the multi-
user experience and may decrease the efficiency of the collaboration.

3 INTERACTION WORKSPACES

In this section, we propose a novel software-based identity classifier
called interaction workspaces that supports fine-grained access con-
trol of the visual space by assigning movable and resizable regions to
individual users. We first give a motivating scenario and then describe
the details of the technique.

3.1 Scenario

Suppose Pete is working as part of a team redesigning the bus routes
for Greater Lafayette, Indiana. John and Mary, Pete’s co-workers, are
familiar with the area and are already working collaboratively on a
multi-touch tabletop to design the bus routes. Pete arrives, and pro-
ceeds to place his palm on an unoccupied part of the tabletop space
for two seconds. In response, the system brings up a window to reg-
ister his name. After registering himself, Pete defines his region of
space—his interaction workspace—by using two fingers and dragging
across the tabletop to specify the borders of the workspace. Once the
workspace is instantiated, a simple tap on his name tag associates the
interaction workspace with his identity.

At this point, the interaction workspace is now owned by Pete and any
interaction inside its borders will be classified as belonging to him.
However, Pete is also now responsible for physically protecting his
workspace in order not to come into conflict with John and Mary.

In the middle of process, Pete makes a mistake and wants to undo
his recent changes. By using the workspace toolbox for accessing the
workspace history, the system will revert his work to any specified

previous state. Then, after finishing work in his workspace, John needs
Pete’s help to improve his route, so John releases his workspace so
that it is free. Pete can now destroy or release his current workspace
and move to where John was working. By tapping on the released
workspace, the system will ask Pete about his identity and then allow
him to acquire the workspace to continue the collaborative editing.

3.2 Basic Concept

An interaction workspace is a well-defined sub-area of a visual
display—its extents indicated using visual borders—that is considered
to be owned by a particular user (Figure 1). Access to the workspace
is assumed to be enforced by participants using a social protocol, so
all interaction within the boundaries of the workspace is regarded as
belonging to the workspace owner. Workspaces can be moved and re-
sized. Because an interaction workspace can essentially be regarded
as a mutual exclusion lock of the visual space, different workspaces
are not allowed to overlap since this may cause ambiguities.

Beyond move and resize operations, interaction workspaces can be
created and destroyed. They can also be released and acquired, al-
lowing for sharing among users (see Section 3.3). Furthermore, each
workspace may have an additional tool interface with operations local
to the workspace (Section 3.4), as well as may maintain an interaction
history to support undo and redo operations (Section 3.5).

Interaction workspaces are not independent desktops—they are in-
tended to be used on full-display groupware applications (see sce-
nario). Furthermore, by virtue of being resizable and movable, inter-
action workspaces are generally more flexible and provide more fine-
grained control than many other territory-based mechanisms [13].

3.3 Workspace Management

Creating a new interaction workspace is the first step for a user to be
able to collaborate in a multi-user environment (such as the bus route
design scenario above). During this process, the user will be asked to
authenticate himself and then indicate the position and extents of the
new workspace. Analogously, destroying a workspace will remove it
from the visual display (although it can be recovered again by a global
undo operation, see Section 3.5). Beyond these basic management op-
erations, users can also release a currently owned workspace to share
it for others to use, and they can correspondingly acquire a workspace
with no current owner.

Creation, authentication, acquisition, release, and destruction are all
global operations that rely on a social protocol for enforcement. To
augment this protocol and to decrease the burden on the participants,
additional rules can be enforced on the visual display, such as limit-
ing the number of workspaces that one user can own, as well as the
maximum allowable size for a single workspace.

3.4 Workspace Tool Interface

Most groupware applications that support more than just basic naviga-
tion tasks require an application-specific tool interface. For example,
in our bus route design scenario, there should be tools for drawing and
deleting routes, as well as adding bus stops. Instead of having an in-
terface toolbox associated with each user, every interaction workspace
has its own toolbox. This will help both the users and the system. On
the user side, this allows for customizing the toolbox of a particular
workspace to fit the current task (Figure 5. It also provides a natural
interface to accessing the interaction history of a workspace for undo
or redo operations (see Section 3.5).

On the system side, minimizing the global interface controls and asso-
ciating toolboxes to workspaces means that the system need not distin-
guish between multiple users accessing the same, global tool interface.
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Fig. 5. Example of each interaction workspace containing a unique and
independent tool interface.

3.5 Interaction History

The main purpose of interaction workspaces is to improve coordina-
tion on multi-touch tabletops. However, sometimes even our software
and social protocols may not be sufficient to avoid conflicts. For such
situations, we propose to add interaction histories that support redo
and undo operations. Because of the structure of our workspace mech-
anism, we propose a two-tiered history mechanism:

1. Global history: Global event log, such as for workspace cre-
ation, deletion, release, and acquire operations (see Section 3.3).

2. Workspace history: Interaction log for operations conducted
inside individual workspaces (see Section 3.4).

In other words, the system stores a history of workspace management
operations since startup, and each interaction workspace in turn keeps
track of changes made to the objects within that workspace. Access-
ing these histories can be done using redo/undo buttons placed on the
global display, for the global history, and on each workspace tool in-
terface, for the workspace history.

A problem might arise in situations when objects within different in-
teraction workspaces are interdependent. If an outcome of an ac-
tion within a workspace affects the outcome of an action within
another workspace, user interference might restrict certain changes
within those workspaces. We suggest developing a global dependency
graph, compromising of objects irrespective of their parent interaction
workspaces, to warn users in case of interference between changes be-
ing made. A dependency check flags a warning anytime changes to
inter-related objects within different workspaces are performed. This
mechanism provides a robust technique to resolve dependency issues
between objects and prevents user from violating each other’s work.

Furthermore, interaction histories in groupware systems are clearly
suspectible to conflicts arising from interference between the actions
of different users [1, 11]. Beyond the static dependency graph of do-
main objects described above, this will require maintaining a dynamic
dependency graph for individual user operations in the interaction his-
tory. We anticipate exploring this issue further in our future work.

4 CONCLUSIONS AND FUTURE WORK

We have proposed a general model to describe the user identification
process for camera-based multi-touch tabletop displays. This model
enables us to describe a wide variety of identification mechanisms
in terms of an identity classifier that accepts input from sources such
as overhead cameras, distances between touch points, and territories,
and then utilizes this data to distinguish interactions made by different
users collaborating on the tabletop. We have also proposed a straight-
forward classifier based on non-overlapping interaction workspaces
that are owned by a particular user.

This is mostly a conceptual paper, and we anticipate implementing
and evaluating many of the ideas put forth here in the future. For

example, we are interested in replacing our “soft” social protocol for
high-level access control of workspaces by a more strict hardware-
based protocol based on image processing and an additional overhead
camera, similar to the method employed by Dohse et al. [3]. We are
also interested in studying conflict resolution and avoidance for our
workspaces, particularly in the presence of conflicting histories.
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[16] O. Ståhl, A. Wallberg, J. Söderberg, J. Humble, L. E. Fahlén, A. Bullock,
and J. Lundberg. Information exploration using the pond. In Proceedings
of the International Conference on Collaborative Virtual Environments,
pages 72–79, 2002.

[17] J. Stewart, B. B. Bederson, and A. Druin. Single display groupware: A
model for co-present collaboration. In Proceedings of the ACM CHI 99
Conference on Human Factors in Computing Systems, pages 286–293,
1999.

[18] P. Wellner. Interacting with paper on the DigitalDesk. Communications
of the ACM, 36(7):86–96, July 1993.

4



Towards Multi-User Multi-Level Interaction
Marc Streit, Student Member, IEEE, Hans-Jörg Schulz,

Dieter Schmalstieg, Member, IEEE, and Heidrun Schumann

Abstract— The necessity of incorporating experts from various domains in order to understand and draw meaningful conclusions from
complex and massive amounts of data is an undisputed fact. In order to create and effectively use such a collaborative information
workspace it is vital to understand the interaction processes involved. Established, high-level interaction patterns work well for single
user, single data source scenarios. However, they cannot simply be applied to the collaborative analysis of heterogeneous data.
In this paper we propose a Multi-User Multi-Level Interaction concept which differentiates between operations in view and data domain
while considering the relations and transitions between data on different levels of granularity. Hence, the users’ interaction can be
formalized as a seamless path of navigation. This in turn helps to gain a deeper understanding of the interaction process and allows
to efficiently steer it to accelerate data analysis. We demonstrate the applicability and benefits of our concept by means of a clinical
use case scenario which aims at finding the best treatment for cancer patients.

Index Terms—Interaction, Information Seeking Mantra, visual analysis, collaboration, multi-display environment.

1 MOTIVATION AND BACKGROUND

Interdisciplinary applications require the integration of domain experts
from various fields in the data analysis process. Each of these experts
has a specific perspective on the data, pays attention to different de-
tails, and reasons along the lines of his/her own particular domain.
Organizing this multifaceted interplay between large amounts of com-
plex data, multiple domain experts from different areas, and the la-
borious back and forth between exploration and confirmation of the
analysis process is a challenging task. This task is what collaborative
environments have set out to support and to advance, as the results
that can be gained from an interdisciplinary, collaborative data analy-
sis outweigh technical problems. One essential problem is interaction
with the complex, heterogeneous data spaces in these environments:
due to the multidisciplinarity, data is available in various forms (full
text documents, images, statistical tables, etc.), in various representa-
tions (tabular, tag clouds, visualizations, etc.), and on multiple levels
of detail. Each of which is meaningful to at least one of the partici-
pating domain experts and all of them need to be integrated into one
seamless, interactive analysis process to allow fruitful collaboration.

State-of-the-art applications and interaction paradigms mostly fo-
cus on single user interaction and are tailored to one specific appli-
cation domain. Yet, for a scenario as described above the established
tried and tested interaction patterns do not suffice. Hence, new multi-
user interaction concepts for data from different domains and on mul-
tiple levels of detail must be established. We do so in this paper by
introducing a novel concept that addresses the challenges posed by
multi-user, multi-level interaction. The applicability of this concept is
exemplified by the analysis of clinical data from cancer patients in a
collaborative information workspace described in the companion pa-
per by Waldner et al. [12] (see Figure 1). In this case, biomedical
experts from different fields come together to collaboratively analyze
their respective data to make a joint decision on a patient’s diagnosis
and further treatment plans. In detail, the experts and their data are:

• the oncologist: CT/MR-scan of the tumor, treatment history
• the pathologist: tissue samples of the tumor autopsy
• the geneticist: data on the genome-wide regulation of the genes
• the biologist: genes’ regulation in the context of the cellular

processes, i.e. pathway graphs

Although each expert has his/her core field of expertise (i.e. data),
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they often also have profound knowledge in related domains. The data
forms a natural hierarchy shown in Figure 2. This illustrates the multi-
level aspect of the data, emerging naturally from the interdisciplinary
setup. This is not a special case, but occurs frequently, as other ex-
amples of such hierarchies show – e.g., of the assembly hierarchy of
a whole network of electronic devices down to the individual logic
gate in the field of electrical engineering [1] or the refinement process
in software engineering from the specification documents down to the
actual code.

The collaborative workspace being utilized by our use case is
an adaptation of the Caleydo Biomedical Visualization Framework
(http://www.caleydo.org) [9, 10] for the Deskotheque multi-display
environment [5]. Similar setups have been described, e.g., for an office
environment called “The office of the future” [6] or for an entertain-
ment scenario called “Smart Living Room” [3]. Because of this diver-
sity of possible applications, this paper discusses not only the implica-
tions of our concept for our special use case, but also its consequences
for these setups in general.

Fig. 1. Illustration of a collaborative information visualization scenario in
a multi-display environment [12].

2 MULTI-USER MULTI-LEVEL INTERACTION

Most of the common data exploration patterns work well in a single
user, single data source scenario. A particularly successful example
is Shneiderman’s Information Seeking Mantra (Overview first - zoom
and filter - details on demand) [8]. While this pattern is of course
also valid for more than one user and more than one data source, the
characteristic properties of these scenarios are not captured by it. The
two most crucial ones are:
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Fig. 2. Patient-centered data hierarchy starting with a population on the top and going down to the genes’ regulation data of each patient. The
detail of one level is the overview of the next level beneath.

• Seamless navigation, which describes the possibility to browse
the data smoothly across the boundaries of the individual data
sources. This property is important, as interaction patterns have
to bridge the different data domains to ensure seamless naviga-
tion. For the Information Seeking Mantra, this means that for
example, the detail of one data domain is the overview of an-
other one and vice versa.

• Integral data analysis, meaning the common practice to inter-
twine visual and algorithmic analysis in the spirit of Visual An-
alytics. For Shneiderman’s Mantra, e.g., the non-visual “zoom
out” could be an aggregation operation, whereas the “zoom in”
could be a query refinement. The users can then choose whether
to do a visual analysis or to switch to the available algorithmic
tools and use them in combination with the visual ones, accord-
ing to which are the best fit to the analysis task at hand.

The latter of these two properties has been addressed by Keim in his Vi-
sual Analytics Mantra (Analyze first - show the important - zoom, filter
and analyze further - details on demand) [4] and of course it also re-
mains valid in the context of multiple users and data sources. Yet, one
of the most important points for our scenario, namely the integration
of the visualization from overview to detail across all data domains re-
mains unspecified by Keim’s mantra, making it not straight-forward to
be applied here. Hence, this section embraces the Information Seeking
Mantra, as well as the Visual Analytics Mantra and proposes a novel
interaction concept that captures the above two points. The applicabil-
ity of our concept and its practical benefits are discussed in a concrete
biomedical application case.

2.1 Concept
The main idea, which is outlined in Figure 3, is to make a distinc-
tion not only between data and view domain [7], but also between the
different application levels. This way, jumps and switches between
data and view, and also between different application levels can be
expressed by the concept. This is important, as different users in our
collaborative scenario are responsible for different parts of the analysis
and different levels of the data.

Basically, the concept applies the steps of the Information Seeking
Mantra to each data level in the application hierarchy. And it does
this not only for the view domain, but also for the data domain. This
allows to differentiate in which domain operations are performed and
yields the following categorization:

• View operations only affect the visual representation of the data.
Examples are distortion based lens effects, geometric zoom, etc.

• Data operations affect the data by algorithmic means, from sim-
ple numerical operations to complex data mining methods.

• Data+View operations affect both domains. An example is any
“Visual Query” mechanism that is triggered by the user in the vi-
sual representation, which carries out a query in the data domain,
and reflects the result as a change in the view domain.

As a consequence, the overall multi-user interaction process of the
different users’ operations forms a path up and down the application

Fig. 3. The Multi-User Multi-Level Interaction concept separates the
view and data domain while considering the relations and transitions
between the application levels.

levels and across the data and view domain. The seamless transition
between multiple application levels is ensured by the assumed hierar-
chical nature of the data sources. The stippled lines in Figure 3 illus-
trate this natural shift from one level into the next.

Conceptually, all analysis paths across multiple domain levels (in
our case from the population of patients down to their individual
gene expressions) and across multiple interaction levels therein (from
overview to detail) are possible. However, in real world scenarios re-
strictions for the navigation are introduced. The constraints can either
be implied by the nature of the data (e.g., missing data) or by the role of
the analyst (e.g., security clearances). The knowledge about the con-
straints allows a guidance of the users through the domains and levels.
In some situations multiple paths of interaction lead to the same re-
sult for the users. While one path could be potentially faster, another
one might better support the users at keeping their mental map. In
such cases the application designer can actively guide the user by pro-
moting certain interaction paths, but without denying any of the other
possibilities. While for example an expert user would take the faster
way, the novice user should be guided along the path which supports
the mental map best. Therefore, the awareness of the application de-
signer of these constraints is vital in order to provide suitable visual-
ization and interaction techniques. This knowledge also enables the
application designer to preprocess most of the needed data along the
most promising exploration path, in order to prevent time-consuming
switches to the data domain and back. E.g., if a clustering is already
precomputed, it is readily available to be included in the view domain
and the interactive exploration process can continue instantly.

2.2 Use case

For demonstrating the proposed interaction concept we chose an ex-
emplary use case from our clinical scenario: experts from four do-
mains meet to discuss the treatment of a cancer patient. The use case
bases on feedback from our medical partners on the Caleydo software
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as well as by studying their offline workflow in everyday collabora-
tive situations. By accessing patient data from the whole spectrum of
application levels (cf. Figure 2), the biomedical experts perform a col-
laborative analysis. Table 1 shows the interaction path through the data
and view domain. In addition, the table states which domain experts
actively interact on which level of the data hierarchy for each task.

When examining this and multiple other analysis paths from the
biomedical application domain, we encountered certain reoccurring
patterns within the extracted flow of visual data analysis. Three no-
table examples are:

• The Information Seeking Mantra, which often remains intact,
if not interrupted by switches between different data sources.
This can be observed, e.g., in steps 3-5 and 9-11.

• Visual queries, which are triggered by performing some action
in the view representation. They carry out a query in the data
domain and reflect the result as a change in the view domain.
Again, this pattern occurs usually with the application level stay-
ing the same. This can be observed, e.g., in steps 11-13.

• View to data switches that occur by themselves and not as a part
of a visual query pattern, are mostly switches between different
application levels that are not seamlessly supported visually. If
the switch would be seamless, the users could just use the detail
view of the higher application level as the overview of the under-
lying one. If that is not possible, the users have to switch back
to the data domain and generate a different representation before
they can proceed. Examples for the seamless transition are, e.g.,
steps 5 and 7, examples for view to data switches can be seen in
steps 13-14 and 16-17.

As a transition between application levels usually implies a switch of
the analyst in charge, e.g., from the biologist to the geneticist and on-
cologist from step 16 to 17, once made explicit, these patterns help
to effectively coordinate the analysis process throughout all different
domain levels and between the different experts in a multi-user multi-
level scenario like this.

3 IMPLICATIONS

As the concept is introduced and demonstrated by means of a real
world analysis example, the next step is to discuss the hence result-
ing implications. While the first part addresses general considerations
from the concept, the second section discusses the specific implica-
tions for smart environments.

3.1 General Implications
Although a seamless multi-level application hierarchy may exist, in
some cases there can be data missing for one or more levels. The
reasons can range from restrictions due to security concerns to the ir-
relevance of certain data sources for a specific use case scenario. For
example, in the biomedical application scenario presented in Figure 2,
an analysis task could aim at the discovery of new gene functions
for which the magnetic resonance images and tissue samples are not
needed. However, for providing a seamless (visual) transition from pa-
tients to pathways the missing levels are crucial to keep up the users’
mental map. One possible approach to fill these gaps in the hierarchy
is the integration of reference or sample data sources. This makeshift
could be taken from external sources or alternatively also be extracted
from available reference data sets. In our case this could be anatomical
atlases or data from patients with similar medical records. These data
sets bridging the gaps have to be explicitly marked as such, so that
it becomes obvious that they are just means to facilitate a smoother
exploration and analysis and are not part of a patient’s data set.

The opposite to the absence of data in the hierarchy can also occur:
the availability of multiple facets of the same data at the same level.
Examples in terms of our use case are data sets on the organ level
acquired by different imaging techniques – e.g., magnetic resonance,
computer tomography, and X-ray images. These multiple facets of the
same data introduce an ambiguous navigation path between the lev-
els, where it is unclear which path to choose through the hierarchy.
At this point the users’ profiles and roles during the analysis can help

Table 1. Interaction path in a sample use case where biomedical experts
aim to select a cancer treatment for a specific patient. The decision is
based on reference cancer patients data collected at the clinic. Based
on the down-regulation of a gene known to be one of the causing factors
of the tumor, similar patients are filtered and taken as a foundation for
the treatment decision. For every task the involved expert is stated:
oncologist (onc), pathologist (pat), geneticist (gen), and biologist (bio).
The levels of interaction are referred as: overview (Ovv), zoom and filter
(Z+F), and details on demand (DoD).

to optimize the navigation path. Another optimization can be made
by looking for recurring interaction patterns and adapting the appli-
cation to make them readily available and easy to use. An example
for the Caleydo Visualization Framework is the bucket representation
with visual links. It was specifically introduced to make switching be-
tween different visual representations, a common pattern in our use
case, easier and more intuitive.

3.2 Specific Implications for our Use Case
While the multi-level aspect is inherent in the application scenario, it
is the multi-user aspect that distinguishes between the complexity of
coordinating for a seamless interaction path through the multi-level
data. In general, one can differentiate three cases:

• The single-user case, which is what the Caleydo framework is
aimed at. It allows a seamless navigation through the multiple
application levels by providing a linked multi-view visualization
on a single output device.

• The static multi-user case, which is targeted by the adaptation of
the Caleydo framework for the Deskotheque environment. This
environment provides a fixed set of displays and projection areas
to facilitate multi-user interaction.

• The dynamic multi-user case, where the set of the involved
users is not static, but changes over time. In this so called smart
environments, also the device ensemble of available displays is
changing as users connect and disconnect their brought devices
(netbooks, laptops, PDAs, etc.) with the environment during run-
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time. A detailed discussion on this case’ realization and its usage
for a medical scenario is given in [11].

It can be observed that with each of these cases, the complexity of co-
ordinating multiple data levels to be shown on multiple displays for
multiple users is increasing. The challenges this poses are abundant
and range from the distribution of the data to the available display de-
vices (or views in the single-user case) to the assurance that privacy
concerns are met. Our Multi-User Multi-Level Interaction concept
provides a conceptual and concrete way to model all these complex
dependencies and to derive solution approaches that finally achieve
real seamless collaborative data analysis.

Collaborative information workspaces, such as described in [12],
differentiate between private and public displays. In the simplest case,
each domain expert displays his/her domain data on a private display –
e.g., in Figure 1 three users from different domains are sitting around
a table, each with a private view on a single monitor. Besides the plain
distribution of views, the users’ roles can further be facilitated to pro-
vide tailored visualizations, as a user’s working domain influences the
chosen visualization technique and terminology used for annotation
purposes. Different domains can then be bridged either by a simple
coordination of visualizations among the (private) displays or by the
combination of data from different sources in public visualizations.
Public displays, i.e., projection walls which are visible for multiple
users, can host these integrative visualizations. This also allows mul-
tiple users to work on the same task.

The physical separation between public and private displays can
also be used to circumvent privacy issues, by showing sensitive data
only on private displays. In a clinical scenario, the biologist may not
be allowed to see the clinical history of patients for privacy reasons.
The control over the individual displays enables the collaborative en-
vironment to grant or deny access to experts depending on their role,
either allowing them to roam freely within all available data sources or
just within the absolutely necessary parts. Even annotations could dif-
fer, providing patient details in private views, but being anonymized
in the public views. Thereby, the anonymization does not affect the
linking of the individual views. Selections and other interactions are
reflected throughout the whole ensemble of displays.

In dynamically changing environments, it is furthermore essential
to have access to a wide range of information: the spatial model of the
environment, the participating subjects and their roles, the underlying
data, and the workflow of the analysis tasks. All these are essentially
targeted by the proposed Multi-Level Multi-User Interaction, as it al-
lows to specifically define in detail what (data set) is visible to whom
(expert user) in which way (visualization technique) with which goal
(aim of this analysis step) and in which order (workflow) – capturing
the entire analysis session and going well beyond the pure definition
of individual analysis tasks. Having this knowledge beforehand, en-
ables the environment not only to provide a suitable data set from the
specified application level to the experts who fit the role and have the
necessary security clearance, as it is outlined in Table 1. But instead,
the explicit knowledge of probable interaction paths and the resources
needed for each step allow to adapt to a dynamically changing environ-
ment. E.g., if a certain analysis path requires an expert who is currently
not present or a data source which is not available, a different path of
analysis can be chosen, if one exists. To reach such a high level of co-
ordination in a dynamic multi-user environment is a challenging task.
Now, that the infrastructure as detailed in [11] is up and running, the
first step for future research is to investigate how this solutions can be
integrated with Caleydo to enhance the single-user scenario to a smart
one that adapts to changing constraints.

4 CONCLUSIONS AND FUTURE WORK

We presented the Multi-User Multi-Level Interaction concept as a way
for formalizing the collaborative information seeking process of mul-
tiple domain experts working with heterogeneous data. The concept
allows to model, analyze and consequently optimize and adapt the in-
teractive workflow in complex environments. Although we introduced
and demonstrated it by means of a static multiple user scenario, the

presented concept can also be scaled down to a single-user, single-
display setup and scaled up to a dynamic multi-user scenario, both
being subject of future research.

In the single-user case, instead of deciding on which display to
show which view of what kind of data, it can be used to decide which
space of the screen (e.g., which wall of Caleydo’s bucket representa-
tion) to use for which kind of data and how to link them appropriately.
On an even smaller scale, extracted interaction paths and patterns do
also help to automatically arrange and tailor the visualizations to data
on different levels of granularity with the aim of providing a seamless
exploration process. Once defined in terms of our interaction concept,
this process can even be potentially accelerated by optimization (e.g.,
preprocessing) along predefined common interaction paths.

In the dynamically changing multi-user case, the extracted knowl-
edge can potentially contribute to solutions for many of the challenges
that dynamic smart environments face. With a holistic model of the
entire workflow, it should be possible to overcome minor disturbances
of the analysis process by an adaptation of the process according to
the currently available resources and users.

So far, the Multi-User Multi-Level Interaction concept primarily fo-
cuses on the information seeking workflow, as defined by Shneider-
man and Keim. However, the concept is most certainly applicable to a
broader range of high-level interaction patterns, e.g., for data manipu-
lation. Hereby, the Information Seeking Mantra, as it is embedded in
our interaction concept, can be replaced with a different pattern, e.g.,
by Baudel’s data manipulation process [2]: view adjustment, selection,
and editing. Hence, it seems even possible to generalize our concept
to any step-wise definable interaction pattern.
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TaP: Towards Visual Analytics on Interactive Surfaces

Stefan Flöring and Tobias Hesselmann

Fig. 1. Hands on: Stacked halfpie menu for navigation in hierarchical data structures.

Abstract—Today the amount of collected data steadily grows. Today, larger amounts of data are collected than ever before. To
cope with the problem of finding relevant information in collected data, we present TaP, a visual analytics system for visualization
and gesture based exploration of multi-dimensional data on an interactive tabletop. Using TaP, users are able to control the entire
analysis process by means of hand gestures on the tabletop’s surface. TaP is focussed on multi-dimensional data and provides a
novel menu design, stacked half-pie menus, to explore deeply nested hierarchical data structures, such as dimensions and measures
of the OLAP data model. Considering that collaboration can play a key role in data analysis, we implemented several features into
TaP to effectively support collaborative visual analysis. In this paper, we will present the different elements of the system and their
role in collaborative analysis.

Index Terms—Visual Analytics, public health, OLAP, gesture based interfaces, collaborative analysis.

1 INTRODUCTION

In today’s health care environments, especially in the epidemiologi-
cal domain, the importance of data analysis steadily increases. Key
topics of interest are the discovery of trends and correlations between
diseases and potential influence factors, early recognition of infectious
diseases and their diffusion and report generation based on geograph-
ical regions or influence factors [9].

Data-analysis systems have been an important issue in our research
group for several years, initiated by the launch of the epidemiolog-
ical cancer registry lower saxony (EKN), for which we developed
CARESS, a tool for data-analysis. It supports the visualization of
geographical, multi-dimensional measures on thematic maps. Based
on the experience gathered in the project we created MUSTANG
[7], a service based platform for report driven data visualization in
health care applications named. MUSTANG facilitates numerous
data-analysis applications and became the foundation of a variety of
analytical systems. However the focus of current MUSTANG still is
report driven analysis, i.e. predefined reports are filled with data from
the epidemiological database. This rather static approach is not nec-
essarily disadvantageous, as common epidemiological applications do
not require for interactive analysis’s. Nevertheless, as the amount of
collected data increases the demand for more sophisticated analysis
methods grows simply because there is potentially valuable informa-
tion hidden in the database. Regarding to user feedback we received
from continuous exchange with the experts working on our systems,
there is a growing demand for ad-hoc analysis and explorative tasks in
future. The idea is to visualize the collected data and then mingle data
from other sources into the visualizations. For example the average

• Stefan Flöring is with University of Oldenburg, Germany, E-mail:
stefan.floering@informatik.uni-oldenburg.de.

• Tobias Hesselmann is with OFFIS Institute for Computer Science, E-mail:
hesselmann@offis.de.

amount of infections of a certain kind per region could be visualized
on a thematic map, to possibly find regions with atypical high or low
rates. Then data from other sources could be integrated interactively
into the visualization to find possible environmental influence factors.

Tasks like this require visualizations which allow interaction to ex-
plore the database according to the visual analytics mantra (Analyze
First - Show the important - Zoom, Filter and Analyze Further - De-
tails on Demand) [6]. They also require the collaborative work of ana-
lysts with expertise in varying fields, for example people with medical
or epidemiological background, people with demographic background
and so forth.

In addition to that our user feedback shows that even in the reporting
analysis style it is a common practice to discuss the results with other
analysts before they are published. A typical approach is to either print
out results and then seek for direct discussion or to generate electronic
documents and transfer them via E-Mail to other experts, along with
a certain set of questions. To us it is obvious that a more direct way
of discussion and communication of results with immediate response
and interaction on the visualized data itself might enhance the analy-
sis process here. Therefore we determined two major challenges for
the advance of epidemiological analysis: Increase the possibilities of
interaction with visualizations to enable a more dynamic and sponta-
neous way of explorative data analysis and create the possibility of
collaborative analysis with multiple experts working directly on the
same scenarios in an interactive way.

This paper describes the TaP system, a visual analytics platform
based upon a large scale interactive surface computer and explains
how these two challenges are addressed by this system. Visual an-
alytics on surface computers has only recently been recognized as a
research topic and related work in this area is relatively sparse. In [2]
Collins presents a system for file system interaction where a table top
is used for a novel approach to associative-search in semi-structured
data. In Isenberg et al. [5] a system for co-located collaborative work
with information visualization based upon a large scale tabletop dis-
play is introduced. The paper provides guidelines for the design of col-
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laborative information visualization systems. Our system differs from
existing approaches in two areas: We focus on multi-dimensional data
in the OLAP data-model and it is our aim to create a gesture based
interaction to directly manipulate the visualized data.

2 TAP: A NEW APPROACH TO EXPLORATIVE DATA ANALYSIS

OLAP databases are one of the most common ways of data manage-
ment for multi-dimensional data. The MUSTANG platform provides
a service based interface for accessing databases based upon this data-
model. MUSTANG is the basis of TaP and is used as service layer for
data access by means of OLAP operations.

In the multi-dimensional data model data is categorized into hier-
archically structured dimensions (such as time, geographic location,
products), each containing a number of distinct hierarchical levels,
and measures (such as disease rates or sales). The data is represented
in data-cubes which span across several dimensions and measures. In
addition to data access, OLAP operations for generalization (roll-up)
and specialization (drill-down) along the dimensional hierarchies are
available.

This is a constraint to the TaP data-analysis platform. As all current
applications are based on this multi-dimensional data management,
it is necessary for the new system to allow the exploration of those
structures. This is important for the first step in the analysis process,
the selection of data to be analyzed, and for further steps such as zoom
and filter, where the visualization has to support the corresponding
OLAP operations.

Before we describe the user interface of the TaP system, we would
like to expose our thought that lead to the use of an interactive table top
computer for display and interaction with the data analysis platform.

3 TABLE TOP COMPUTERS FOR DATA-ANALYSIS

Typical computer workstations are optimized for single user interac-
tion. This starts with the input devices (keyboard and mouse), which
only fit well for single user interaction and can be extended to the
display technology. Typical workstation displays offer a fairly good
spatial resolution of up to 30-40 pixels / cm. However the display size
is usually limited to something between 50 - 60cm and have a lim-
ited viewing angle and therefore are not well suited for more than one
person at at time.

Another important aspect is territoriality in collaborative scenar-
ios. Studies have shown that humans claim personal territories when
they are performing tasks in collaborative workspaces. In [10] was
analyzed how people work on collaborative tasks in desktop environ-
ments. The participants got different tasks which they had to fulfill.
Their motions were recorded and afterwards their range of motion and
the emphasis regions of their interaction was calculated. It was deter-
mined that people have personal territories, where they interact more
frequently than in other regions. In collaborative tasks (such as sort-
ing paper notes) there were areas where everyone would interact, the
main regions around the object to deal with, and personal areas where
some people would interact more frequently. The personal territories
were automatically respected by other participants, they avoided to in-
teract in the personal regions of the other participants. This shows
that people have the exception that a personal area surrounding is their
personal territory and will be respected by others.

Classical workstations do not provide a concept of personal
workspaces or territoriality. To integrate this concept, artificial regions
on the screen would have to be declared as workspace for specific per-
sons. However humans define their personal regions on the base of ab-
solute distances and it is questionable whether small 50-60cm screens
provide enough space for a good territory metaphor. The concept of
workspaces here would be absolutely artificial.

Based upon this assumption we created a large table top com-
puter. Decisive for this was the idea, that a horizontal workspace
provides better possibilities for collaborative work, as there is more
space around the table than e.g. in front of a desktop or even of a
wall of equal size and therefore natural personal territories based upon
distance could automatically evolve. Another assumption that encour-
aged us to use a table top computer was that - if the data visualizations

and their interaction methods are implemented well - a table top com-
puter allows a more direct way of interaction with data than a classical
computer workstation. The analyst could literally touch the visualized
data and directly initiate operations on the data, following Shneider-
mans direct manipulation paradigm [12].

4 USER INTERFACE OF TAP
Unlike classical computer workstations, table top computers allow
users to directly interact with the interface elements. Classical work-
stations are operated by input devices like mouse and keyboard, which
only allow indirect manipulation of interface elements. Therefore it is
necessary to research whether given interaction paradigms and inter-
face elements are still suitable for the use on a table top computer.

Feedback by our users implied that the visual analytics system
needed to allow the analysts to quickly select data and the display it in
suitable visualizations. This resulted in the requirement for some sort
of selection process for items of the multi-dimensional data model. As
mentioned before the dimensions and measures in this data model are
ordered in hierarchical structures. In our classical analysis applications
the selection process is based on a dialog driven wizard, where the an-
alyst makes selections for different aspects, such as the visualization
to be used, the dimensions to be displayed, the hierarchical level of the
dimension, the measures which should be displayed for this dimension
and so forth. For selection of elements out of hierarchical structures
classical tree views with textual labels are used. The selection itself is
performed by a checkbox in front of a tree view label. Once all steps
of the wizards are accomplished the visualization will be rendered.
If the analyst wants to modify the visualized circumstances he has to
re-enter the wizard and go through all of the selection steps.

This approach seemed to be unfortunate for usage in an interactive
way on a table top computer because of two reasons. First of all the
selection model in wizard style does not match the visual analytics
mantra, where it is vital to quickly display something and then itera-
tively enhance the visualization with further aspects. And at least as
important, tree views do not scale well on touch screens. The size of
a tree view is determined by the length of the textual labels and the
depth of the hierarchy. The longer the labels and the deeper the hier-
archy, the more screen estate is used. This is not a big problem in user
interfaces which are operated with a mouse, which very precise and
where UI elements therefore may be quite small. Touch interaction
based interfaces are far less precise than those with mouse interaction,
because the size of the human finger is limiting the precision. Sears et
al. studied the performance of participants typing on virtual keyboards
on a touch based interface with varying key size [11]. It was shown
that the larger the keys, the better the performance in terms of error
rate and words per minute. Even from the second largest size to the
largest size (2.27cm per side) they measured that the throughput was
still increasing. Bender later confirmed these observations regarding
to error rate [1]. Here was also shown that the target size influences
the contact time, with larger targets (3cm per side) decreasing the con-
tact time compared to smaller targets (1cm per side). This leads to
the conclusion, that interface elements for touch screens should not be
smaller than 2-3cm on the smallest side or in diameter. Transferred to
the tree view this means that the height (the smallest size) of the menu
should be at least 2cm. This means that a menu with 50 entries would
already consume 100cm of vertical space. It also leads to very broad
menus as the length of the textual labels increases likewise when the
height of the textual label is adjusted to 2cm.

4.1 Pie Menu
In our current implementation the system is bound to a specific multi-
dimensional database at compile time. To access the data the user
needs to be able to explore the hierarchical dimensions and measures
available in this database. With this information in mind we were seek-
ing for a menu that would provide labels of a fixed size, large enough
for touch screen usage and which scales with many hierarchies and
entries in those hierarchies. We came up with the idea of the stacked
half-pie menu [3], adapting the concept of round pie menus with fixed
label sizes, as described by Hopkins [4] and modified this design for
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our purposes. Instead of a full circle we used a half circle design for
the pie menu. This enables us to have a variable number of elements
in each row of the pie menu. If there are more items in one hierarchy
than would physically fit into one row, the items are hidden instead.
Arrows on the edge of the row indicate, that more items are available
in this hierarchy. An example Menu is shown in Fig. 1. The figure
shows the menu in three different states. The leftmost state shows the
menu fully collapsed. In the middle the menu is has two expanded
levels, of which one is partly collapsed and only represented by it’s
textual label ”dimensions”. The image on the right shows the menu
with four expanded levels, again with the inner one party collapsed.
We have chosen to partly collapse the innermost level, to safe screen
estate. In the multi-dimensional context the inner level will always
provide the two items ”dimensions” and ”measures”. We assume that
a full visualization of those two items is not permanently necessary.

A touch on a label with children in the hierarchy (indicated by a
little + in the label) will expand the next level. It is possible to drag
items out of the pie menu, to the bubble chart, to visualize the under-
lying data.

4.2 Bubble chart
Figure 2 shows the chart component of our visual analytics applica-
tion. We have chosen a bubble chart with additional coloration as first
visualization because it is widely used and easy to implement. The
chart component hast five axes of visualization:

Fig. 2. Bubblechart with sample data.

The y-axis and x-axis: Those two axes are suitable for cardinal and
ordinal values as well as for qualitative dimensions (such as
products) with no natural order.

The size-axis: Values assigned to this axis will modify the bubble di-
ameter relative to the other displayed values. This axis is suitable
for cardinal values.

The color-axis: Values assigned to this axis will modify the bubbles
coloration. This axis is suitable for qualitative values, where each
value gets a certain color (e.g. male as blue and female as pink)
as well as for cardinal values, where a color scale (e.g. red -
yellow - green) is matched to the value scale.

The animation-axis: This axis is not shown in the figure, it is aimed
for temporal data. The data-sets for distinct points of time will
be rendered as individual charts and then displayed as animation.

To assign values to the chart we have chosen to use a touch and
drag gesture. To be able to assign certain elements to an axis we cre-
ated so called drop zones, which can be seen in Fig. 3. In the figure

you can see how the element ”products” is dragged to one of the drop-
zones. There are six drop-zones, from left to right and top to bottom:
y-axis, wild card, size, color, animation and x-axis. Each drop-zones
is corresponding with the respective axis of the chart. The wild card
drop-zone is special, values dropped onto this drop-zone will be as-
signed to one of the five available axis according to an integrated rule
set which will take care that mandatory axis for the visualization are
filled first and that ranges of values are matched between the axis and
the assigned data-sets. The drop-zones of the active chart are shown
on top of the chart as soon as an element from the pie menu is dragged
into the direction of the chart.

Fig. 3. Bubblechart with activated dropzones.

The chart supports gesture based interaction for OLAP operations
on some of the axis. At the current stage of development we can per-
form the the dice operation by performing either a pinch or a spread
gesture inside a chart. With a pinch from outside to inside the chart
will zoom out, with a pinch from inside the outside chart will zoom
into the data, accordingly performing the operations on the database.
In addition to that we implemented the roll-up and drill-down opera-
tions on the x-axis and y-axis. For this the analyst has to perform the
pinch gestures on the axis labels likewise and thus change the hierar-
chical level of a dimension or the granularity of a measure. If possible
a matching OLAP operation is performed on the database and the chart
is updated accordingly.

4.3 Interface Elements for Collaboration
Recognizing the importance of collaboration in visual analytics, we
designed the system to support multi-user interaction in several ways.
First of all we took care that all interface elements can be used any-
where on the surface. All elements contain round blue drag handles
(see Figs. 2 and 3) which are accessible from all sides. Those handles
allow to move and to resize the charts. In our first prototypes we exper-
imented with fluid integration of rotation and translation, as described
in [8]. However we had to deal with the problem that gestures per-
formed to interact with the visualized data on the bubble chart would
often cause the chart to move or rotate and therefore we decided to use
handles for movement and rotation.

There was no simple way to attach such handles to the pie menu
because the pie menu does not have any fixed corners which are ac-
cessible from all sides. Therefore we thought of a way to display the
pie menu on any given place of the surface by a gesture. The touch
recognition technique used in our table top computer does not only
provide information about position and movement of the touches but
also information about the size of the touches. The palm of a hand
for example produces a significant larger touch-area than the touch of
a finger. We listen to those events, which we call palm touches, and
display the pie menu a few cm above the palm touches. In this way
it appears underneath the fingers of the person who last performed a
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palm-touch. This enables everyone around the table to move the pie
menu to a nearby position.

In standard applications a typical way to create another work item
(another chart in our case) would be to select a menu entry from a
drop down menu at the topmost position of the screen (e.g. File/New)
or to click an item in a toolbar that has a fixed position on the screen.
This approach is challenging on large touch screens for two reasons.
First of all the user would possibly have to make a large movement
to a distant area on the screen, for example to the top of the screen.
This is no problem on small displays which are operated by a mouse,
as most mouse drivers include some sort of acceleration mechanism
where faster movement of the mouse will result in faster arrow move-
ment. However on large touch screen, according to Fitt’s Law, we can
expect movements to distant areas to be either slow or imprecise. In
addition to that continuous arm movement over large distances will
most likely fatigue the user. The second problem with the drop down
menu approach on a table top computer is, that it is possibly discrimi-
nating users who are at a position where it is not possible to access the
menu quickly. Therefore we thought about a way to create a menu that
is accessible from all positions of the table top and which would not
cause large arm movements. For this we created a gesture layer, which
can be displayed on demand by either touching into one of the four
corners of the screen, where blue circles indicate a touchable region,
or by knocking onto the border of the screen. In the moment either
one of those actions is performed, a virtual layer will be displayed on
top of all other interface elements.

Fig. 4. TaP working surface with activated gesture layer and example
gesture path.

Fig. 4 shows the TaP system with activated gesture layer. The in-
terface elements beneath the layer are slightly faded out, to visually
indicate that the gesture layer is active. This layer allows path based
gestures. To create a new chart for example a rectangular path has to
be drawn. This gesture can be drawn by touching and dragging a finger
across the surface. As soon as the gesture is finished (when the finger
lifts up), a new chart will appear at the position where the gesture has
been performed in the size of the drawn rectangle. Therefore the same
interaction will create a new chart and assign size and position at once.
This is an additional advantage over classical user interfaces.

5 SUMMARY AND OUTLOOK

The TaP system is a first step towards an integrated approach for visual
analytics on table top computers. It was designed under the assump-
tion that visual analytics is a collaborative task and that table top com-
puters are better suited to collaborative tasks than classical user inter-
faces. With the pie menu, a new menu type we developed, it provides
mechanisms to explore multidimensional databases and to visualize
elements of these databases. Interaction with the system is purely ges-
ture based. We took special care that all interactions are possible from
any place around the table top computer, to not discriminate people by

their position. We have done first user evaluations of the pie menu and
the results look promising [3].

At the current stage of development there are still a few shortcom-
ings in the TaP system. First of all, the system does not distinguish
between multiple users. Even though the underlying framework is ca-
pable to distinguish interactions by different users, the current hard-
ware does not support user recognition. Future versions of the TaP
system should provide the possibility to identify users or at least to
allocate touch signals to specific users to deal with this issue. A chal-
lenging task here is to identify which user performed which gesture.
Personal areas around a users position, according to [10] might be a
way to assign certain interactions to users. Another shortcoming of the
current implementation is, that all interface elements have a direction
towards one side of the table top computer. However the framework
used for graphical representation already supports rotation of interface
elements and we are looking forward to quickly integrate these mech-
anisms into the system. For the pie menu, which does not incorpo-
rate handles for movement and rotation we want to extend the gesture
recognition to recognize the orientation of the palm and then use this
information to rotate the pie menu accordingly.

Besides the enhancement of the gesture based interface our main in-
terest for further research is to better support the analysts in their work
tasks. Therefore we are planning to integrate more visualizations, es-
pecially thematic maps, which are utterly important in the epidemi-
ological domain. Additionally we want to integrate a history which
allows to navigate trough the different states in the analytical process
as suggested in [13] and [5] and find ways to extract knowledge from
this history so it might be re-used in other tasks.
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Roles of notes in co-located collaborative visualization 
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           Fig.1. Examples of note taking activities during our observational study. Note-takers are disconnected from the group activities. 

Abstract—This paper focuses on the significant role that note taking plays in collaborative data analysis within the business 

domain. The discussion of note taking is based on preliminary observations from a user study in which co-located teams of 

business users worked on collaborative visualization tasks using large interactive surfaces. We propose an initial categorization of 

note taking activities and propose a list of  research questions that need to be discussed and investigated in order to better 

understand  note taking  process in the context of collaborative visualization and analysis activities. 

Index Terms—collaboration, computer supported cooperative work, Information visualization, note taking

1 INTRODUCTION  

We discuss the importance of note taking activities during 
collaborative visualization on interactive surfaces. The need to 
support note taking arose from observations during a user study that 
we conducted to examine collaborative data analysis in the business 
domain. 

Use of information visualization (InfoVis) tools to assist 
decision-making in the business domain is on the rise [8]. In order to 
better understand how software tools can support collaborative data 
analysis, we conducted an exploratory study to examine how people 
use visual representations of data collaboratively to solve a problem 
in the business domain and to observe behaviour and processes they 
use. We used an existing Business Intelligence (BI) application, 
“Polestar on Demand” proposed by SAP Business Objects. We 
believed that working with large displays and a specially made 
application for visualizing business data would help us to re-examine 
the process of collaborative visualization, as well as problems of 
current applications and their specific requirements to be customized 
for collaborative usage. One of the surprising results from this study 
was the observation that note taking is a critical process in 

collaborative data analysis and is not well-supported by current tools.  
This paper is not intended to fully document our study and its 

results. Instead, we highlight some observations regarding note 
taking, and use them to raise questions about how to best support 
individual and group note taking activities for collaborative 
visualization on interactive surfaces.  

In the following sections we present a concise review of related 
work, provide a brief description of our study, report some 
observations from the study, and finally raise a series of research 
questions that we believe will need to be addressed by future work 
on note taking for collaborative visualization. 

2 RELATED WORK  

While substantial research has been devoted to computer 
supported cooperative work (CSCW) in general, collaborative 
visualization is still under explored due to its unique challenges. It is 
still not fully clear how people collaborate to solve data analysis 
tasks, or how information visualization techniques and interaction 
methods need to change to support collaborative work. Recently, 
some research has begun to address this question.  Several studies 
have identified processes or activities that contribute to the overall 
group analysis process [4] [7] [9] [10] [11], by using software 
supporting collaborative work [9] [10] or by using paper-based tasks 
[4] [11]. Findings of previous studies, regardless of whether the tasks 
were paper-based or software-based, suggested almost similar lists of 
processes involved in the collaborative data analysis. It also has been 
identified that very flexible tools to support co-located collaboration 
are needed [4] [11] [13]. This includes flexibility to change ordering 
of activities, work styles (from closely coupled to independent), role 
assignments, and workspace organization. It has also been pointed 
out that horizontal and vertical surfaces are suitable for different 
types of collaborative work [12]. 
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To our knowledge, none of the work on collaborative 
visualization has explicitly focused on the need to support note 
taking activities. By contrast, this need became explicitly clear 
during our observational study. 

3 OUR EXPLORATORY STUDY  

Here we briefly describe our observational study, as background to 
help the reader interpret our observations and discussion. 

3.1 Participants  

Twenty-seven participants took part in our study, divided into nine 
groups of three. To increase collaboration effectiveness and to 
simulate common work situations, all the group members knew each 
other. Two of the groups were computer science graduate students 
and the other seven groups were 4th year BCom or MBA students. 

3.2 Apparatus 

Our apparatus were two identical Smart DViT (digital vision touch) 
screens, one in a wall configuration and the other in a tabletop. Both 
had four HD projectors with 3840 x 2160 resolution (8.3 Mpixels), 
and had a size of 61.2” x 34.4” (70” diagonal). 

We used “Polestar on Demand” (Fig. 2) as our data visualization 
and analysis tool. Polestar allows users to upload any data set and 
then interactively browse through the information. Polestar has been 
developed as a single user application. It has a straightforward 
interface and is considered to be reasonably user-friendly. It can be 
accessed from https://create.ondemand.com/explorer. 

Four groups used a tabletop display, four used a wall display and 
one used both displays. This gave us an opportunity to observe and 
obtain users’ feedback on a variety of display configurations.  

3.3 Task and Procedure 

Each study comprised of two tasks, both using an e-fashion dataset. 
Task 1 included 6 warm up questions, which were focused questions 
designed in a way that users could learn important features of 
Polestar. These included selecting variables, filtering, creating 
different types of charts and saving. An example question from task 
1 was, “How does the 2003 margin compare to previous years?” 

 Task 2 was a business case. Participants were asked to assume 
the roles of three top managers (representing different states) and                
together determine a marketing budget for the next year. Rationale 
for the budget was based on information within the data set. This 
task was competitive in nature: participants had to compete to obtain 
the maximum possible budget for their state.  

Styli, paper, and pens were provided to help participants work 
with the system or to take notes. Initially, we provided a 10-15 
minute introduction to Polestar, describing its features.  Participants 
spent approximately 30 minutes on task 1 and 40 minutes on task 2.  
We offered an optional 5 minute break between two tasks.  After task 
2, they spent around 10 minutes to sum up and write down their 
results. We asked our participants to create a report of their results at 

the end of task 2. Our rationale was to have a record of how 
participants used charts to justify their decisions. Then we had an 
open-ended interview. All the sessions were audio and video 
recorded and all the screen logs were recorded for further analysis.  
During all sessions, one observer took notes about users’ actions and 
problems they faced; she also helped them whenever they had a 
question regarding the tasks or the software.  

4 ROLES OF NOTES  

Findings presented in this section are based on analysis of our 
recorded data, notes taken by the observer, as well as all the notes 
and reports made by users. The huge amount of note taking that we 
observed suggests that note taking is a significant activity in business 
data analysis. 

4.1 Contents, purposes and usages of notes 

Perhaps the most interesting and notable finding from our study was 
the importance and frequency of note taking. Participants in our 
study took notes at almost every single step of their data analysis. 
This might be related to the special requirements of business data 
analysis, which is usually dependent on numbers, percentages, 
calculations et cetera. Notes taken by participants often consisted of 
the following:  

Numbers (e.g. data value) 
Drawings (e.g. flag, chart) 
Text (e.g. question, hypothesis, reminder) 
Symbols (e.g. %, $)  
Figures 3 and 4 are two samples of the notes taken by 

participants in our study. Figure 3 shows a note taken for group use. 
It has been nicely formatted and contains some calculated values. 
The person who took this note was assigned the role of note taking. 
He was sitting most of the time and observing others (who were 
exploring data and creating visualizations). He therefore was unable 

 
Fig. 2. Screen shot of Polestar, depicting a comparison chart that 

visualizes margin, quantity sold, and sales revenue over category, 

filtered based on a specific year and quarter. 

 

 
Fig. 3. Sample of notes taken for group use. Content is nicely 
structured and has a group scope.  
 

 
Fig. 4. Sample of a note taken for individual use. It is different in 

content and form compared to the group note in figure 3. 
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to work directly with the application a lot of the time. The group 
needed the content of the notes to help them further analyze data and 
solve the problem given in task 2. The small yet comprehensive 
tabular data that can be seen in figure 3 made the analysis task easier 
by saving important information; it was much more convenient and 
efficient to have this information recorded rather than revisiting 
previously created charts. The same person who was in charge of 
note taking also created the final report. Figure 4 depicts a sample of 
notes taken for individual use. It can be clearly seen that it has a less 
structured form compared to the sample shown in Figure 3. 

 In general, group notes were more carefully organized than 
individual notes, but this of course varied somewhat depending on 
the individual's note taking style.  Individual notes were not always 
organized or written legibly or in a way that everybody at a glance 
could understand them. Again it depended on the individual who 
took these notes, and in rare cases, individual notes were nicely 
written, legible and structured. However, mostly individuals did not 
try to make it pretty or usable for the group. Sometimes they used 
some abbreviations or symbols that could be interpreted only by the 
note taker. Possibly they were witting as fast as possible to minimize 
distraction, since taking notes was not their primary focus. 

In most sessions that we observed, one user assumed the role of 
note taker for the group. This role assignment was usually not 
discussed explicitly. It also did not necessarily remain fixed 
throughout the work session; sometimes the note taker changed part 
way through. 

Generally, notes had different characteristics depending on their 
purpose and intended reader. Based on our preliminary analysis of 
the notes we suggest characterizing note taking and note use as 
shown in figure 5. Note creation shows that participants mainly took 
notes to save a value or artifact (e.g. a chart or the result of a 
calculation), to remind them to do something (e.g. review a chart) or 
to emphasize something important (e.g. what he/she or others find 
valuable). It also shows that both notes taken for group use and notes 
taken individually for private use can have the same purpose. The 
scope of notes is typically private when notes are taken for individual 
and public use when notes are taken for group use. However, in 
some cases, individual notes were shared with the group. Note use 
shows that notes’ contents could be used for further analysis of data, 
creating a report, remembering an important artefact or value, or 
validating previous work. Validation here is mostly concerned with 
ensuring that a calculation result is acceptable. 

We noticed that the manual note taking process impacted 
awareness. Participants lost a sense of what others were doing when 
taking notes, and consequently their awareness level was reduced. 
Each participant had to catch up with others after finishing taking 
notes. For example, Figure 1 illustrates how users who are taking 
notes on paper need to divert their attention from the group and the 
shared display. This drawback suggests that it may be good to 
integrate some types of notes with the visualization (as annotations). 
This feature could facilitate note taking in groups. It is obvious that 
not all the notes taken by users are appropriate to integrate with 
charts; we would still need to provide users with means of taking 
personal notes (e.g. a personal reminder) and notes that do not 
belong with any given chart (e.g. a “to do” item). 

In some sessions where one person was in charge of note taking, 
others also took notes for themselves separately even though they 
had to stop working to take notes. This shows that participants 
needed to take notes individually and separately from the group. 
However, individual notes were not always solely used by the person 
who took them; sometimes they were shared by the group. This 
finding again emphasizes the necessity for software to support both  
individual as well as jointly coupled activities [5] [11] [14]. We also 
noticed that in task 1 (in which users were not saving charts), the 
amount of note taking was much higher than in task 2 (in which 
users were saving charts for comparison). 

4.2 Note Taking in Competitive and Collaborative 
Situations 

Our study suggests that nature of the task can affect both the process 
of collaboration and division of workspace. Task 1, which involved 
focused questions, required a highly-coupled collaborative style of 
work, while task 2, which required participants to compete for 
resources, led to a loosely-coupled collaborative work style. Here 
participants wanted to work individually to prepare the best possible 
arguments for increasing their state’s resources. Hence, a 
competitive situation has a clear impact on user’s collaboration style 
and process. Most of our participants said that they preferred to 
explore information for task 2 individually and later on share their 
results with other collaborators to have a discussion. Notes taken in 
task 1 had a public scope of use, while notes taken in task 2 had a 
combination of public and private scopes.  

5 D ISCUSSION  

Our findings suggest the importance of note taking for 
collaborative business data visualization and analysis. These findings 
raise further questions and issues such as: 

How can we best support note taking activities during 
collaborative work? One probable answer to this question could be 
integrating note taking mechanisms into the software, which in turn 
raises issues such as how closely integrated note taking should be 
with the visualization tool, and whether it should be integrated with a 
history mechanism or should be a separate component. Some 
researchers [1] [2] [3] [6] have mentioned use of annotation (textual 
and graphical) to add information into visualization. But it is still not 
quite clear what the best strategy is to save information in a 
collocated collaborative visualization and analysis of business data 
where intensity of note taking is quite high. 

How can we support both individual and group notes? Can 
this be accomplished by dividing work space into public and private 
areas? 

Does the process of note taking change by changing the 

underlying data? For instance, working with business data might 
require larger amounts of note taking compared to working with 
scientific data. This is currently unclear. 

How complete is our list of note contents and purposes of 
use? Will participants in a different domain or different situation 
need to save different information as notes, and will they have 
different purposes in creating and using notes?  

 
Fig. 5. Taxonomy of note creation and use. 
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6 CONCLUSION AND FUTURE WORK  

In this paper, we identified note taking as a process that is 
intensively used by data analysts.  More studies are required to 
answer questions about how exactly note taking support should be 
provided in collaborative visualization systems. In addition, we 
would like to conduct a field study to examine note taking activities 
in the context of real work. We would also like to explore the design 
of note taking support for collaborative work on interactive surfaces.  

ACKNOWLEDGEMENTS  

This research was supported by grants from SAP Business Objects 
and the Natural Sciences and Engineering Council of Canada 
(NSERC). We wish to thank Kellogg Booth and our colleagues at 
SAP Business Objects for their many thoughts and suggestions. 
Many thanks to Dr. Rebecca Grant for helping us to find business 
students for this study and for her valuable comments to improve our 
business case. We also would like to thank all the VISID lab 
members for their feedback and participation in pilot studies. 

REFERENCES  

[1] S. E. Ellis, and D. P. Groth, “A collaborative annotation system for data 

visualization”, Proc. Working Conference on Advanced Visual 

interfaces, 2004  

[2] J. Heer, F.B. Viegas, and M. Wattenberg, “Voyagers and voyeurs: 

Supporting asynchronous collaborative visualization,” Commun. ACM, 

vol. 52, pp. 87-97, 2009. 

[3] P. Isenberg, and S. Carpendale, “Interactive Tree Comparison for Co-

located Collaborative Information Visualization”, IEEE TVCG, Vol. 13, 

no. 6,  pp. 1232–1239, 2007. 

[4] P. Isenberg, A. Tang, A., and S. Carpendale, “An Exploratory Study of 

Visual Information Analysis”, Proc. CHI 2008, pp. 1217-1226, 2008. 

[5] P. Isenberg and D. Fisher, “Collaborative Brushing and Linking for Co-

located Visual Analytics of Document Collections”, Proc. EuroVis, 

Computer Graphics Forum, Vol. 28, no. 3, pp. 1031–1038, June 2009. 

[6] T. Isenberg, P. Neumann, S. Carpendale, S. Nix, and S. Greenberg, 

“Interactive Annotations on Large, High-Resolution Information 

Displays”, Proc. 2006 Conference Compendium of IEEE VIS, IEEE 

InfoVis, and IEEE VAST, pp. 124–125, 2006. 

[7] T. Jankun-Kelly, K.-L. Ma, and M. Gertz, “A Model and Framework 

for Visualization Exploration”, IEEE Transactions on Visualization and 

Computer Graphics, Vol. 13, no. 2, pp. 357–369, March/April 2007. 

[8] G. Mark, K. Carpenter,  and A. Kobsa, “A Model of Synchronous 

Collaborative Information Visualization”, Proc. Seventh international 

Conference on information Visualization , 2003. 

[9] G. Mark, and A. Kobsa, “The Effects of Collaboration and System 

Transparency on CIVE Usage: An Empirical Study and Model”, 

Presence, Vol. 14, no. 1, pp. 60–80, 2005. 

[10] K.S. Park, A. Kapoor, and J. Leigh, “Lessons Learned from Employing 

Multiple Perspectives In a Collaborative Virtual Environment for 

Visualizing Scientific Data”, Proc. CVE 2000, pp.73–82. 2000. 

[11] A.C. Robinson, “Collaborative Synthesis of Visual Analytic Results”, 

Proc. VAST 2008, pp. 67-74, 2008. 

[12] Y. Rogers and S. Lindley, “Collaborating around large interactive 

displays: Which way is best to meet?”, Interacting with Computers, 

Vol. 16, no. 6, pp. 1133–1152, 2004. 

[13] S. D. Scott, K. D. Grant, and R. L. Mandryk, “System guidelines for co-

located collaborative work on a tabletop display”, Proc.  ECSCW’03, 

pp. 159–178, 2003. 

[14] S.D. Scott, M. S. T. Carpendale, and K. M. Inkpen, “Territoriality in 

collaborative tabletop workspaces”, Proc. CSCW 2004, pp. 294-303, 

2004. 

16



Studying Direct-Touch Interaction for 2D Flow Visualization

Tobias Isenberg, Uta Hinrichs, and Sheelagh Carpendale

Abstract—Traditionally, scientific visualization research concentrates on the development and improvement of interactive techniques
to support expert data analysis. While many scientific visualization tools have been developed for desktop environments and individual
use, scenarios that go beyond mouse and keyboard interaction have received considerably less attention. We present a study
that investigates how large-display direct-touch interaction affects data exploration and insight generation among groups of non-
experts exploring 2D vector data. In this study, pairs of participants used interaction techniques to customize and explore 2D vector
visualizations and collaboratively discussed the process to develop their own understanding of the data sets.

Index Terms—Interactive scientific visualization, direct-touch interaction, wall displays, qualitative evaluations, 2D vector visualization.

1 INTRODUCTION

Research in scientific visualization has made enormous progress in
recent years, allowing us to get a better understanding of complex
datasets. With the exception of co-located VR applications and a
number of distributed visualization environments (including VR ones),
however, most research in scientific visualization has focused on devel-
oping and improving techniques that are aimed toward individual data
exploration and analysis by expert users. Moreover, such analysis and
exploration typically occurs in desktop environments using keyboard-
and-mouse interaction. However, the advance of large, touch-sensitive
display hardware has enabled us to explore other forms of interaction
techniques within scientific visualization environments.

Most notably is direct-touch interaction on large displays which po-
tentially has a number of advantages for scientific visualization. Large
displays offer more space for high-resolution data and support co-
located collaborative data analysis, adding the possibility to actively
present, discuss, and explore hypotheses or findings about data in-
place. Direct touch also enables direct interaction with visual elements
as well as gestures or hand postures as alternatives to mouse-based in-
terfaces. Such alternative interaction techniques may be more suitable
in collaborative analysis tasks since direct-touch provides rich aware-
ness cues. These cues are important during collaborative analysis and
seamlessly integrate with group discussion. It has been found, e. g.,
that ‘hands-on’ interaction can enhance engagement and understand-
ing, especially within learning environments [1], showing promise for
scientific visualizations targeted toward non-expert audiences as well.

The idea of analyzing scientific visualizations on large displays us-
ing direct-touch interaction raises several research questions. For in-
stance, how do scientific visualization techniques need to be designed
to support large-display direct-touch interaction? And how does the
use of large display hardware and direct-touch interaction influence
the way how people approach the analysis of scientific datasets?

We present a qualitative study that explores the potential of an in-
teractive 2D vector analysis visualization tool [8] as used by groups of
non-experts. The study was conducted on a direct-touch enabled large-
display. We asked non-expert pairs to analyze two different 2D vector
field datasets. The results of this study further our understanding of
how people made use of this interactive visualization tool and of the
methods they used to explore the data individually and collaboratively.

We found that the ability to directly experiment with the data vi-
sualizations of previously unknown datasets helped participants to de-
velop an understanding of the data’s behavior and to detect local phe-
nomena and causalities. All participant groups engaged in lively dis-
cussions and made varied use of the customization and interactivity
offered in the tool. We observed frequent turn-taking, communicated
through movement in front of the display and gesturing. Customizable
glyphs, animation, and direct manipulation of visualization elements

• Tobias Isenberg is with the University of Groningen, E-mail:
isenberg@cs.rug.nl. Uta Hinrichs and Sheelagh Carpendale are with the
University of Calgary, E-mail: {uhinrich ∣sheelagh}@ucalgary.ca.

were used extensively to create personalized visualizations and sup-
ported various data analysis strategies including local and global data
exploration. Participants did not follow a linear sequence of analysis
strategies but fluidly went back and forth between different exploration
activities. This lack of temporal sequencing in tasks parallels observa-
tions in a previous study on co-located collaborative work [7].

2 RELATED WORK

Most systems for scientific visualization are developed for single-user
desktop systems, thus interaction with the data typically occurs using
keyboard or mouse. With the advent of large, high-resolution displays
some time ago, more specific virtual analysis environments such as
the CAVE or the Responsive Workbench were developed that required
new interaction metaphors for work with visualizations. The interac-
tion design of these environments aimed at creating a natural mapping
of physical input, for example from tracked gloves or wands, to convey
a feeling of embodiment in the virtual world.

The progression of large touch-interactive screen technology offers
new interactive environments for scientific data analysis that do not
require people to wear special equipment such as glasses or gloves to
perform interactions. Such direct interaction techniques can be more
accessible because of their resemblance with real-world interaction,
and lend themselves more easily to collaboration [15]. However, with
large display direct-touch interaction, we face a number of challenges:
we need to design adequate mappings between input and interaction
to support scientific data exploration and learn how people can adapt
to these mappings on large display surfaces in general. Some research
has been done in this direction. For example, Forlines and Shen [4]
visualize geospatial data and explore multi-user zoom-in-context inter-
action. They map the user input to data manipulations by providing
dedicated elements, DTLenses, that represent the data manipulations.
Our study is based on [8] where similar exploration objects and hand
postures are used to visualize 2D vector field data. We build upon this
work, looking specifically how groups of people make use of these
features during their data exploration process.

The type of data used in our study, vector or flow data, is relevant
to many application domains such as physics or meteorology. Several
visualization techniques have been developed to help analyze 2D and
3D vector data. These techniques include direct visualization using,
for instance, glyphs, texture-based approaches, geometric techniques,
and feature extraction [10]. Even though many recent approaches ad-
dress more complex issues in three-dimensional vector visualization,
two-dimensional techniques still play an important role. This is partic-
ularly true for datasets that are presented to a non-expert audience, for
example, in weather reports and forecasts or in educational environ-
ments such as geography classes. Closely related to the visualization
techniques employed in our study are methods that allow interactive ex-
ploration of vector data such as selecting a specific view of the data or
changing global attributes. Some techniques go beyond such straight-
forward interaction and explore interactive probing and annotation of
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Fig. 1. Screenshot of the adapted interface for collaborative interactive
2D vector data exploration and visualization, with example visualization.

flow fields with glyphs to show local properties [3] or use customized
glyphs [9, 13, 17]. Also, techniques have been developed for interac-
tive particle sources placement [11, 18]. The techniques we use in our
study are related to these approaches in that all are based on visualiza-
tion of 2D vector fields using particle sources while the tool used in
our study [8] provides ways for direct-touch interaction with static and
animated, customized glyphs as outlined in the next section.

3 HAND-POSTURE-BASED 2D VECTOR VISUALIZATION

Combining traditional 2D vector visualization techniques with direct
touch display technology, Isenberg et al. [8] have previously developed
a vector visualization technique that allows people to explore 2D vec-
tor data using several hand postures on a large interactive wall display.
This approach is unique in three ways. First, it allows people to draw
their own glyphs to represent the vector data. Second, the tool enables
global exploration of data behavior by filling larger areas of the data
display with glyphs. Alternatively, data can be explored locally by us-
ing ‘glyph sources’ that constantly emit animated glyphs. Third, the
interface of the visualization tool is also based on hand postures. These
postures rather than typical buttons and sliders are mapped to adding
or removing glyphs to and from the data display.

These interactive visualization techniques can be used as follows.
After a 2D vector dataset (e. g., wind data) is loaded, people can bring
up a drawing canvas where they create (draw) the desired glyph to
represent the data (e. g., an arrow or a straight line) using different
hand postures to determine the stroke width. When the drawing canvas
is closed, glyph instances can be added to the data display with the
loaded 2D vector data using different hand postures (fist for adding
several glyphs or finger for adding individual glyphs). The orientation
and size of the glyphs reveal the character of the loaded data, namely
the local direction and strength of the vector field. To explore the flow
behavior of the data, glyph sources can be added to the data display.
These sources can be moved around within the data display to explore
different areas. Different shapes, line widths, and colors of glyphs can
be used simultaneously to highlight certain aspects of the dataset.

For the study we added a number of features to the interactive visu-
alization to account for the study tasks as well as to address some us-
ability issues uncovered during pilot studies. Those features included
controls to add or removes globally from the data display, and cycling
through the different time steps of the data set (Fig. 1).

4 EXPLORATORY STUDY

The goal of our study was to better understand how pairs of peo-
ple work with customizable vector visualization on a large touch-
interactive display. Specifically, we investigated the potential of hand-
posture-driven interaction with vector data to ease the process of ex-
ploring and visualizing such datasets and how people approach 2D
vector data analysis tasks using our visualization tool on a large wall
display. Quantitative study methods that rely on controlled study sce-
narios and the collection and analysis of numerical data are less ad-
equate for answering open-ended questions like these. We therefore
conducted an exploratory laboratory study where pairs of participants
were asked to complete a series of experimental tasks. The study was
based on a mixed methods approach which allowed us to combine

Fig. 2. Participants in front of the touch-sensitive wall display, collabora-
tively working with our data exploration and visualization tool.

qualitative with quantitative data collection and analysis to shed light
into people’s analysis processes while using our visualization tool.

Participants and Setting. Sixteen university students (seven fe-
males, nine males) participated in our study. They were asked to work
together in groups of two as a strategy to increase verbal explanations
and ‘thinking aloud,’ resulting from discussions with the partner. This
helped us to gain insights into participants’ thought processes during
the data analysis. Groups performed the study tasks on a 5’ × 3’ plasma
wall display (1360 × 768 pixels) with direct-touch interaction enabled
using a SMART DViT overlay. The experimental software ran on an
Intel 2.4 GHz Windows XP PC. The display was large enough to com-
fortably accommodate both participants standing next to each other
(Fig. 2). While participants had to interact with the display standing,
they were able to sit down on a couch located in front of the display.
Participants were free to move around the display while solving the
experimental tasks. Due to technical reasons our visualization tool is
a single-touch interface which forced participants to take turns with
display interaction. While this condition led to some interferences
between group members during the visualization analysis, it did not
hamper collaboration as we will describe in the findings.

Experimental Data, Tasks, and Procedure. Participants were
asked to use our visualization tool to analyze two different real-world
2D vector datasets: wind data from a storm that hit Europe in the
spring of 2008 (22 time steps, enhanced with a map of Europe showing
high and low air pressure zones in form of a gray-scale color scheme;
Fig. 1), and a moving fluid simulation where an obstacle causes turbu-
lences (22 time steps, enhanced with a line integral convolution visual-
ization [2] of the vector data, showing flow direction; Fig. 3, left).

Participant groups were asked to work on five tasks in total—four
tasks based on the wind dataset and one task involving the fluid dataset.
After a short introduction to the tool and a practice task, each study
task involved answering one or two open ended questions concern-
ing relations within the data (e. g., relation of low/high air pressure
and wind speed) as well as the assignment to illustrate certain partic-
ularities within the data using the visualization tool. The assignment
for the second dataset (moving fluid) was a free-form exploration of
data followed by a presentation of the general behavior of the data.
Groups were given 10–15 minutes to solve each of these experimen-
tal tasks. A semi-structured interview concluded the study where we
elicited subjective perceptions from participants regarding their gen-
eral experiences with the visualization tool. We also followed up on
certain analysis strategies we had observed which participants used to
gain insights into how they approached the experimental tasks. Each
study session took approximately 1.5 hours in total.

The purpose of this setup was to observe how the participant groups
would approach the tasks in general, using the visualization tool. We
were, in particular, interested in the different strategies that groups
would apply to solve the tasks. We used the answers that groups pro-
vided for each question/task as an indicator how well they understood
the dataset after this short time of exploration. Furthermore, we closely
observed groups conducting the experimental tasks to be able to eval-
uate the interaction techniques the visualization tool provides.

Data Collection and Analysis. Two examiners oversaw each study
session to minimize bias, with one of them being external to the project
team. Each study session was videotaped and screen captures were
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taken every 10 seconds. Both experimenters took notes of their ob-
servations, highlighting particular events and participants’ comments.
These field notes informed the semi-structured interview to ask partic-
ipants about their strategies or events that happened while participants
were solving the tasks. To answer our research questions, the video
data was analyzed in-depth regarding exploration strategies that partic-
ipants applied for the experimental tasks and the use of particular fea-
tures of the visualization tool, e. g., animations and customized glyphs.
We also analyzed how participants interacted with and in front of the
large touch-interactive display, individually and with the partner.

5 FINDINGS

Our findings focus on the strategies that groups applied for exploring
the provided datasets using large-display direct-touch interaction. We
first provide a brief overview of how groups generally approached their
analysis tasks before addressing the influence of the physical display
characteristics on exploratory data analysis and collaboration.

5.1 Exploration Approaches
In general, all participant groups took a similar approach for exploring
and visualizing the data which can be categorized into four activities:
drawing, overview, local exploration, and temporal exploration:

Drawing. Our tasks and visual tool required groups to first draw a
glyph in order to explore the data, hence this was the activity partici-
pants started with. Participants frequently experimented with different
glyph shapes and hand postures when drawing glyphs, creating on av-
erage 2.75 (σ = 1.581) different glyphs for the illustration task and
1.594 (σ = 0.946) for all other tasks.

Overview. After a representative glyph was drawn, participants of
all groups first tried to gain an overview of the dataset. To achieve
this they equally distributed the drawn glyph on the display, generally
using the ‘+’ button (in 97.5% of all tasks) and, in addition to this,
occasionally the fist posture (in 35.0% of all tasks) to adjust glyph
density in some areas of the data display.

Local Exploration. All groups explored local features of the
dataset, in particular by placing sources in various locations (in 82.5%
of all tasks). Sources were dynamically moved to probe and explore
local aspects of data. Occasionally, groups used the one finger posture
for fine-grained continuous local exploration (in 22.5% of all tasks).

Temporal Exploration. Since our study tasks required exploration
of temporal changes, all groups made heavy use of the time controls,
frequently stepping back and forth in time. This temporal exploration
sometimes required rearrangement of sources or adding glyphs.

These activities did not follow a linear sequence, paralleling previ-
ous work [7]. While participants would typically start by drawing a
glyph and distributing it evenly across the data display for overview,
local and temporal exploration happened without a visible sequence,
with participants often switching back and forth between both activi-
ties. Also, participants sometimes decided in the middle of a task to
go back to the drawing stage and to bring in a new glyph shape.

We also noticed that no group went through a pre-discussion on
how to solve the task in general, what steps to take, or what an answer
should look like, before actually approaching the task. Instead, dis-
cussion occurred in parallel to the data exploration and visualization
activities and evolved naturally from the task. Participants would ei-
ther just start an activity and discuss observations in the data display
during or after the action took place. They sometimes had just a brief
exchange about next exploration steps, for instance, when they wanted
to draw a new glyph or move on to the next time step.

5.2 The Role of Large Display Direct-Touch Interaction
We observed close collaboration among participants of all groups and
noticed a high engagement of participants (for all groups and tasks),
visible in active discussions of ideas or hypotheses and lively interac-
tion with the data display. This is apparent in the extent to which they
discussed ideas concerning the glyph drawing, exploration strategies,
and hypotheses about the data. In two groups, one participant was
more dominant and took the lead in activities such as glyph drawing.
In the remaining six groups, participants actively took turns with glyph

drawing and data exploration. Typically, during non-active moments,
a partner would participate in activities by providing verbal feedback
to actions carried out by the other participant. Constraining partici-
pants to single-person interaction sometimes led to interferences with
both participants trying to interact with the display at the same time
and the system ignoring the second input. However, conflicts like this
were usually resolved quickly and did not limit collaboration among
group participants. In fact, we observed frequent turn taking among
all groups and study tasks. A participant of a group would step back
from the display, handing over the exploration to the partner. Mean-
while, he or she would actively follow the interactions of the partner
and observe changes on the display, always prepared to jump in and
take over if some new idea occurred (e. g., Fig. 3, left).

This contrasts previous studies involving collaborative tasks on
large vertical displays where groups were found to usually elect a per-
son ‘in charge’ of the interaction while other group members would
stay rather passive [14]. We attribute this high engagement of both
group participants to their similar level of expertise with the datasets,
the exploration techniques we provided, and the physical study setting.
The datasets were relatively unknown to participants, thus close collab-
oration and discussion was important for coming up with hypotheses
and causalities. This was facilitated by the large display and rather
broad interaction techniques, easily visible to both participants. The
visualization tool did not force participants to linearly follow a prede-
termined sequence of exploration activities, but allowed participants to
explore based on their interest. Consequently, participants repeatedly
and without any effort switched between different exploration strate-
gies discussed above, including the observation of the data visualiza-
tion. Thoughts, ideas, and hypotheses were collaboratively discussed
and explored, through interaction and discussion, ultimately leading to
a basic understanding of the data, evident in the answers that partici-
pants provided for our experimental questions.

Fluid collaboration and maintaining awareness of the partner’s
exploration activities require the support of deictic communication
means, such as gestures and body movement (e. g., [6, 16]). We found
that the large display and the direct-touch interaction supported these
communication mechanisms well, allowing participants to frequently
switch back and forth between data exploration and gestures without
having to worry about external input devices. All groups frequently
used hand gestures, such as pointing with a finger, a hand, or both
hands, to communicate and exemplify certain insights (e. g., Fig. 3).
Participants expressed ideas and thought processes to their partner via
gestures, directly speaking to each other, and accompanying an action
with speech. Turn-taking often happened non-verbally, communicated
by stepping toward the display or reaching out for it.

6 DISCUSSION

Reflecting critically on our findings and interpreting the results, we
consider our study to be a step toward understanding the use of direct-
touch interfaces for data exploration and visualization and discuss in
the following new research questions that arise from our findings.

We found that the possibility to manipulate elements through di-
rect touch enabled participants to quickly test different hypotheses.
Most interaction techniques had a direct local impact on the visualiza-
tion elements. Moving the finger while touching a source, for example,
would move the source to a different location or running the fist across
the display would locally add glyphs. Participants had no problems un-
derstanding this direct mapping, evident in their fluid interaction with
the visualization tool. Another advantage of direct touch in our large-
display setting is that it enabled the temporarily non-active participant
to visually track the activities carried out by their partner, contributing
to the awareness during collaboration. When supporting direct-touch
manipulations of elements, however, it is important to map interaction
techniques in a consistent way. While our tool allowed to directly
move sources within the data display, this was not possible for already
created glyphs. This caused some confusion among participants who
tried to move glyphs via direct-touch interaction.

With the exception of drawing a glyph as a first step which was re-
quired by the program, participants did not explore data following a
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Fig. 3. Participants using various gestures to explain ideas or thoughts to each other, and/or to reference locations on the data display.

particular sequence of activities. Exploration strategies such as gain-
ing an overview of the data, examine local regions or probing, creating
additional glyph shapes, or exploring data along temporal dimensions
were applied in various sequences. The tool did not enforce a cer-
tain sequential order in which exploration activities had to be applied
(except for the initial drawing), but participants decided when to apply
them. We believe that the support of this kind of free-form data explo-
ration is important to enable interest-based exploratory data analysis.
That is, visualization tools should provide certain basic functionalities
that can be used by people as needed and which even can be ‘appro-
priated.’ Appropriation happened with our visualization tool, for in-
stance, when some groups ‘invented’ continuous probing. While both
the sources and the single-finger-posture were initially intended for
other activities, participants appropriated them for their own purposes.
While future work needs to explore how scientific visualization tools
can support free-form data exploration in general, we hypothesize that
it is, in particular, facilitated through large-display direct-touch inter-
action because this form of interaction is evocative of how people ‘han-
dle’ and appropriate basic tools in real life.

It has been shown that collaborative data exploration can lead to bet-
ter results and insights than analysis by individuals [12]. In our study,
participants collaboratively discussed ideas and hypotheses while ex-
ploring the data at the same time and adjusting their analysis based
on this discussion. We believe that this combination of discussion and
exploration activities positively affected participant’s understanding of
the data and was enabled by the interactive large display technology
we employed. However, further studies are needed to confirm this.
The use of large displays to support co-located collaboration for sci-
entific visualization, thus, needs to be explored further—in scientific,
educational, and other domains. While our study setup did not support
simultaneous multi-touch interaction, it would also be interesting to in-
vestigate exploration techniques that make use of this technology and
its impact on collaboration strategies during scientific data analysis.

7 CONCLUSION AND FUTURE DIRECTIONS

We discussed aspects of a study that investigated how pairs of people
explore customizable vector visualizations on a large, touch-sensitive
screen. Several factors in this visualization lead our participants to
in-depth and insightful explorations of the data. This is a promising re-
sult since our participants were not experts in scientific visualization.
Overall, we observed a high degree of engagement that was evident
in the frequent turn-taking and exchange of ideas by participants. We
attribute this high engagement of our non-expert participants and the
quick understanding they were able to gain about the unknown datasets
in part the direct-touch interface, as well as the possibilities to cus-
tomize and personalize the data display. We believe that tools such as
this one could be particularly useful in classroom settings, enhancing
traditional teaching methods with ‘hands-on’ learning. Students ex-
ploring data using the tool would, similar to our participants, directly
experience certain correlations such as the specific rotation directions
of low and high pressure zones, which could foster learning.

The findings from our study point toward numerous interesting fu-
ture research directions in the application of interactive and animated
visualizations. In particular, the potential of large-display direct-touch
interaction should be explored further with regard to different scien-
tific datasets including three-dimensional ones. 3D direct-touch tech-
niques using multi-handed interaction have been developed for large

horizontal direct-touch displays [5, 19] and could be applied to various
scientific visualization techniques, such as volume renderings or three-
dimensional vector datasets. In addition, our study suggested the bene-
fit of co-located collaboration for scientific data analysis. While most
visualization and interaction techniques for scientific visualization con-
centrate on individual analysis scenarios or distributed collaboration,
future research could consider co-located collaborative settings with
several people discussing and interacting with scientific data together.
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History Tools for Collaborative Visualization 
Ali Sarvghad, Narges Mahyar, and Melanie Tory 

Abstract—In the context of collaborative data visualization and analysis, history tools can play an important role. We present a 
compilation that characterizes usersʼ probable objectives when using history tools for collaborative work, as well as operations 
commonly performed on histories. We further characterize user objectives according to the likely time/space setting in which they 
would be used, and whether they are likely to be used by individuals, groups, or both. We conclude by compiling a list of design 
and implementation challenges and research questions that need to be discussed and investigated in order to make history tools 
adequately support collaborative visualization activities. 
Index Terms—History tool, collaboraton,visualization, analysis. 

 
 

INTRODUCTION 
In this paper, we present a preliminary list of history operations and 
users’ most common objectives in the context of collaborative data 
visualization and analysis. We then identify a set of key research 
challenges that will need to be addressed in order to make history 
tools effective for collaborative visualization tasks. Though the lists 
of history operations and objectives presented in this paper are 
detailed, they are neither final nor complete. They are preliminary 
lists assembled to trigger discussions and raise questions regarding 
collaborative use of histories in data visualization and analysis.   

Many researchers have mentioned advantages of history tools 
and their importance for collaborative data visualization and 
analysis [5][6][10][12][14]. However, to date, visualization 
histories have been designed only for individual use, not communal 
use. Histories for group use will demand a new set of 
functionalities and design considerations.  

Several applications provide a general-purpose undo/redo tool 
but this simplest form of history reuse is inadequate for participants 
of a collaborative data visualization and analysis task. They need to 
use history items, individually or collectively, to coordinate their 
work, try a different course of visualization and analysis, recover 
from a system crash, train naive users, and so on. Scientific 
workflow management tools such as Vistrails [1] and Taverna [16] 
capture very detailed information about scientific workflows. This 
information consists of data, created visualizations, and their 
manipulation. Though these systems maintain rich historical 
(provenance) information, they are designed primarily for expert 
users who are able to understand and manipulate complex 
workflows for creating visualizations from scientific data. More 
importantly, these systems have not been designed with 
collaborative work in mind. 

History items can be browsed [5][12], searched [5][12], edited 
[5][12], filtered [5] and exported [5] for different purposes such as 
analysis, decision-making, validation and correction. As the name 
“history tool” suggests, users can revisit and reuse historical items. 
This reuse involves enacting specific operations to achieve specific 
objectives. In the following sections we will point out what we 
expect to be the most common operations and objectives performed 
and intended by history tool users. 

 
 

 

1 MOST COMMON OPERATIONS ON HISTORY 
REPOSITORIES 

Heer et al. [5] list a number of operations that a history tool should 
support. We built our list of operations largely based on their work, 
but we make some alterations. We expect the most common 
operations on history repositories to be: 

• Browse 
• Search 
• Filter 
• Edit 
• Delete 
• Export 

We consider an editing operation to be changing the content of a 
history item, such as adding metadata, and we consider deleting 
history items to be independent from editing. We also consider 
searching and filtering as two different operations.  Other 
researchers also point out the importance of browsing [3][12], 
searching [12][13] and editing [4] operations for history tools and 
some other researchers [4][8] mention the necessity of a tool to 
export and communicate history.  

There is no one to one dependency between operations and user 
objectives. In other words, an operation, solely or in conjunction 
with other operations, can be performed to achieve a number of 
objectives. For example, searching and filtering both are required 
to accomplish analysis and validation objectives. 

2 MOST COMMON OBJECTIVES 
Based on a literature survey and our own experience, we expect 
history operations would be mainly used to achieve the following 
objectives: 

• Analysis [3][8]: Users can traverse a history item 
repository and revisit different data visualizations to 
investigate data. Products of this analysis can vary from 
making a decision to verifying a hypothesis. We define 
analysis as investigating data with a specific goal in 
mind, in contrast to exploration. 

 
• Validation [5][8][10][14]: Correctness and admissibility 

of decisions/findings or appropriateness of a single 
visualization can be examined by using history items. For 
instance, analysts may review visualizations created in 
the course of an analysis process to double-check that 
their findings are correct, or they may revisit a particular 
visualization to ensure that it is the result of correct 
mapping and filtering of data. This might be more helpful 
when users’ collaboration style changes over time such 
as autonomous collaboration. Participants may need to 
corroborate the outcomes on individual works that will 
be concatenated later. 
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• Memory aid: The limitation of humans’ short-term 
memory is a known fact, and a history tool can act as 
external memory aid [12]. Data analysts can add 
important notes, observations, calculations et cetera to 
history items for future referral. 

• Correction/Recovery: If data analysts find their current 
visualization undesirable for any reason, they can 
perform a selective undo/redo [3][5][8][11][13][5]. It is 
also possible to continue a visualization and analysis 
process from the last point in the history repository after 
a system failure. 

• Exploration: Exploration involves investigating data 
without a specific goal in mind. Having a repository of 
history items enables data analysts to try different 
courses of visual analysis by revisiting a history item and 
trying a different possible path. “Insight often comes 
from comparing the results of multiple visualizations that 
are created during the data exploration process” [2]. 

• Reporting [5][12]: A history repository, wholly or 
partially, can be sent to peers or upper management as a 
progress report, indication of the amount of work done, 
or formal report of findings.  

• Presentation [5]: History items can be summarized and 
presented in a meeting situation. Presentation is similar to 
reporting, but typically occurs synchronously, as shown 
in Table 1. 

• Coordination [4][8][11][12][14]: History items can help 
collaborators coordinate their effort by increasing 
awareness in situations such as autonomous collaborative 
work or remote synchronous/asynchronous situations. 
Also, viewing another users’ history can bring a person 
up-to-speed on the work done so far. 

• Training [12]: Novice data analysts can learn from 
experts by reviewing the history of visualizations created 
and decisions made. 

 
It is quite possible that users have a combination of objectives 

when working with history items. For instance, users might review 
visualizations created in the course of an analysis process to both 
ensure their validity (i.e. correctness/admissibility) as well as make 
a decision. 

Research is an interesting additional objective offered by rich 
history tools. Researchers can survey users’ behaviour or assess a 
system’s usability by observing the history of analysts’ actions [5]. 
We do not include it in Table 1 because it is not performed directly 
by visualization users; nonetheless, it is worth mentioning. 

3 EFFECTS OF TIME/PLACE SETTING 
Table 1 predicts the most likely time/place settings in which 

each objective might occur. As shown in the table, most of the 
objectives are likely to occur in all of the different time/place 
settings. However, we suspect that history records may need to be 
more explicitly displayed for synchronous distributed work in order 
to help users maintain awareness of others’ activities. Additionally, 
using histories in asynchronous work may require different 
functionality than synchronous work. For instance, when sharing a 
history with another user who will take over the work later, a 
person may want to highlight particularly important findings to 
ensure they are noticed, or remove an unsuccessful path of analysis 
and replace it with a simple note to say that investigating that 
direction was not fruitful. 

 
 

 
 

Table 1: Objectivesʼ most likely time/place setting. ST = same time, 
DT = different time, SP = same place, DP = different place 

 
 ST, SP ST, DP DT, SP DT, DP 
Analysis  √ √ √ √ 
Validation  √ √ √ √ 
Memory aid √ √ √ √ 
Correction/Recovery √ √ --- --- 
Exploration √ √ √ √ 
Reporting  --- --- √ √ 
Presentation  √ √ --- --- 
Coordination √ √ √ √ 
Training  √ √ √ √ 
 

4 INDIVIDUAL VS. COLLABORATIVE USE OF HISTORIES 
Reporting, collaborating, coordinating and training are inherently 
collaborative objectives and require engagement of more than one 
person; the rest of the objectives could apply to both individuals 
and collaborating users. Though individuals and groups share most 
of the objectives, design of a history tool might need to be quite 
different to support the activities of a group as compared to one 
person. To adequately support group activities, we anticipate that 
history tools may need to provide the following functionality:  

• Representation of who was responsible for each action 
recorded in the history. 

• Both individual and shared histories. This will hopefully 
prevent users from being overwhelmed with history items 
from all members of the group. In addition, privacy control 
may be needed so that some items can be kept private. 

• Additional awareness mechanisms, such as an indication 
that another user has worked on a similar chart or has 
looked at the same data. This might be similar to awareness 
mechanisms previously used in collaborative document 
search [9]. 

• Extensive editing, highlighting, and annotation capabilities. 
These will help users to communicate what they have done, 
or convert a history into a series of visual items and 
descriptions suitable for a report, presentation, or tutorial. 

• Ability to export elements of a history to a document or 
presentation format for further manipulation. 

5 DESIGN CHALLENGES/QUESTIONS 
There are some important issues to be considered in designing and 
developing history tools. These issues need to be resolved before 
history tools can effectively support collaboration: 

What content should a history item contain? Researchers 
have suggested and examined a variety of probable contents such 
as user interactions (or commands) [3][15][17], software states [5], 
a combination of commands/states [13] and states plus users’ 
augmented information [5]. User information (which user was 
responsible for each action) may also be needed for collaborative 
objectives such as coordination. However, it is still unclear exactly 
which content is needed to support different collaborative tasks 
(e.g. training vs. shared analysis) and collaboration styles (e.g. 
loosely coupled to closely coupled work). 

What data structures should be used? Histories can rapidly 
grow in size and need appropriate data structures and scaling tools 
[5]. 

 How should a history be represented? Selecting the form that 
best suits users depends partly on form of the content [5]. For 
instance, a repository of executed commands can be represented as 
list of textual commands, a history consisting of a number of 
graphs can be represented as a comic strip [7], and for hybrid 
content of commands/states, text and graphics can be used jointly 
[13]. The ideal representation will also depend on the task, display 
and input hardware, and setting. For instance, a history that can 

22



support distributed awareness during joint analysis may look very 
different from a history that can support co-located training. 

How can we support fluid interaction with histories? 
Especially for co-located collaboration, where interactive touch 
surfaces may be used, new mechanisms may need to be developed 
for interaction with histories. 

What are underlying data challenges? It is important to pay 
attention to the underlying data. Volatile or streaming data add 
additional challenges for history tools [5]. Moreover, we might 
need to closely survey different data (e.g. business data and 
scientific data) to understand their effect on content and 
representation of history repositories and functionalities they 
should provide to facilitate collaborative work. 

What features of a history tool are needed to support 
different collaborative activities? Can a single architecture 
support all of the different time/place settings and user objectives? 

6 CONCLUSION 
In this paper we compiled a list of operations and objectives related 
to history tools, and described the importance of such tools for the 
process of collaborative data visualization and analysis. History 
tools to support collaborative work are not merely instruments for 
correcting errors but also provide users with some vital 
functionality necessary for coordination, training, sharing 
information, and many other objectives. Designers of software for 
collaborative work need to take into consideration operations that a 
history tool must support and objectives that users are most likely 
to desire. Open research questions include what content to include 
in histories, how to store histories efficiently, and how histories 
should be best represented to support different collaborative tasks 
and situations. 
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Designing a PCA-based Collaborative Visual Analytics System

Dong Hyun Jeong, William Ribarsky, and Remco Chang

Abstract—In visual analytics, collaboration is viewed as a knowledge sharing process that helps people perform analytical reasoning
tasks effectively. In this paper, we present a collaborative visual analytics tool, iPCA-CE, that supports interactive data analysis using
principal component analysis (PCA) on a tabletop display. We define three data analysis scenarios that are addressed when designing
the collaborative data analysis system. With the system, users are able to collaboratively analyze data, share ideas or knowledge,
and divide their work-load.

Index Terms—Collaborative data analysis, Touch-table, Multi-touch interaction.

1 INTRODUCTION

In knowledge management literature, socialization is defined as a pro-
cess in which people communicate with each other in order to share
their ideas or personalized (tacit) knowledge [11, 18]. In visualization,
this is achieved through the collaboration process of sharing knowl-
edge, learning, and building consensus through the use of comput-
ers [22]. Several researchers have studied users’ behavior through col-
laborative environments in order to better understand this knowledge-
sharing process. Mark and Kobsa [17] performed an empirical study
to understand the differences between group and individual behav-
ior within collaborative information visualization environments. They
found that a group solves the given questions more accurately and
spends less time doing so. However, it is still unknown what features
should be supported within a collaborative data analysis system on a
touch-table in order to reliably gain these benefits.

Analyzing data is a complicated task. If people can combine their
efforts in an analytical task, they might have a better chance of solv-
ing complex problems or finding obscured information. In this paper,
we focus on designing a collaborative visual analytics environment
to support interactive data analysis on a touch-table. Since previous
research shows that with a more user-friendly collaborative visualiza-
tion system, people find results more easily and accurately [17], we
choose our existing visual analytics system (called iPCA - interactive
principal component analysis) and extend it to work on a multi-touch
tabletop display. We named the extended version of iPCA as iPCA-CE
(interactive PCA within collaborative environments). When designing
the collaborative visual analytics system, we carefully consider ad-
dressing three different types of collaborative data analysis scenarios
(see Section 3 for detail).

The rest of this paper consists of four sections. First we discuss
related research in collaborative visualization environments. Then we
explain our system’s interface design and multi-touch interactions. In
section 3, we introduce three collaborative data analysis scenarios sup-
ported by our system, and conclude with discussion and future work.

2 PREVIOUS WORK

In the past, many notable studies have been done in collaborative vi-
sualization. There are roughly three main research trends: building
collaborative visualization environments, sharing knowledge through
web-based collaborative workspaces, and interactively sharing tacit
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knowledge with people on a touch surface. In this section, we in-
troduce some of the existing literature.

Collaboration has been described as the process of sharing tacit
knowledge between people [18]. Mark and Kobsa [17] defined col-
laborative information visualization behavior as a social process as
well as a cognitive process because it involves both interpreting vi-
sualization and coordinating complex social activities. Although the
knowledge sharing process and the cognitive process are both broadly
regarded as important research topics [22], limited study has been
done in visualization. However, building collaborative visualization
environments has a long history [5, 13]. Coleman et al. [5] provided
four general reasons why collaborative visualization is compelling. (1)
Experts’ knowledge can be available any time and at any place. (2)
The expertise can be transferred to others, improving the local level
of knowledge. (3) Based on the supported accessibility, visualization
products can be reviewed and modified as they are produced, reduc-
ing turn-around time. (4) Remote accessibility also reduces the need
to relocate the expertise physically. Johnson [13] defined collabora-
tive visualization as a subset of computer-supported cooperative work
(CSCW) in which control over parameters or products of the scientific
visualization process is shared.

More recently, Grimstead et al. [8] reviewed 42 collaborative vi-
sualization systems in terms of five attributes: number of simultane-
ous users, user access control, communication architecture, type of
transmitted data, and user synchronization. They found that the syn-
chronous system has the benefits of bringing groups of individuals
together over a distance, bridging the knowledge gaps among them,
and building their knowledge structure concurrently. But, they no-
ticed that the synchronous system is still limited in that people have
to be in front of computer machines at the same time. However, in an
asynchronous collaborative visualization system, collaboration occurs
at different times. If people are in different time zones and different
places, an asynchronous collaborative system might be beneficial [16].
Once important knowledge is found, it can be shared with others asyn-
chronously at their own convenience. However, it is still unclear how
collaborative visualization should be designed. Because of this, Heer
and Agrawala [9] provide design considerations for asynchronous col-
laboration in visual analytics environments. Ma [15] noted that shar-
ing visualization resources will provide the eventual support for a col-
laborative workspace. He discussed existing web-based collaborative
workspaces in terms of sharing high-performance visualization facil-
ities, visualizations, and findings. Burkhard proposed a collabora-
tion process of transferring knowledge between at least two persons
or group of persons [2].

Although much research has been done in collaborative visualiza-
tion, there has been less work in collaboration on touch surfaces. Isen-
berg and Fisher [10] designed a system (called Cambiera) to sup-
port collaborative search through large text document collections on
a touch surface. They considered collaborative activities to involve
not just searching through documents, but also building individual’s
findings and maintaining awareness of another person’s work. North
et al. [19] studied how users approach a multi-touch interface and what
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(a) (b)

Fig. 1. The system overview (a) showing four views (1∼ 4), several selectable buttons (5∼ 7), and a set of sliderbars (8) with E.Coli dataset (336×7
matrix). The system supports changing the scale and the location as well as manipulating the projected data item(s). With using the system,
multiple people can collaborate each other on a multi-touch tabletop display interactively (b).

types of gestures they are willing to use. In the study, they performed
object manipulation tasks on a physical table, a multi-touch table, and
a desktop computer. From the study, they found that people completed
the tasks significantly faster with multi-touch interactions on a multi-
touch table than with mouse interactions on a desktop computer. Fur-
thermore, they found that subjects are significantly faster on a physical
surface than on a touch surface.

However, to the best of our knowledge on collaborative visualiza-
tion, what we should support when designing a collaborative data anal-
ysis system has not been broadly studied. Developing this design phi-
losophy requires understanding how people act on a touch table, espe-
cially when analyzing data. In the following sections, we will provide
a detailed explanation about how our system is designed and what fea-
tures are supported.

3 COLLABORATIVE VISUAL ANALYTICS APPLICATION

Understanding how people act when analyzing data is an important
research topic in visual analytics, but it is also extremely challeng-
ing [22]. In this paper, we focus our research to the understanding
of analytical behavior to be strictly within the context of a collabora-
tive environment. Our work begins with designing a useful collabo-
rative visual analytics application with which people can easily share
their ideas and knowledge. Our design philosophy is not to develop
a new visual analytics application, but instead we extend an already
known and useful visual analytics application to work on a touch ta-
ble. Specifically, we choose our existing visual analytics application
(iPCA) because studies have shown that user-friendly visualizations
in a collaborative environment enable users to find results more accu-
rately [17]. In our previous study [12], we found that iPCA is both
easy to use and effective in helping users learn about PCA and the
datasets they are using.

Data analysis is often considered as a stand-alone analytical task.
However, as previous research has shown, analysis of (empirical) data
in collaborative environments is important and should be considered
while developing visualization applications [4, 7]. While collaborative
analytics can occur in different interaction modalities, we focus specif-
ically on collaboration on a multi-touch table based on existing work
that demonstrated potential increase in analysis performance [10].

3.1 System Design

iPCA is designed to help the user understand the complex black box
operation of Principal Component Analysis [14] and interactively an-
alyze data [12]. We extend this application to support collaborative
data analysis on a touch table.

Figure 1(a) shows the system overview, which includes four views,
touchable buttons, and a set of dimension sliders. The overall interface
is developed with OpenGL. It supports multiple-touch interactions on

a horizontal display. The multi-touch display system was designed at
the Renaissance Computing Institute (RENCI) [1]. It provides a 62”
diagonal work surface (42 x 46), in which two HD resolution projec-
tion displays create images on the surface to support multiple people
working together. Figure 1(b) represents the overall workspace, in
which two people are collaborating on a touch table.

Like the original iPCA, our extended application (iPCA-CE) con-
sists of four views: Projection view (Figure 1(a-1), Eigenvector view
(Figure 1(a-2), Data view (Figure 1(a-3), and Correlation view (Figure
1(a-4)). In the Projection view, all data items are projected based on
the first and second principal components by default. The Eigenvector
view displays the calculated eigenvectors and eigenvalues in a verti-
cally projected parallel coordinate. The distances between the eigen-
vectors in the parallel coordinate view vary based on their eigenvalues,
separating the eigenvectors based on their mathematical weights. The
Data view shows the original data points in a parallel coordinate. The
Correlation view represents Pearson-correlation coefficients and rela-
tionships between variables as a matrix of scatter plots and values. All
views are closely connected, so that an action in one view can affect
the other views. If the user interactively changes the elements in one
view, its corresponding results are updated in other views (brushing &
linking). This interactivity thus allows the user to infer relationships
between the coordinated spaces (see [12] for detail).

There are a total of 12 touchable buttons designed: 8 buttons are for
interacting with represented data items (Figure 1(a-5)), 3 buttons are
for controlling the application (Figure 1(a-6)), and the last button (Fig-
ure 1(a-7)) is for making the sliderbars appear and disappear. Table 1
represents the touchable buttons and their meanings.

Table 1. Touchable buttons and their meanings
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The system supports basic multi-touch operations such as zooming,
panning, and rotation. The zooming operation is activated by mak-
ing two finger touches closer (zoom-in) and farther apart (zoom-out).
The panning operation is initiated by dragging a finger on the surface.
However, the rotation only works when the rotation option (a touch-
able button) is enabled. We adopt this passive operation because if the
user accidently changes the angle between two touches during analy-
sis, the rotation operation is activated unintentionally, and sometimes
distracts people from concentrating on analyzing the data.

Additionally, the system provides several data operations such as
individual item selection, range item(s) selection, deletion, and ma-
nipulation. Both the individual item selection and the range item(s)
selection operations are allowed in all four views. In Data View and
Eigenvector View, where the visualizations are parallel coordinates,
selection means clicking on a single line or brushing a range of items.
In Projection View and Correlation View, the user can either click on a
single dot or draw an enclosed space upon which all data items within
the space will be selected. In analysis using PCA, a common task is
for the user to remove outliers. The deletion operation is to remove
the selected data item(s) from the PCA calculation. The manipulation
is the operation, which allows the user to see the relationship between
principal component(s) and data dimensions.

3.2 Multi-touch Interactions
As shown in Figure 1(a), the E.coli dataset has 7 dimensional at-
tributes. But it is not linearly separable by a PCA calculation since
PCA assumes that the input data are always linear. Because of
this, weighted principal component analysis (WPCA) is often con-
sidered, which allows different weights on different variables as
s1,s2, ...,sn [14]. This approach assumes that data are not always lin-
early increasing or decreasing, and there may be reason to allow dif-
ferent observations to have different weights. To provide the ability to
analyze the data non-linearly, iPCA has a set of dimension sliderbars,
which allow the user to change the dimension contributions of each
dimension. However, with a mouse-based interface, the user has to try
all possible combinations of dimension contribution changes with a
series of single mouse inputs to fully understand and analyze the data.
iPCA-CE gives the user the ability to change several dimensions at
once on a multi-touch table, thus permitting much more effective ex-
ploration of the high dimensional space and how the dimensions corre-
late. Figure 2(a) shows an example in which the user changes dimen-
sion contributions by moving the sliderbars with two finger touches.

iPCA-CE also allows the user to alter the values of data items. For
instance, if the user drags a data item in the Projection View towards
the positive direction along the x-axis (increasing the data point’s value
in the first principle component), the user should be able to immedi-
ately observe in the Data View how that change affects the values of
that data item in the original data space, thus shedding light on the re-
lationship between the first principle component and all dimensions in
the original data space. Figure 2(b) shows the user manipulating the
selected data item in the Data view with two finger touches.

(a) (b)

Fig. 2. Multi-touch interactions. (a) The user changes the dimension
contributions using sliderbars and (b) the user directly modifies the val-
ues of a data item in the Data view.

4 COLLABORATIVE DATA ANALYSIS

A collaboration process can occur through the use of collaborative
visual environments. However, the most natural method for sharing

tacit knowledge is still direct communication between users. In either
case, the users are actively sharing their discoveries and tacit knowl-
edge and incorporating each other’s domain expertise into their own.
However, understanding and addressing analytical procedures are im-
portant when designing a useful collaborative visual analytics applica-
tion. In general, collaborative environments on a touch table support
either tightly coupled collaboration (having a shared workspace and
working together) or loosely coupled collaboration (having indepen-
dent workspaces and working alone for long periods of time) [21]. In
our collaborative visual analytics application, we considered address-
ing three types of analytical scenarios: 1) people are collaborating with
others by looking at the same results (tightly coupled collaboration);
2) people are analyzing the same dataset with their own individual
workspaces (loosely coupled collaboration); and 3) people are work-
ing with a partitioned dataset within their own workspaces (tightly and
loosely coupled collaboration). The third scenario, however, is espe-
cially important because it supports both tightly and loosely coupled
collaboration (see Section 3.3 for detail).

4.1 Looking at the Same Results
In visual analytics, people are often working together by looking at
the same results displayed on a screen, which is a common analytical
procedure when collaborating with others. Most visual analytics ap-
plications support this analytical procedure, as it works in any types
of display system. However, on a touch table, existing visual analytics
applications allow multiple people to work at the same time (tightly
coupled collaboration). Butkiewicz et al. [3] designed a geospatial
analysis tool running on a touch table, with which people can inter-
actively create multiple probes based on their regions of interest. In
such an environment, people can easily share ideas, findings, and their
expertise with others by looking at the same results. This is also some-
what related to a learning system, in which an expert explains interest-
ing results or his personalized knowledge to novice users so they can
come up with solutions and analyze the data effectively on their own.

Figure 3(a) shows two users working together by looking at and
interacting with the same representation displayed on a touch surface.
In this example, the user (left) is trying to show the effectiveness of
data value changes to the other user (right). Within this environment,
users can directly communicate with each other focusing on the same
visual representation and results.

4.2 Working with the Same Dataset
In collaborative visualization applications, a common analytical pro-
cedure is to work with the same dataset synchronously and asyn-
chronously. Because of this, most existing collaborative visualization
applications support both synchronous and asynchronous knowledge
sharing. However, in our collaborative visual analytics application,
we only consider synchronous collaboration.

On a multi-touch table, people can analyze the dataset by looking at
different representations. Once a person finds an interesting result, he
can directly communicate it by passing or showing the result to a col-
league. This is somewhat related to the analytical procedure described
in Section 3.1. However, having individual workspaces may increase
the overall performance of finding hidden information and analyzing
the data (loosely coupled collaboration). Figure 3(b) shows an exam-
ple in which people collaboratively analyze the public Iris dataset with
their own workspaces. In Figure 3(b), the user (left) analyzes the data
by changing the dimension contribution of the first (Sepal length) and
second (Sepal width) variables, and the other user (right) manipulates
the values of the selected data item in the parallel coordinates within
the Data view to understand how the selected data item(s) are placed
in a certain cluster.

4.3 Working with the Partitioned Datasets
In data analysis, data partitioning is an important pre-processing oper-
ation. For instance, a Bayesian phylogenetic analysis tool (MrBayes
3 [20]) partitions data according to the data type by default, and then
analyzes the partitioned datasets separately. This is because most real-
world datasets do not exist in the form of a combined dataset. Also,
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(a) (b) (c)

Fig. 3. The pictures show people performing multiple collaborative data analysis scenarios in iPCA-CE system with the Iris dataset (140×4 matrix).
(a) People are working together by looking at the same tool and results, (b) working with the same dataset, but in different workspaces, and
(c) working with partitioned datasets in their own workspaces. The lines between workspaces in (c) indicate the independent workspaces (the
partitioned datasets (left and right)) from the shared workspace (the original dataset (top middle)).

people often tend to focus on analyzing a specific dataset based on
their interests or personalized (tacit) knowledge. In financial fraud
analysis, analysts tend to investigate specific financial datasets (e.g.
the transactions between two specific countries) based on their experi-
ence [6].

In iPCA-CE, users are able to interactively partition the dataset
in order to collaborate with others. Once the dataset is partitioned,
the partitioned dataset creates a (blue) connected line to its original
dataset. In this analytical scenario, the system supports both loosely
coupled collaboration and tightly coupled collaboration. The system
is designed to support creating multiple independent workspaces from
a shared workspace. Figure 3(c) shows a shared work space and two
independent workspaces. The unpartitioned dataset is projected in the
shared workspace and the partitioned datasets are displayed in the in-
dependent workspaces.

5 CONCLUSION AND FUTURE WORK

Since data analysis is a complex analytical task, many useful visual
analytics applications are designed to assist users analyzing data ef-
fectively. However, limited research has been done on understanding
how to support data analysis on a touch table. In this paper, we de-
scribed three important analytical scenarios that should be supported
when designing a collaborative data analysis application on a touch ta-
ble. We also designed a collaborative data analysis application (iPCA-
CE) based on these analytical scenarios.

Since how people share ideas or personalized (tacit) knowledge on
a touch-table when solving complex analytical tasks is still not known,
our future work includes understanding the human knowledge sharing
process on a touch table.
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Information Visualization on Interactive Tabletops
in Work vs. Public Settings

Petra Isenberg Uta Hinrichs Mark Hancock Matthew Tobiasz Sheelagh Carpendale

Fig. 1. Groups of people engaging in information exploration and analysis in work (left) and public settings (right).

Abstract— Digital tabletop displays and other large interactive displays have recently become more affordable and commonplace.
Due to their benefits for supporting collaborative work—when compared to current desktop-based setups—they will likely be integrated
in tomorrow’s work and learning environments. In these environments the exploration of information is a common task. We describe
design considerations that focus on digital tabletop collaborative visualization environments. We focus on two types of interfaces:
those for information exploration and data analysis in the context of workplaces, and those for more casual information exploration in
public settings such as museums. We contrast design considerations for both environments and outline differences and commonalities
between them.

Index Terms—Digital tabletop displays, information visualization, information exploration, collaboration
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1 INTRODUCTION

Groups of people often form decisions or gain knowledge about a topic
by coming together in physical environments to discuss, learn, inter-
pret, or understand information. These groups often make use of phys-
ical tables to view, share, and store visual information. These types
of group tasks or goals commonly occur in meeting rooms, research
labs, classrooms, museums, and other public settings. Digital tabletop
displays can augment information exploration and analysis in these
physical spaces; they can support the collaborative and interactive ex-
ploration of digital information beyond the possibilities that printed
paper, projected slide shows, or non-interactive media such as posters,
black-boards, or bulletin boards can offer.

In the remainder of the paper, we discuss the role of tabletop dis-
plays for collaborative information exploration or analysis in two spe-
cific contexts: work environments and public spaces. In work envi-
ronments, such as meeting rooms or research labs, teams of analysts
can be characterized by a vast amount of domain-specific knowledge,
while in public spaces, such as museums or art galleries, people’s level
of knowledge on a certain topic varies and is difficult to predict or ex-
pect. Nonetheless, both contexts invite the possibility of gaining in-
sight through the process of exploring and analyzing information. By
looking at existing examples of information visualization in both con-
texts, we discuss their commonalities and differences in order to arrive
at practical considerations for designing tabletop interfaces to support
information exploration in each context.

Petra Isenberg, Uta Hinrichs, Mark Hancock, Matthew Tobiasz, and Sheelagh
Carpendale are with the University of Calgary. E-mail: {pneumann ∣uhinrich ∣
mshancoc ∣ tobiasz ∣sheelagh}@ucalgary.ca.

2 TABLETOP DISPLAYS IN THE WORKPLACE

In many areas, domain experts perform data analysis on a daily basis.
For example, molecular biologists frequently analyse huge datasets
from lab experiments, business analysts look at trends in financial
data, or historians explore large document databases to bring historical
events into context. With the rapid growth of the complexity and size
of datasets in many work scenarios the need to support multiple peo-
ple simultaneously viewing and manipulating data is increasing. This
growth means that domain experts from different disciplines and with
different skill sets are often required to collaborate, to make informed
decisions about a dataset, and to improve the quality of an analysis
result. Datasets on which decisions and discoveries are based may not
only be too large to handle by a single analyst but may also be suscep-
tible to a variety of interpretations, in which case experts may need to
discuss and negotiate their interpretations of the data.

Digital tables offer great potential to support this type of work. In
the near future digital tabletops may be installed in offices, meeting
rooms, or research labs where today’s domain experts already meet to
discuss, interpret, and analyse data. One of the great advantages of
tabletop displays in the workplace is their ability to support such col-
laborative work. Analysis systems that use digital tables can enable in-
situ discussion, exploration, and interpretation—in close contact with
the data and its visualization. Team members can work independently
and together while being able to spontaneously react to findings in the
data and to resolve data conflicts as a group. The design of interfaces,
visualizations, and interaction techniques for visual analysis by teams
of domain experts around tabletops is an active research area. At the
time of this writing, examples of systems for exploring information
at a tabletop display in the workplace have been limited mostly to re-
search prototypes. As the cost of such systems goes down, we expect
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to see more commercial examples arise. Nonetheless, the research
prototypes demonstrate the viability of tabletop systems for improv-
ing people’s ability to collaboratively explore information.

The authors have previous experience building system prototypes
for information analysis in the workplace. Lark [12] was designed
to help multiple analysts coordinate their individual and joint analysis
activities on a tabletop (Figure 2-left). Cambiera [6] supported sev-
eral collaborators foraging for information in large text document col-
lections, highlighting overlap in found and accessed documents (Fig-
ure 2-middle). In another project [5] guidelines for collaborative in-
formation visualization were tested as a case study in a tabletop tree
comparison system (Figure 2-right).

Fig. 2. Collaborative infovis systems built by the authors.

3 TABLETOPS IN PUBLIC SPACES

Tabletop displays have started to become more common outside of re-
search labs and work environments. For instance, we can find them in
museums and art galleries where they are used to convey information
to people in an interactive and potentially engaging way. The use of
horizontal digital surfaces to present interactive data visualizations has
several advantages, especially for more casual public settings where
people gather in their spare time. Information visualizations presented
on digital tabletops can turn abstract data into interactive exhibits that
evoke attention and curiosity and entice visitors to take a closer look.
The physical setup of tabletop displays enables visitors to approach
the presented information from all sides; several groups or individuals
can collaboratively explore, share, and discuss the data visualization.
The ultimate goals of large horizontal information displays in public
spaces are to attract people’s attention, draw them closer to the instal-
lation, and promote lightweight information exploration that leads to
serendipitous discoveries, some reflection on the presented data and/or
active discussion of this data with peers.

We have previously presented and exhibited information visualiza-
tion systems in public spaces. memory [en]code (Figure 3-left) is a
tabletop system that visualizes the dynamics of human memories in an
interactive way [9]. Visitors are invited to type their own thoughts
or memories into the system. The participatory aspect of memory
[en]code positively influenced people’s engagement with the installa-
tion. The fact that all information was created by other visitors and
the ability to leave personal traces within the system added a personal
touch to the installation. EMDialog [3] is an interactive information
installation that that was developed to enhance an art exhibition show-
ing paintings from the artist Emily Carr. The installation presents two
interlinked information visualizations that invite museum visitors to
explore the extensive discourse about Emily Carr along temporal and
contextual dimensions (Figure 3-right).

Fig. 3. Infovis systems by the authors exhibited in public spaces.

4 DESIGNING FOR WORK VS. PUBLIC SPACES

When designing visualization systems for collaborative information
exploration, we are faced with a number of challenges in common
with other tabletop work: the need to support awareness and common
ground formation, perceptual problems, as well as collaborative inter-
action issues. However, several challenges also arise due to the nature
of interaction with information visualizations. In this section, we dis-
cuss these challenges and point out the differences that need to be
considered when designing for workplace and public settings.

4.1 Contextual Challenges
One of the main differences to consider when designing tabletop ap-
plications for workplace or public settings is the context in which
the information is being accessed. While the context for workplace
systems often goes hand-in-hand with well-defined tasks and goal-
oriented analysis, the context for public settings can vary dramatically.
We discuss design challenges for both situations next.

Work Environments: Domain Experts typically perform information
exploration and analysis in small groups whose members are already
acquainted. There are also typically well defined analysis goals. These
goals must be supported by the tabletop software and, hence, the devel-
opment of specific software may be necessary when datasets and tasks
change. In contrast to tabletop systems designed for public spaces, the
expectations about interaction techniques and data representations dif-
fer in the workplace. The questions in work scenarios are typically
quite complex and difficult. Also, the data analysis results might be
vital to make important (sometimes time-critical) decisions with many
variables to consider. Information visualization interfaces, therefore,
typically have a large number of parameters to manipulate. Work
teams are often prepared to invest time in learning, and tabletop in-
terfaces designed for these settings can, therefore, often include new
interactions and visual designs if they might improve the efficiency
and quality of collaborative information exploration. Work teams also
often may spend considerable time using an interface, making the ef-
fort to learn new techniques worthwhile.

Several information exploration sessions are often necessary to
come to a common understanding of a particular dataset in the work-
place. Tabletop software for collaborative information exploration
should, therefore, support capturing of interaction histories with the
information in order to allow groups to interrupt their analysis and
continue at a later stage. At the same time, it is often the case that
individual group members may drop in and out of a running collabora-
tive information exploration session. For these group members it may
also be useful to implement history and summarization mechanisms to
show what has been missed. First approaches are incorporated in Lark
and Cambiera (see above) [6, 12].

Public Spaces: The audience gathering around a tabletop in a public
space can be highly diverse. Visitors of museums and art galleries,
for instance, not only differ in age but also in social and cultural back-
ground, knowledge, and interests [10]. Furthermore, people often visit
exhibitions without clearly defined questions or goals in mind but ex-
plore them serendipitously based on spontaneous interest [10]. Inter-
action with exhibits tends to be brief and usually only occurs once per
visitor. This means that tabletop interfaces for information exploration
in public settings need to be designed differently from workplace sys-
tems. Interaction techniques need to be designed with a walk-up-and-
use scenario in mind. Visitors of public spaces are not likely to read
elaborate instructions on how to interact with the system but will try
to figure out exploration techniques and capabilities of the visualiza-
tion on the fly. Interaction with the tabletop system therefore should
be accompanied by direct feedback mechanisms that encourage fur-
ther interaction or lead visitors to try different interactive mechanisms.
The diversity of people visiting public spaces is often reflected in a
variety of interaction times and exploration styles. Some people will
only interact with the tabletop installation for a few moments, while
others will explore information in detail for a longer amount of time.
Therefore, the design of information visualizations on public tabletop
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systems should reward both short- and long-term information explo-
ration. Furthermore, some people prefer guided exploration, while
others like to follow their personal interests using more open explo-
ration techniques.

4.2 Technological Challenges

In both workplaces and public spaces, hardware challenges exist for
the setup of information exploration environments. These challenges
relate to size and resolution of the table but also its spatial placement,
robustness, and form factor.

Workplace Environments: Domain experts often have to do fine-
grained analysis of large and detailed datasets. For the visualization
of this data, the size and resolution of a tabletop is critical. As datasets
increase in size, it becomes more and more difficult to display them
in their entirety. Large and high-resolution tables allow more data
to be displayed and support several people working together—either
with multiple copies of a data representation or with different parts of
a shared visualization. However, detailed and large datasets may re-
quire the rendering and reading of small textual labels and other data
items. With growing resolution, the displayed information items can
become physically smaller resulting in selection difficulties. Using
fingers or pens may no longer be sufficient to select small data items
and alternative selection techniques may have to be used or designed.
Also, when large datasets have to be rendered on high-resolution table-
top screens, combined with several simultaneous inputs, response time
may become more important. It is necessary to develop algorithms
that can support multi-person interaction on very high resolution ta-
bles. Groups of domain experts may also often meet around a digital
table to perform long analysis sessions. Therefore, the form factor of
the table should be such that it supports comfortable seating positions
similar to current meeting spaces in conference rooms or offices.

Public Spaces: Similar to the workspace, public settings can benefit
from the availability of large and high-resolution tabletop displays. In
public settings, the size of a group wanting to access a table may be
much larger than in a workplace. For example, it is not unusual for
school classes to gather around a tabletop to interact with and explore
information in a museum. In such situations, it is critical that the whole
system remains responsive and that the software does not crash, even if
40 hands are touching the table at the same time or even issue conflict-
ing information exploration commands. Tables for public settings also
need to be robust in their physical design, be spill-proof and resistant
to scratching or pushing. In contrast to domain expert information ex-
ploration sessions, one cannot expect children or large groups of adults
to treat a public tabletop display with care. It is important to consider
that the physical setup of the display (size, orientation, and location)
can influence the group size and number of different groups of people
interacting with it. Physical form factors also need to be considered
with regard to physical accessibility. For instance, all visitors need to
be able to see and access the display surface, including children and
people in wheelchairs.

4.3 Perceptual Challenges

The environment suggested by a tabletop display is particularly unique
to computing systems. In particular, the display has a horizontal ori-
entation and affords multiple people standing at different sides of the
table. These properties are compelling for a variety of reasons, but
also introduce some unique perceptual challenges. Specifically, the as-
sumption common to desktop computing that there will be one viewer
directly in front of the display is no longer valid. For example, Wigdor
et al. [14] performed a study that suggests that visual variables (e. g.,
angle, length, shape) are perceived differently on a horizontal surface
than on a vertical one. In 3D, the problem is exacerbated, as the pro-
jection from 3D onto the 2D surface requires an assumption about the
point of view of the (one and only) observer. Thus, a projected image
may appear drastically different to observers standing at opposite sides
of the table. Several systems have explored solutions to the problem of

multiple points of view [1, 7] but the degree of this problem on digital
tables has still been largely unexplored.

Some visual elements in both 2D and 3D are particularly sensitive
to changes in orientation (e.g., text). Some studies have shown that
people are still capable of reading short bits of text at non-zero orien-
tations [13], but they are still slower, and so larger bits of text are best
to read in the correct orientation. Other research suggests that the act
of orienting visual elements is often used to communicate with others
[8] and a variety of methods to perform this act have been introduced
to tabletop display environments (see [2] for an overview). Thus, per-
ception of visual elements that have an intrinsic orientation may play
an important role in the collaboration that occurs in a tabletop display
environment. These perceptual challenges exist in both workplace as
well as public settings, but the types of problems that may arise vary
somewhat.

Work Environments: Here, the perception of the visual information
may be relevant for a variety of reasons. The visual variables used
to represent the information may need to precisely depict a value to
be judged by the observer, or it may be important to compare two (or
more) visual elements. A person on one side of the table may also
need to be able to trust that someone across the table can perceive a
visual variable in a predictable way (i. e., that their view is not warped
in some way). At present, there is little work to suggest how to design
systems that address these issues. However, the current work points to
the fact that the simple solution of using the same design criteria for
vertical displays may not suffice for horizontal ones [14].

Public Spaces: In more artistic or learning environments found in pub-
lic spaces, the precise value of a particular visual element may not be
as important as in systems designed for domain expert analysis in the
workplace. Instead, it may be more important for the designer to con-
sider the fact that the perceptual experience of two observers standing
at opposite sides of the table will differ. This difference in experience
can be thought of as an additional challenge for the designer; the sys-
tem can be made to either mitigate these perceptual differences, or
to take advantage of them in order to create a unique experience for
the observers. Nonetheless, the consideration of the orientation of the
visual elements can be particularly important in a public space. Grab-
bing the attention of someone passing by will involve the consideration
of how the display looks from both far away and from close proximity.
Orientation-sensitive elements, such as text, may play an important
role in drawing attention, indicating a suitable viewpoint, or to help
encourage communication between multiple simultaneous observers.

4.4 Collaborative Challenges

Several previous studies of collaborative information exploration, both
for work environments [11] as well as public spaces [3], suggest a
need to support a wide range of collaboration styles. People may be
interested in exploring parts of the information by themselves without
interfering with other people but may, at any given time, switch from
this parallel work to a phase in which they work more closely together,
sharing information items, and discussing them closely. Despite these
initial similarities, the information exploration goals and contextual ex-
ploration scenarios for information visualization in work environments
and public spaces form different design challenges.

Work Environments: If one wants to support collaborative informa-
tion exploration, one has to either design visual representations that
support synchronous interaction or that allow for the ability to create
several interactive views of the same dataset. Global changes to views
and encodings of data are fairly common in single-user visualization
systems and if one is interested in re-designing such an application
for tabletop use, the re-design of these features for synchronous group
work is critical [6].

Since, the datasets used in expert systems are often large, complex,
uncertain, and subject to different interpretations, people have to pay
close attention to the data they may be working with in order to keep
their exploration context and intermediate findings in memory. Thus,
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for information exploration tasks, the physical cues naturally available
in a co-located environment only provide limited support for aware-
ness and common ground formation. Team members may still be able
to see each others’ hand and arm movements, gestures, and hear their
incidental comments about data, but when the complexity of the infor-
mation visualization requires increased concentration, these awareness
cues may be missed. For example, a person may be pointing to a spe-
cific data item in a visualization and make a comment about it but
another person may be too focused to pay attention to which item it is,
what its context is within the dataset, or even which dataset it is from.
When designing interfaces and visual representations for collaborative
information exploration, we thus need to ensure that people can simul-
taneously concentrate on the complex data and maintain an awareness
of each others’ work and activities. Mechanisms may have to be put
in place to support better contextual understanding for the reference of
data items.

Large and complex datasets place a high cognitive load on the view-
ers. It is, therefore, important that collaborators can externalize some
of their findings easily and, for example, annotate the data to mark a
finding or to rate the reliability, trustworthiness, or certainty of a data
item. This externalization is particularly important for collaborative
data analysis because individuals may, on a momentary notice, switch
context, work with another person, and then have to return to their pre-
vious work. Keeping an integrated exploration history together with
data annotations could greatly support this type of expert information
exploration.

Public Spaces: Museum studies have found that people often visit
public exhibitions in groups. The studies conducted by Hinrichs et al.
[3] and Hornecker et al. [4] confirm this finding for tabletop installa-
tions within museum settings. The physical setting of a tabletop dis-
play allows different visitor groups to approach the installation from
all sides. When several people interact with a tabletop display at the
same time, however, it is hard to maintain awareness of who is explor-
ing what part of the visualization. In a public setting, this awareness
is even more compromised since it is less likely for visitors who do
not know each other to communicate or pay attention to each other
and, hence, the possibility of interaction conflict is high. Different
public tabletop systems deal with this problem in different ways. float-
ing.numbers (http://www.artcom.de) and memory [en]code [9] both
involve visualizations that consist of independent information objects;
people can interact with different objects without interfering with each
other. The visualization in EMDialog [3] was not designed to support
several people exploring it in parallel, hence, the physical setup of the
installation did not to invite parallel information exploration among
unacquainted people. As a third example, information presented on
the Tree of Life table is divided in four quadrants [4] to allow four
different groups of people to explore it without interfering with each
other. These examples show that there is a variety of ways to enable
parallel independent information exploration.

Group interaction in public settings also is less focused around max-
imizing insights from the visualization and more about experiencing
information collaboratively in a social way. When collaboratively ex-
ploring a museum exhibit, social interaction and sharing information
can play an important role. Parents, for instance, often use information
exhibits to explain causalities within the information to their children
[4]. While in this situation often only one person is interacting at a
time, the process of information exploration is still highly collabora-
tive. Similar forms of collaboration can be observed among adults
when they are still unclear of what an installation has to offer and how
to interact with it. Groups also explore visualizations in parallel and,
from time to time, share their insights through discussion, whereas
others go through all information together.

5 SUMMARY

It is likely that future technology will become even more ubiquitous in
our environments and that it will come in many different form factors.

Humans have considerable experience and expertise working together
on physical tables, making this form factor a particularly promising
one to promote. At the same time, we are collecting more diverse
sets of information than ever before. Much of this information is be-
ing collected for the purpose of being explored interactively. Tabletop
displays combine the benefits of a large display area for information,
enough space for several people to share, and a seating or standing ar-
rangement that allows for easy discussion and interaction among group
members. Supporting collaborative information exploration will be-
come an extremely important task for future systems in a large number
of different settings.

We have discussed contextual, technological, perceptual and collab-
orative challenges arising when designing tabletop systems for infor-
mation exploration in two different contexts: workplace settings where
domain experts gather to explore and analyse often large and complex
datasets, and public spaces where the design has to support a much
more diverse set of people, tasks, and goals. While several issues are
common in both settings, other challenges are unique to workplace
environments or public spaces and need to be addressed accordingly.
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Device-based Adaptation of Visualizations in Smart Environments

Georg A. Fuchs, Conrad Thiede, Mike Sips, and Heidrun Schumann

Abstract—Smart environments are beginning to have a large impact to collaborative group work in business and science. The multi-
user and multi-display character of these group work environments presents a novel challenge for information visualization, namely,
the adaptation of graphical representations of data to specific target devices in the environment. In this paper, we discuss a general
strategy for an automated device-based adaptation of visualizations. We report interesting preliminary results of our adaptation
strategy for conventional scatterplots used within a service-oriented visualization framework.

Index Terms—Information Visualization, Display Adaptation, Smart Environment, Collaboration, Scatterplot.

1 INTRODUCTION

Smart environments facilitate collaborative work of a group of users,
e.g., in the analysis of massive customer databases to achieve better
business decisions. A typical device ensemble in a smart room en-
vironment consists of stationary devices such as desktop computers,
projectors, light, or motion trackers, but also strives to integrate mo-
bile devices such as laptops, PDA or smart phones which are often car-
ried by the users. In contrast to classical meeting room environments,
smart environments augment sensor devices to monitor the environ-
ment and its users to enable a ”smart” interaction between the users
and the environment.

These novel environments present a number of challenges for infor-
mation visualization, namely, (a) to support different user goals and
data sources, (b) to utilize multiple displays, and (c) to facilitate inter-
action among a group of users. In this paper, we consider the adap-
tation of graphical representations of data to specific target devices in
smart environments. The adaptation of graphical representations gives
rise to the following two visualization challenges:

• In collaborative work sessions, users usually share a visualiza-
tion on a wall-sized display to analyze/discuss potentially inter-
esting features of the data, but also use the same graphical repre-
sentation on their personal output devices to look at the data. A
smart room environment should allow a dynamic adjustment of
the requirements such as the task at hand and the visualization
needed to foster insight into the data, but also should support
a interaction of the users with the environment such as moving
around to join different subgroups of the users. Thus, a graph-
ical representation of the data often needs to be distributed to
different output devices.

• The diversity of output devices/display sizes is often quite high in
smart environments. To maintain visual effectiveness of a graph-
ical representation under different display sizes, i.e. important
features of the data are faithfully communicated to the user, a
visual interface should apply a device-based adaptation to the
visual output.

To facilitate a smart interaction between the users and the environ-
ment, the adaptation of a visualization to a specific target device should
be performed automatically. This requires suitable metrics to measure
and assess the effectiveness of a visual representation for the current
output device and task. In this paper, we focus on automatic device-
based adaptation of visual representations to support the dynamic as-
signment of visualizations to varying display sizes.
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We review related work and discuss principal distribution scenarios
in Section 2. As the main contribution, we propose a general adapta-
tion strategy for automatic device-based adaptation of visualizations,
and discuss the key challenges in Section 3. Section 4 presents pre-
liminary results on our ongoing work on integrating this strategy for
conventional scatterplots with a service-oriented framework for dis-
tributed visualizations. Section 5 concludes with a discussion of open
research challenges and gives an outlook on future work.

2 BACKGROUND & RELATED WORK

In smart environments the devices form a loosely coupled network,
which allows for the necessary communication to accomplish tasks
in a coordinated fashion [1]. Specifically, this enables distribution of
visual output among several output devices depending on the current
situation, based on an automatic situation assessment [7]. However,
multi-user collaboration in these environments is explicitly not lim-
ited to showing a single user’s content on several displays. Instead,
available output devices need to be assigned to visual representations
according to the users’ current situation and task requirements. Two
principal distribution scenarios can be distinguished: multiple users
work jointly on a single representation, or one or more users require
individual visualization specific to their current task.

In the first scenario, all users view the same information repre-
sentation that is either distributed to show simultaneously on differ-
ent displays, or split to show sub-regions among several (neighbor-
ing) displays. The latter distribution scheme is useful if an array of
small displays (such as PDA and TabletPC) is available to the user,
or if the data set is extremely large. In these situations, using well-
established concepts such as Overview & Detail and Focus & Con-
text can help in exploring the data. Here, one ”public” display (e.g.
a whiteboard display) shows an overview representation of the data,
while other ”private” displays (e.g. Laptops) show additional data for
regions of personal interest. In the second scenario, users require dif-
ferent information representations for their individual tasks. If there
are fewer displays available than visual representations required, the
available display space must be shared by combining representations.
Note, both distribution scenarios require that visualizations are scaled
to fit a particular display area on the target device.

Many approaches found in literature deal with scalable represen-
tations of graphical content such as video streams and vector graph-
ics [8], 2D maps [4] or 3D virtual models [5], but do not address in-
formation visualization. Most adaptive visualization approaches, on
the other hand, consider the properties of the data and the visualiza-
tion goal (e.g., [6, 17]), but only few approaches adapt to the available
resources on different target devices (e.g. [12]). Others address issues
related to distributed visualization, e.g. multiple client platforms [12]
or the use of web services as the output distribution mechanism [16].
In [13], the authors propose a more general approach for distributed
visualization. It uses a service-oriented architecture (SOA) to gener-
ate visual representations in a distributed fashion, including mobile
devices that can enter or leave the smart room’s ensemble.
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Fig. 1. Example for lost effectiveness of a conventional scatterplot due
to transfer to a smaller display: the perceived number of classes may
change from three to two.

These architectures support, in principle, dynamic multi-user and
multi-display settings as outlined above. However, as the generated vi-
sual representations get dynamically reassigned to different displays,
adaptation may become necessary to maintain their effectiveness (see
Fig. 1). Thus, a distributed visualization architecture should incorpo-
rate suitable adaptation mechanisms to adapt graphical representations
of data to specific output devices.

3 GENERAL DEVICE-BASED ADAPTATION STRATEGY

The basic idea of our general device-based adaptation in this setup is
illustrated in Figure 2. The first step is to estimate the visual effec-
tiveness of the representation. This might be done either as an ini-
tialization step prior to the use of the output device or after a visual
representation that is already displayed has been re-assigned to a dif-
ferent display. If the effectiveness score indicates the visual encoding
becomes poor for the assigned display area, in a second step an appro-
priate adaption is selected to increase the visual saliency of potentially
interesting features of the data.

For this general adaptation scheme to work, a number of questions
need to be addressed. Namely, (a) how to evaluate visual effectiveness,
(b) what methods and constraints exist for adaptation, and (c) what are
the requirements for a suitable infrastructure to support both output
distribution and device-based adaptation in smart environments.

3.1 Visual Effectiveness

The effectiveness of a graphical display to faithfully present poten-
tially interesting features of data to the user can be degraded in either
of two cases: (a) when the visual representation has been transferred
to a display smaller than originally intended, or (b) to a much larger
screen, e.g. a whiteboard display. In the first case, a problem occurs
when too much data is displayed on too small displays. The resulting
”visual clutter” is well researched (e.g. [2, 11]) and can have a signif-
icant impact on the effectiveness of a visual representation. However,
there is also evidence that in some situations, upscaling a visual rep-
resentation to a larger display area may also lead to a degradation in
effectiveness as e.g. perception of overall data distribution and local
densities change [2].

The definition of measures of goodness to score the visual effective-
ness of a particular visualization is still a open research problem [9].
Tufte [15] proposes some measures to estimate the quality of 2D rep-
resentations of static data, like the data-to-ink ratio or the data den-
sity, which take into account the size of the visual representation in
relation to the amount of data displayed. Other approaches measure
the overall ”visual clutter” [2] or consistency [11] to evaluate how
faithfully a visual representation communicates data characteristics.
Moreover, to enable automatic adaptation reliable thresholds specify-
ing the perceptual boundaries on what constitutes effective visualiza-
tions are required. This will necessitate user experiments to determine

Fig. 2. Scheme of the adaptation process after a visual representation
has been reassigned to a new display of different size.

those thresholds, and to get a good estimate on the perceived quality
of adapted visualizations.

3.2 Adaptation Options & Constraints

The visualization process can be understood as a pipeline of four data
stages plus intra-stage and transform (inter-state) operators [3]: raw
data (1st stage) is transformed into analytical abstractions (2nd stage),
e.g. by calculating statistical moments, which are then further mapped
to visual abstractions (3rd stage), e.g. 2D points with position and
color. Finally, the rendering process generates the image data (4th

stage). The first two stages constitute the data space that is trans-
formed by the visualization’s mapping into the view space comprised
of the last two pipeline stages. This visualization model yields starting
points for adaptation both in data space and in view space, depending
on the modified pipeline stage. In addition, the mapping parameters
of data values to visual attributes, i.e. the transformation from data to
view space, can also be modified (attribute adaptation).

If a visual representation is transfered to a smaller display, the level
of detail may need to be reduced. Here, adaptation of the representa-
tion in data space includes filtering or using a higher abstraction level
(e.g. clusters or statistical aggregates) to reduce the amount of data
items displayed. View space adaptation aims to reduce visual clutter
(e.g., by employing density binning [10]). Contrary, on larger displays,
more details can be shown, by selecting a lesser degree of abstraction
(e.g. another level from hierarchical clustering) or adjusting filter set-
tings accordingly.

Another question is which visual attributes and aggregations are el-
igible for adaptation. Visualization techniques encode data values to
different visual elements and their associated attributes, thus requir-
ing specific adaptation mechanisms based on the set of used attributes.
Adaptation is also inherently task-dependent, i.e., what view space ag-
gregations and abstractions of the raw data are admissible for a given
visualization goal? Identifying outliers has different requirements for
a visual representation than analyzing complex relations, for instance.

Providing adequate solutions to these questions is not trivial. As
a proof of concept, we chose 2D scatterplots to derive concrete pro-
cedures from the general adaptation scheme (see Section 4, using the
infrastructure described next.

3.3 Infrastructure

A suitable infrastructure generates device-driven visual representa-
tions of the data for the available output devices, utilizing comput-
ing devices in the smart room’s device ensemble, and distributes these
according to the current requirements of the users. We chose a service-
oriented framework called SSC from [13] as the infrastructure for our
experiments. It uses a visualization pipeline composed of distributed
services implementing pipeline operators. Adaptation mechanisms
can be integrated into this general framework through service param-
eterization, or through extensions of the basic pipeline with additional
services, such as a filtering service to sample data prior to the mapping
stage of the pipeline. Furthermore, in line with the principal distribu-
tion scenarios identified in Section 2, we implemented the following
distribution mechanisms for visual representations into SSC to facili-
tate testing:
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To enable distribution of a single visual representation to multiple
devices, the final rendering stage of the pipeline is forked to multiple
rendering services [13], one for each device. This allows device-based
adaptation in view space and attribute adaptation on each device indi-
vidually, while the earlier data stages are processed only once for all
devices1.

Splitting a visual representation across multiple displays is achieved
by forking a second pipeline to render a detail view of the user-selected
area on another device. Currently, the framework supports detail view
of regions of interest that are interactively selected by the user.

The capability to combine multiple visualizations on a single dis-
play is provided by an aggregator service that partitions the physical
display into a corresponding number of viewports. The visual repre-
sentation for each viewport is generated by the respective visualization
pipeline that feeds its output to the aggregator service.

The general framework augmented with these distribution mecha-
nisms provides the basis for our experiments.

4 DEMONSTRATING EXAMPLE

As a starting point for our test implementation, we created a visualiza-
tion pipeline with the SSC framework that defines the necessary oper-
ators to create a 2D scatterplot from multivariate data. We assume the
data points have class labels assigned, and that the visualization goal
is to communicate the class structure of the data. We further assume a
suitable 2D projection is used that captures the high-dimensional class
structure in the 2D scatterplot [11].

The scatterplot representations generated by this pipeline are then
distributed to displays in the environment using SSC’s distribution
mechanisms as described in Section 2. We discuss implementation
details for the different steps of the adaptation process as summarized
by Figure 2 next.

4.1 Efficiency Evaluation

The first step is to estimate the effectiveness of the (newly created or
re-assigned) scatterplot. For this purpose, we use two measures. First,
the class consistency score [11] is calculated. Second, the visual den-
sity of the scatterplot is determined to measure the impact of the new
display area’s size. Here we define the visual density of a scatterplot
as the average ratio of cluster members to the screen space occupied
by the cluster. The area is conservatively estimated by calculating the
size in pixels of the convex hull of all points belonging to that cluster.

We established approximate thresholds for the two measures in an
informal pilot study for the two principal cases of assigning a scatter-
plot to a smaller and a larger display area, respectively. In the first case,
a drop of the consistency score and an increase in visual density can
be observed. Low consistency scores (60−80%) in conjunction with
density values between 0.1 and 0.7 suggest the scatterplot display is
saturated with points. At this point, clusters begin to mix visually (see
Figure 1). This can be countered by suitable attribute adaptation, e.g.
by using different shapes or by increasing the color contrast between
points belonging to different clusters. When the consistency is even
below 60% and visual density is above 0.7, mixing of clusters has
become so severe that overplotting has likely occurred, and attribute
adaptation does not help much to improve effectiveness. We propose
to switch to a density plot in this situation since individual data points
are no longer discernible anyway. The density representation at least
allows the user to faithfully extract the cluster structure. We chose to
integrate a binning approach (view space adaptation) further supple-
mented with an alternate color coding (attribute adaptation).

The second case – assignment to a larger display area – exhibits
no drop in consistency. However, plots with a good consistency score
(> 80%) but visual density below 0.005 (i.e., only about one out of
200 pixels within the convex hull is set) describes a situation in which
data points spread too much. An important finding of our prelimi-
nary user study is that the extraction of potentially interesting features
by the human is biased toward low visual densities. In our scenario,

1Note that for adaptation in data space, the pipeline would have to be split

into parallel services even sooner, at the corresponding data stage.

(a) (b) (c)

Fig. 3. Results of density binning for a synthetic data set – (a) standard
scatterplot, (b) density binning with outlier preservation and linear color
scale, (c) bin frequencies are mapped to logarithmic color scale.

the participants in the user started to identify sub-regions as individ-
ual clusters due to diminishing visual densities. This effect was also
observed by Bertini and Santucci [2]. This can be addressed by en-
coding cluster membership into unused visual attributes (e.g. shapes,
color) or by deliberately downscaling the representation to use only a
fraction of the available area. To find appropriate adaptation strategies
for this situation, however, is still an open research problem we did
not yet pursue further. Therefore, the following subsections discuss
examples for the three adaptation types (cf. Figure 2) specifically for
the case of shrunk display sizes.

4.2 View Space Adaptation

Our density binning approach borrows from [10], which has been pro-
posed as a Focus & Context technique for crowded parallel coordi-
nates. The basic idea can be summarized as follows. Both scatterplot
axes are divided into b regular intervals. The resulting set of b ·b bins
represents a so called bin map and can be thought of as a 2D histogram
of the data point distribution in view space. Every non-empty bin is
represented as a rectangle in the adapted scatterplot, with the bin fre-
quency color-coded into its fill color.

However, to faithfully extract the cluster structure, the user should
be able to discern the cluster centers from the frequency representa-
tion. Ideally, each cluster should register as a high-frequency region
in the plot that is visually distinguishable from peaks of neighboring
clusters. To facilitate these properties, we introduce an extension of
the approach based on the following ideas.

Automatic binning resolution adjustment: First, we adjust the
bin resolution along the scatterplot axes with respect to cluster center
locations to determine a good binning. Initially, the scatterplot area
is partitioned into bx × by bins according to a given starting bin size.
Next we check if a bin contains more than one cluster center. The
binning subdivision is then refined by increasing bx (by) by 1, and the
check is repeated. This subdivision continues by alternately increasing
by/bx until (a) all cluster centers are located in individual bins, or (b)
predetermined bin size is reached. We found that a bin sizes between
5×5 pixels (starting value) to 2×2 pixels (minimum threshold) yield a
good compromise between clutter reduction and faithful reproduction
of clusters on small displays. (see Figure 3(a, b)).

Local magnification with sub-binning: After the bin size and the
resulting bin frequencies have been determined, we optionally apply a
rectangular fish-eye distortion aligned with the bin grid centered about
those bins containing the cluster centers (see Figure 4(b)). This in-
crease in screen space available for the clusters center regions allows
sub-binning these regions. The sub-binning factor is thereby propor-
tional to the magnification factor, e.g. a magnification of focused bins
by factor two results in a two-fold subdivision of these bins. The lo-
cally increased bin resolution reproduces frequency variations around
the cluster centers with higher fidelity and thus can improve visual
separation of clusters with low separation (Figure 4(c)).

4.3 Attribute Adaptation

Moreover, instead of using the originally proposed, linear color map
from [10], we use a logarithmic scale for bin colors. The skewed dis-
tribution of bin frequencies between dense centers of compact clusters
and sparse regions where clusters mix suggests a non-linear color scale
is better suited for this kind of data [14]. Figure 3(c) illustrates the dif-
ference between a linear and a logarithmic color scale. The latter scale
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(a) (b) (c)

Fig. 4. Use of rectangular fish-eye distortion – (a) undistorted density plot, (b) bins containing cluster centers magnified, (c) magnified regions
sub-binned. The increased density sampling rate in (c) reveals that the dense region at the top is actually comprised of three peaks (i.e., clusters).
The location of the center peak within the low-density cluster at the middle-right is also emphasized.

assigns more gray levels to the low end of the frequency value range,
thus further enhancing visibility of the peaks around cluster centers.

4.4 Data Space Adaptation

A third option for smaller displays is to reduce the number of data
items prior to mapping them to the visual representation. This can be
achieved by employing data sampling. To preserve the class structure,
however, the sampling process should maintain local densities [2]. Al-
though random sampling schemas are, in principal, of value in many
adaptation situations, it is rather useless in our scenario. For this rea-
son, implementation of a suitable density-preserving sampling service
has not been pursued yet.

5 SUMMARY & DISCUSSION

Multi-user, multi-display settings in smart environments present novel
challenges for information visualization. In particular, the varying
sizes and capabilities of different output devices require device-based
adaptation of generated visual representations. In this paper, we pro-
posed a general strategy to guide this adaptation based on the no-
tion of visual representation effectiveness and a visualization pipeline
model. As a proof-of-concept, we implemented corresponding adap-
tation mechanisms for 2D scatterplots in the SSC framework [13].

We believe the general strategies proposed in this paper are valid
and can be employed to many visualization techniques, however,
smart device-based adaptation (i.e., minimal user intervention) re-
quires more work. First, thresholds for consistency and visual den-
sity need further evaluation in controlled user experiments, which is
the subject of our current efforts. This specifically includes cases with
low visual densities (display size is too large for a given visualization),
as this branch of the adaptation scheme (Fig. 2) was not pursued in de-
tail so far. Also, the problem of meaningful effectiveness measures
requires more research. Consistency is applicable only for scatterplots
of clustered data. Metrics striving to capture the amount of visual
clutter in visual representations [2, 11] seem promising candidates for
a more generic effectiveness evaluation.

The distribution of visual representations is still work in progress
as well. Smart distribution requires detection of the current user situ-
ation followed by inferring the individual goals as well as the group’s
intention, which is not the focus of our work. However, we plan to
integrate these schemes with an existing inference module (cf. [7]) in
the future.

Additionally, we plan to further investigate task-driven aspects of
the adaptation process. A typical smart room scenario is a decision
making process where several domain experts look at the same data,
albeit with different goals and requirements to the visual representa-
tion. So far, we only considered a single visualization goal, namely
communicating the class structure of multi-dimensional data.Note that
the visualization goal respectively the user’s current task have a di-
rect impact on device adaptation. The task determines what data ab-
stractions are permissible or how visual attributes should be modified
e.g. through color coding. Using a suitable task description in the

adaptation process would therefore allow to integrate different task-
specific aspects in a single collaborative visualization on the same
screen, rather than just juxtaposing several independent representa-
tions. Our initial studies in this direction included task-based adap-
tation of graphical content using enriched task models [5] and a task
taxonomy for color coding [14].
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Design Considerations for Collaborative Information Workspaces
in Multi-Display Environments
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Abstract—The incorporation of massive amounts of data from different sources is a challenging task for the conception of any
information visualization system. Especially the data heterogeneity often makes it necessary to include people from multiple domains
with various fields of expertise. Hence, the inclusion of multiple users in a collaborative data analysis process introduces a whole
new challenge for the design and conception of visualization applications. Using a multi-display environment to support co-located
collaborative work seems to be a natural next step. However, adapting common visualization systems to multi-display environments
poses several challenges.
We have come up with a number of design considerations for employing multiple-view visualizations in collaborative multi-display
environments: adaptations of the visualization depending on display factors and user preferences, interaction techniques to facilitate
information sharing and to guide the users’ attention to relevant items in the environment, and the design of a flexible working
environment, adjustable to varying group sizes and specific tasks.
Motivated by these considerations we propose a system relying on a spatial model of the environment as its main information source.
We argue that the system design should be separated into basic multi-display environment functionality, such as multiple input
handling and the management of the physical displays, and higher level functionality provided by the visualization system. An
API offered by the multi-display framework thereby provides the necessary information about the environment and users to the
visualization system.

1 INTRODUCTION

Modern information workers need to explore large information spaces
to reach crucial decisions, such as those with strong influences on peo-
ple’s well-beings. Those decisions are rarely made by a single person
but are rather discussed and evaluated by a team of experts. Exam-
ples are doctors deciding for treatment courses after exploring and dis-
cussing the diagnostic data of patients, architects and other stakehold-
ers discussing on urban planning issues [15], emergency services hav-
ing to react to ongoing crises, scientist discussing patterns and findings
in data, or engineers collaborating with their peers when designing the
car of the next generation. All these scenarios are accomplished by a
small group of experts and involve massive amounts of data.

Information visualization software helps to cope with large amounts
of data by letting the user interactively explore the information space.
Especially multiple-view visualization can prove useful in collabora-
tive information analysis situations, where users might prefer differ-
ent visualization styles based on their personal preferences and know-
ledge backgrounds. However, most software solutions have two major
shortcomings impeding effective collaborative work: First, they are
designed as single-user applications not able to distinguish input from
multiple users, even if the underlying operating system is capable of
handling multiple input devices. Second, single-machine software has
to cope with limited screen space, typically a single or dual monitor
setup.

It seems natural to match the multiplicity of displays in a multi-
display environment (MDE) to the multiplicity of users and visual-
ization views in a multiple-view visualization system. MDEs com-
bine displays of various form factors to a unified interaction space.
Traditional collaboration in small groups, where participants discuss
print-outs on a table, take notes in private notebooks, and sketch ideas
on a white board, can be emulated by turning unused wall and table
spaces into interactive workspaces and integrating brought-in personal
devices into the interactive environment.

Building a visualization system that makes optimal use of an MDE

• Manuela Waldner, Alexander Lex, Marc Streit and Dieter Schmalstieg are
with the Institute for Computer Graphics and Vision at Graz University of
Technology, E-mail: {waldner|lex|streit|schmalstieg}@icg.tugraz.at.

is not simply a question of providing a very large number of pixels.
Collaboration requires that users can manipulate application content
simultaneously and tailored to their personal preferences, and that
tools for guiding the users’ attention in the large workspace are pro-
vided. Visualization styles, placements, and detail-levels should dif-
fer depending on the used display and the users interacting with the
visualization. Tasks such as choosing the appropriate display for a vi-
sualization or the appropriate level of detail of a visualization for a
particular display can be solved manually. However, we believe that
an automated approach can facilitate the usefulness of such systems.
To automate these operations the system requires knowledge of the ge-
ometric and topological properties of the display setup, the locations
of the users within the environment, and their backgrounds and pref-
erences.

(a) (b)

Fig. 1. Examples for collaborative information analysis in multi-display
environments: (a) analysis of biomolecular data and (b) urban planning.

In this paper we present a set of design considerations for visualiza-
tion and interaction techniques tailored to collaborative multi-display
situations, as illustrated in Figure 1. Subsequently, we will propose
a system design for a co-located collaborative information workspace
incorporating multiple displays of varying form factors. We will show
that the system’s detailed knowledge of spatial display arrangements
and user locations is crucial when building collaborative information
workspaces in MDEs.
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2 RELATED WORK

In their “rule of diversity”, Baldonado et al. [1] suggest that multiple
views should be employed if users’ preferences and knowledge back-
grounds differ. Convertino et al. [4] proposed a single team view and
role-specific private views for each team member to ease the group
analysis task of a map-based visualization. Tang et al. [20], as well as
Forlines and Shen [6] demonstrated systems providing each user with
tools for filtering a single, shared view. Isenberg et al. created a col-
laborative visualization system for a multi-touch table [9]. They also
presented a set of design guidelines for collaborative information visu-
alization systems, which was extended by Heer et al. [8]. Our design
considerations differ, as we are more focused on MDEs with special
emphasis on the influence of display geometries, display topologies,
user locations and user preferences on the visualizations.

In an MDE, Forlines and Lilien [5] distributed multiple coordinated
3D views of a protein to an interactive touch display, two wall dis-
plays, and a tablet PC for fine-grained interaction. Although their sys-
tem supports multiple users by facilitating a multi-touch table, they do
not provide special collaborative interaction features. Shen et al. [16]
developed a taxonomy of multiple-view visualization styles in multi-
display environments . They proposed three visualization styles differ-
ing in their synchronization method. In contrast to their taxonomy, we
propose the separation of the system into a multi-display framework
and a visualization framework to not limit the MDE’s functionality
to the visualization system and likewise, not to limit the visualization
system’s applicability to the specific MDE.

3 DESIGN CONSIDERATIONS

Special requirements for co-located collaborative information visual-
ization systems arise from the implicit components: multiple users
are operating on multiple data sets by using multiple visualizations on
multiple displays. A discussion of the requirements in terms of visual-
ization and interaction is followed by considerations about the needed
properties of a multi-display environment supporting co-located infor-
mation seeking.

3.1 Visualization Techniques

In a collaborative MDE, not only inherent display factors (i.e., the dis-
play geometries) have an influence on the subjective quality and per-
ceptibility of the visualization. The users’ preferences and knowledge
backgrounds play an equally important role.

Visualization LOD: The visualization’s level of detail should
vary with the display. Display parameters, such as size, resolution,
distance to the users, and viewing angles of the users, influence the re-
quired or possible level of detail a visualization can show. The level of
detail adjustment depends on the view, but generally affects the level of
abstraction, the number of text labels, the size of the remaining text la-
bels, and how much data entities are shown in the view. If the number
of available pixels does not allow a visualization to show all data en-
tities simultaneously, abstractions such as clustering or focus+context
methods can be applied to convey an acceptable compromise between
overview and detail. As an example, consider a low-resolution wall
projection serving as contextual information space, while users con-
duct individual work on their private workstations. The local visual-
izations on the private displays show a large number of elements in a
plot, while context views on the wall show only contextually relevant
elements.

Personalized views: The visualization’s level of detail should
vary with the user. Experts from different domains might not only
prefer different data representations, but also specific terminology.
When reviewing data collaboratively, a shared information space eas-
ily gets cluttered with extensive text labels and alternative represen-
tations. In an MDE, private monitors provide a convenient space for
visualizations adjusted to the users’ background and preferences with-
out affecting shared or other users’ private views. We hypothesize that
users prefer more sophisticated and interactive views on private dis-
plays, while views, which require less precise interaction and convey
information in a more obvious way, are preferred on shared display

spaces. In addition, visualizations on public displays can combine in-
formation from different data domains and therefore bridge the knowl-
edge gaps between experts from different fields, as explained in a com-
panion paper by Streit et al. [19]. However, we believe that it is crucial
that the user retains control over which information should be visible
on which display.

3.2 Interaction Techniques
Typical activities when using information visualization systems in-
clude interactive filtering [17] and brushing [10] to understand the data
and its relations. These actions are equally important in a collabora-
tive multi-display setting, but there are some issues which have to be
considered: First, multiple discontinuous display spaces make relat-
ing linked elements and arranging the multiple views more difficult.
Second, having multiple users frequently shifting between a loosely
coupled and a tightly coupled work style [7, 20] poses challenges to
make these shifts fluid, while preserving sufficient privacy for undis-
turbed individual work.

Visual Linking: Guide the users’ attention. When information is
scattered in an MDE, relevant items, for instance data elements related
to the user’s current selection, might not be in the user’s direct field of
view. Subtle highlighting of related elements might not be sufficient
to guide the user’s attention to secluded display spaces. An approach
to show relationships between items more explicitly is visual linking
[3], which draws line connections between related elements in two
views. However, in an MDE the visual links between views need to
bridge display space potentially covered by other applications, as well
as display-less space between two adjacent displays. The path across
discontinuous displays becomes ambiguous as soon as the displays are
not located on the same depth level. Figure 2 shows two possibilities
how to design cross-display visual links: A static determination of
entry- and exit points for lines connecting two screens makes the vi-
sual links predictable and works equally well from every perspective
(Figure 2a). When drawing visual links from a single user’s perspec-
tive, the complexity for the user is reduced (Figure 2b), while other
users perceive discontinuities in the links.

(a) (b)

Fig. 2. Visual links demonstrating the shortest navigation paths from
the current mouse pointer location to potential target displays to ease
navigation in an MDE: (a) through static entry- and exit points, and (b)
by incorporating user perspective.

View relocation: Provide semi-automatic mechanisms to share
information. Especially when working in an MDE with private
monitors hidden from other participants, there are several situations
where users would like to move visualizations from one display to
another: They may want to retrieve a copy of a public visualization
view for detailed investigation on their private workstations, they may
want to send a copy or reference of their visualization directly to a sin-
gle collaborator or to a group of collaborators for discussion, or they
could also place visualization views on a public display space without
the intention to immediately discuss or present findings. Moving ob-
jects (e.g. visualization views or application windows) across display
boundaries using interaction techniques like drag and drop [13, 11] is
a non-trivial task, especially if the display topology is complex and
user interaction can potentially interfere with other participants. How-
ever, with the system’s knowledge of display arrangements and user
locations, we can provide high-level interaction techniques like pub-

37



lish, deposit, or obtain which intelligently move views to displays. For
example, users wanting to discuss findings identified on their private
workstations, press a publish button in the graphical user interface.
The system then identifies the most suitable target display by consider-
ing properties of the visualization (Can the level of detail be adjusted?
Does it contain rotation-sensitive elements?) and the potential target
displays (Is it visible for all affected users? Is there someone interact-
ing with the display?). The view is then relocated to the best suited
display. To allow for manual adjustment, conventional drag and drop
relocation techniques should additionally be supported.

Privacy: Ensure uninterrupted individual work. Linking &
brushing assures that selections made in one visualization are reflected
by all other views. For instance, if a user selects an element in one
view, this event can modify all other views in the environment – shared
views, as well as views on private display spaces. If other participants’
private views are modified in a loosely coupled collaboration situation,
their ongoing activities might get interrupted. The system thus needs
to treat views placed on private display spaces with special care. Link-
ing & brushing events for private views need to be restricted to avoid
sudden, unexpected changes interrupting individual work. Likewise,
visual links should not connect elements between shared views and
private views, unless invoked by the owner of the private view.

Personalized Interaction: Make individuals’ actions distin-
quishable. Personalized interaction techniques, for example user-
based color-coding visual links and highlights, helps users to distin-
guish actions from different collaborators. System responses tailored
to the users’ preferences (e.g. by providing customized mouse-over
information [14]) are especially important when experts from differ-
ent domains collaborate. Such features require a system capable of
distinguishing input from multiple users.

3.3 Environment
In an MDE, the working environment can be tailored to the informa-
tion analysis task to be accomplished and the group being involved.
This affects the physical display arrangements as well as the display
form factors. Additionally, the users should be able to customize their
system by freely choosing their supportive software tools.

Display setup: Make the display environment (re-)configurable.
By mixing displays of varying affordances, collaborative tasks can be
simplified. For instance, people can gather around a tabletop display to
discuss information, while a wall display is used for presentation pur-
poses. Private displays introduce an implicit task separation and foster
a loosely coupled work-style. An MDE has to be carefully designed
to find the perfect balance between providing sufficient display space,
arranged in a fashion to best support the group activities, while not
overwhelming the users with a seemingly endless amount of visible
information. A collaborative information workspace has to accommo-
date for these situations by being adjustable to task requirements and
group size. It should be easily reconfigurable to support a changing
group size and to incorporate brought-in mobile devices, such as per-
sonal laptops.

Display geometry: Make the displays configurable. For detail-
rich visualization representations, it is not only important to provide
high-resolution displays. In certain cases, visualizations can benefit
from unconventional displays in terms of aspect ratio or display ge-
ometry. Consider, for instance, the parallel coordinates visualization
shown in Figure 3: With limited screen space, horizontal scrolling or
panning is required to explore all dimensions. By combining multiple
projectors to a very wide, high-resolution projected display, even de-
generated visualizations with aspect ratios not conform with conven-
tional monitor dimensions can be explored without scrolling, panning,
or zooming.

Application Transparency: Provide supportive applications. A
collaborative information analysis session clearly benefits from a rich
visualization system support such as cross-machine linking & brush-
ing. However, conventional software tools, such as web browsers, e-
mail clients, or presentations tools can further enrich the collaborative
session. It is therefore important to also allow legacy applications to
function as usual in such a setup.

Fig. 3. On a conventional monitor showing all dimensions of this parallel
coordinates view would result in visual clutter, due to the limited space
between the axis. On a very wide horizontal display more dimensions
can be visualized simultaneously with sufficient spacing.

4 SYSTEM DESIGN

Based on the design considerations discussed above we propose a sys-
tem design that includes a detailed spatial model of the environment
as its main information source. As shown in Table 1, many of the
visualization and interaction techniques proposed cannot be provided
without knowledge of geometric display properties, the display topol-
ogy (i.e., the spatial relationship of displays to each other), and the
location of the user within the environment with respect to the display
locations. However, the spatial model is not only necessary for visual-
ization and interaction techniques, but is also required to build a flex-
ible, configurable display environment. The aforementioned displays
with unconventional aspect ratios and geometries can be built from
multiple casually aligned projectors or projections onto non-planar
surfaces, using geometric compensation and edge blending (see [2]
for an overview on seamless multi-projector displays).

Display
geometry

Display
topology

User
locations

User
preferences

Visualization LOD x x (x)
Personalized views x
Visual linking x (x)
View relocation x (x) x
Privacy x x x
Personalized interaction x x

Table 1. Information sources required to provide display- and user-
adaptive visualization and interaction techniques.

At our institute, we have developed Deskotheque [12], a distributed
multi-display framework which acquires a three-dimensional model of
the environment in a camera-assisted offline calibration step. Figure
4 shows a multi-display setup coordinated by the Deskotheque frame-
work and the corresponding spatial model. Based on this model, we
derive geometric compensation and edge blending for projected dis-
plays to support the construction of large high-resolution displays from
multiple projectors and projections on multi-planar surfaces. Geomet-
ric compensation is applied in a 3D compositing window manager,
thus transparent to any applications run in the environment [21]. From
the spatial model we can also roughly estimate user locations, by as-
suming the users to be located at a static distance in front of a personal
workstation monitor. This information is employed for providing spa-
tially consistent cross-display mouse pointer navigation, which is cru-
cial to access all display spaces in an intuitive fashion.

As Deskotheque is designed in an application-transparent manner,
any information visualization application can be operated on the MDE
framework without further adaptations (c.f. Figure 1a). However, to
implement all the design considerations discussed in the previous sec-
tions, knowledge about the environment is required by the visualiza-
tion application. We are therefore currently working on extending Ca-
leydo [18], a multiple-view visualization system from the biomedical
domain developed at our institute, to a distributed system which will
make use of information provided by Deskotheque.

We anticipate a clear separation of MDE- and visualization frame-
work. The multi-display framework has to provide the basic technol-
ogy to create a shared workspace – irrespective of the anticipated con-
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Fig. 4. The spatial model of a multi-display environment. Mind that
the right multi-planar wall display is composed of two overlapping pro-
jections and all projected displays are geometrically compensated for
projective distortion.

tent. This includes – but is not limited to – geometric compensation
of projected displays, cross-display mouse pointer navigation, multi-
ple input support, and object relocation facilities on window level, as
well as the creation and maintenance of the spatial model of the envi-
ronment. The visualization framework keeps records of user profiles
and is responsible to provide appropriate visualizations adapted to dis-
play factors and user preferences. It also has to take care that multiple
views distributed on multiple displays, and machines respectively, are
synchronized and events are forwarded to all instances.

To adapt the visualization style, to calculate automatic placement
positions, and to distinguish multiple collaborators, it can rely on an
API exposed by the MDE framework which provides access to the
display geometries, arrangements, user locations, and users associated
with input events received by the visualization framework. The MDE
framework furthermore has to take care to provide interfaces for cross-
display painting of visual links (c.f. Figure 2), which is accomplished
by a window manager plugin.

5 CONCLUSION

With increasing power and popularity of projectors and large-scale
monitors, as well as the availability of massive amounts of data, ex-
tending visualization systems to MDEs seems to be a logical step. In
this position paper we have presented a set of design considerations
for adopting visualization and interaction techniques to this new sit-
uation and for what the environment for a collaborative information
workspace should look like. Based on these, we have proposed a sys-
tem design for such an information workspace with a clear separation
between multi-display- and visualization framework. As a major re-
quirement for a collaborative information workspace we have hypothe-
sized the availability of a spatial model of the environment, describing
the individual displays’ geometries, the display topology, and the lo-
cation of the users within this environment. Only with this knowledge
we believe that the system can sufficiently support the users in their
collaborative analysis task by adapting visualizations to the display
form factors, providing highly sophisticated interaction techniques,
and guiding their attention to relevant information.
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