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Figure 1. We studied the effect of user representations on users’ ability to distinguish their own on-screen representations. We experimented with four
user representations: (A) abstract objects, (B) skeletons, (C) silhouettes, and (D) mirror images. In a prestudy, we uncovered five strategies users employ
to identify themselves. In a subsequent study we quantified the recognition time and accuracy of each representation with respect to these strategies.
We conclude by six recommendations to guide designers in picking the representation most suitable for their deployment’s context.

ABSTRACT
While user representations are extensively used on public dis-
plays, it remains unclear how well users can recognize their
own representation among those of surrounding users. We
study the most widely used representations: abstract objects,
skeletons, silhouettes and mirrors. In a prestudy (N=12), we
identify five strategies that users follow to recognize them-
selves on public displays. In a second study (N=19), we
quantify the users’ recognition time and accuracy with respect
to each representation type. Our findings suggest that there
is a significant effect of (1) the representation type, (2) the
strategies performed by users, and (3) the combination of both
on recognition time and accuracy. We discuss the suitability of
each representation for different settings and provide specific
recommendations as to how user representations should be
applied in multi-user scenarios. These recommendations guide
practitioners and researchers in selecting the representation
that optimizes the most for the deployment’s requirements, and
for the user strategies that are feasible in that environment.
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INTRODUCTION
Interactive displays have become ubiquitous in public spaces
such as museums, airports, and shopping malls. In the vast
majority of cases people approach public displays in groups [7,
11, 26], which led to an increasing number of very large dis-
plays to allow interaction by multiple users [1, 2]. Multi-user
interactive public displays often respond to individual users
by assigning a visual representation to each user [17, 33, 38].
The past years witnessed an extensive employment of user rep-
resentations on the display. These representations can serve
multiple purposes; previous work employed them to attract
the attention of passersby [26, 36], initiate interaction with the
display [35], and provide real-time feedback to users [1]. In
most of these works, multi-user interaction is supported by
showing multiple on-screen representations simultaneously.
Although previous research investigated different aspects of
user representations, to date, an understanding of how quickly
and accurately users can discern their own on-screen represen-
tation from multiple other ones is still missing.

Previous work highlighted the importance of this problem. For
example, Müller et al. reported that when a crowd gathers in
front of a display, it becomes difficult to distinguish which
effect is caused by whom [26]. Wouters et al. [37] also re-
ported that passersby lose motivation to interact with public
displays when they are unable to identify themselves, which
is often the case when it is crowded. Bridging this knowledge
gap is valuable for the display community, since it supports
researchers and practitioners designing interactive display ap-
plications to choose the right user representation. In some
cases it might be important to minimize interaction times and
hence support users in findings their own representation as
quickly as possible. This is mainly the case when displays
are used as tools [26]. Yet, especially for more playful ap-
plications (displays as toys [26]) the challenge of identifying
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oneself could be a playful element as part of an interactive
game. For example, application designers may want to avoid
a particular representation, such as a mirror image, because it
invades privacy or makes users feel uncomfortable in public.
Designers may prefer a representation, for example a silhou-
ette, because it can be integrated with the application content
by employing the corporate color.

To be able to provide recommendations as to how user repre-
sentations should be employed in multi-user scenarios where
performance matters / does not matter, we conducted an in-
depth investigation of the influence of different user represen-
tations on user performance. In particular, we investigated
the most commonly employed user representations: abstract
objects (e.g., the user is represented by an abstract square), a
skeleton (e.g., provided by Microsoft Kinect), a silhouette, and
a mirror image of the user (see Figure 1). At the outset of our
research, we investigated users’ strategies when it comes to
identifying themselves among other users (N=12). Such strate-
gies include changing position, adopting a particular body
posture, observing the appearance of the representation and
observing the behavior of others. Subsequently, we conducted
a controlled experiment (N=19) where we quantified accuracy
and time needed to identify representations based on different
strategies and representations types. We found noticeable dif-
ferences in self-identification time based on the user represen-
tation type, the movement strategies and specific combinations
of both, whereas accuracy is in many cases negligible. Our
work is complemented by providing specific recommendations
as to which representations should be used, given the context
of a deployment and the content of the employed application.

The contribution of this work is threefold: (1) We identify
five main strategies employed by users to distinguish their
own representations among multiple on-screen ones through a
qualitative user study (N=12). (2) We report on a subsequent
quantitative study (N=19) where we measured the impact of
different types of user representations (Figure 1) and strate-
gies on the users’ speed and accuracy in identifying their
own representation among others. (3) We compile a set of
recommendations that guide designers in choosing the right
representation depending on the context of the deployment.

RELATED WORK
We build on two strands of prior research: Supporting multi-
user interaction on public displays, and user representations.

Multi-user Interaction on Public Displays
Public displays are often approached by groups [7]. In cases
where only one user is interacting initially, the honeypot ef-
fect attracts passersby, eventually leading to multi-user in-
teraction [26]. To address this, public displays increasingly
support interaction for multiple users through different modal-
ities. Examples for multi-user interaction using touch include
Hello.Wall [29], EyePACT [13] and Worlds of Information
[10]. Systems such as Looking Glass [26], Media Ribbon [2],
StrikeAPose [34] and MyPosition [31] support multi-user in-
teraction by mid-air gestures. Gaze-enabled public displays
have also started to support multiple users [12, 16, 38]. Other
displays allow interaction via mobile devices [14, 18, 32].

As users approach a display it is usually not clear to them,
whether a public display application supports multiple users.
This problem is mitigated in cases where user representa-
tions are employed, since in this case it is communicated to
passersby that everybody being represented on the display can
interact. At the same time, in multi-user scenarios it is often
challenging for users to know who caused which effect [26].
Our work contributes in understanding which representations
work best in helping public display users identify themselves
in multiple users scenario. This knowledge can be exploited
by designers of public display applications to support or – if
desired – make it difficult for users to identify themselves.

User Representations
Research in psychology shows that humans are highly capable
of recognizing themselves and others through motion [6] and
mirror images [22]. Prior work investigated different ways
of representing users on public displays: Appearance match-
ing representations include silhouettes [2] (aka contours [31,
34]) and mirrors [26] (Figures 1C and 1D). Kinesthetic-
visual matching ones include abstract objects [19, 35, 37],
avatars [26], and skeletons [2, 35, 36] (Figures 1A and 1B).

Previous work found a correlation between vagueness of the
representation and willingness to vote in public [18, 31], imply-
ing that anonymity of the representation is sometimes desired.
Ackad et al. [2] found that, compared to silhouettes, skeletons
are perceived to be more playful, resulting in longer interaction
times [30]. However, users stayed more focused when inter-
acting with silhouettes [2, 36]. Skeletons were used to instruct
users how to interact with displays [3], while skeleton-like
avatars and silhouettes were utilized to register users at dis-
plays to kick off interaction [35]. In terms of communicating
interactivity, lab studies showed that mirror representations
do not greatly outperform silhouettes [26, 28], but a signifi-
cant improvement in favor of mirrors was observed in a field
study [26]. In contrast to other representations, mirrors were
associated with privacy concerns [26].

From this we learn that there seems to be no representation
that is generally superior to others and that designers need
to decide in-situ which representation to use. Deployment
contexts highly influence the behavior of passersby, for ex-
ample, a display in a hallway would expect walking users,
while a display in an elevator or next to a vending machine
would expect its users to be stationary. Furthermore, the loca-
tion may also impact whether or not users care about being
represented by their mirror image or a more abstracted repre-
sentation. In order for designers to make an informed decision,
a comprehensive understanding of the effects caused by using
such representations is necessary. In particular, knowledge on
performance in terms of time and accuracy is missing as of
today – yet it is an important aspect when it comes to choosing
a specific representation. Based on our findings, we conclude
this work with recommendations on how to determine which
user representations are appropriate for which scenarios.

INVESTIGATED USER REPRESENTATIONS
Based on related work, we investigate four user representations
that cover the full range of possible details representations



can provide. Two are appearance matching representations:
silhouettes [2, 26] (aka contours [24, 31, 34]) and mirrors [26]
(Figures 1C and 1D). And two are kinesthetic-visual matching
representations: abstract objects [19, 35, 37] and skeletons [2,
35, 36] (Figures 1A and 1B).

Abstract objects. A distinction of abstract objects, is that
they can support a top-view. A top-view is a plausible design
for multiuser scenarios; a motion sensing device at the top
would minimize the chances of users occluding each other. In
this representation, moving forward corresponds to an upward
movement of the representation, while a move to the back
traverses it downwards (see Figure 1A).

Skeletons. While abstract objects react only to the user’s
movements in the interaction space, skeletons react to other
body movements such as moving the arms and legs. Hence
allowing kinesthetic-visual matching [2]. However skeletons
also reflect aspects of the user’s appearance, such as the user’s
height and body posture (see Figure 1B).

Silhouettes. Silhouettes reflect more details about the user’s
appearance such as the body figure, hair appearance and in
some cases accessories such as bags and headwear. They are
classified as appearance matching representations [2] since
users rely mainly on matching their own appearance with that
of the Silhouette. However, matching body movements can
also help in identifying oneself (see Figure 1C).

Mirrors. In this representation users have the largest variety
of cues that can be utilized to identify themselves. In addition
to the cues provided by skeletons and silhouettes that are also
provided by mirrors, users can match their faces, clothes (e.g.,
shirt color), hair and skin color (see Figure 1D).

PRESTUDY: SELF-IDENTIFICATION STRATEGIES
Before studying which representation helps users the most in
identifying themselves among several ones, it was essential to
understand what strategies users employ to achieve that. This
was done to ensure that the results of the subsequent study are
not biased due to a certain representation–strategy combination
that might not always be possible in real deployments. For
example, relying on strategies that include walking in front
of a display or performing extensive arm movements may not
be feasible in narrow areas such as in a hallway [5], on an
escalator, or in an elevator. On the other hand, a user could
be moving before noticing displays deployed in streets or
hallways – hence, it is plausible to exploit this movement.

Setup and Implementation
We deployed a Kinect One in front of a projected display in a
5.6 m× 5 m room. We chose to conduct the study in a large
room to avoid restricting possible strategies. The projection
had a diagonal of approximately 2 meters and a resolution of
1280×720 pixels (see Figure 2).

Abstract objects were implemented by mapping the position
of the user’s sacroiliac joint (at the bottom of the spine) to the
screen. The skeleton objects were implemented in a similar
manner. However in this case not only the sacroiliac joint
was used but all skeletal joints provided by the Kinect API.
For each joint a circle was drawn on the screen indicating
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Figure 2. The prestudy participants stood at a distance of 3.6 meters
away from the projection. They were then shown one of the four repre-
sentation types at a time, and asked to identify themselves as quickly as
possible. Afterwards the participants were interviewed to uncover the
strategies they employed to perform the task.

its spatial position. For silhouettes and mirrors we used the
depth stream provided by Kinect to identify the skeleton. This
allowed us to identify which pixels in the video stream belong
to each user. We generated silhouettes by changing the color of
these pixels to white and subtracting the background. Mirror
objects were created by combining the 2D-color-stream and
the depth stream provided by the Kinect API.

Study Design and Procedure
We invited 3 groups of 4 participants each (7 females) with
ages between 21 and 33 (M = 25.3, SD = 3.4) through uni-
versity mailing lists. In a within-subjects repeated measures
experiment, with a single variable being the user representa-
tion type, participants were asked to stand approximately 3.6
meters away from the projection (see Figure 2A). The exper-
imenter then explained the study and asked the participants
to identify their representations as fast and as accurately as
possible. No hints were given to the participants regarding
how to identify themselves. The experimenter launched an ap-
plication that showed one type of user representation at a time
for all participants (Figure 2B shows the skeleton representa-
tion condition). The experimenter traversed through the user
representation types. Each representation was used 6 times
in a counter-balanced manner. In each run, the experimenter
waited until all participants in the current group confirmed that
they recognized themselves, and then proceeded to the next
representation. With the consent of participants, the sessions
were video-recorded for post-hoc analyses. Afterwards, par-
ticipants were interviewed and asked to fill in a questionnaire.

Findings
Although we foretold that participants will succeed in their
task, the idea was to present the participants with a realistic
situation where recognizing their representations is possible
in order to study their strategies.

Each participant performed 24 runs (6 runs × 4 representa-
tions). We classified the strategies into five main strategies.



Participants’ first intuition was to move their arms. When
shown the abstract objects, they quickly realized that the rep-
resentation does not respond to arm movements and started
moving around in the room instead. They tried to match their
movement trajectory to that of the on-screen objects. Some
reported that in their effort to make their movement trajectory
stand out, they kept an eye on all on-screen moving objects
and tried to move in distinct ways.

Strategy 1 – Motion-based Kinesthetic Visual Match-
ing: Users move in front of the display to help identify
their abstract representation.

To recognize their skeleton and silhouette representations, par-
ticipants either walked only, moved their arms only, or both
moved their arms and walked around. Inline with previous
work [2, 30], it was noticed and also reported by participants
that they find the skeletons to be playful, and hence they spent
more time experimenting with different movements. Partici-
pants reported that skeletons are easier to recognize compared
to silhouettes due to their 3D nature. For example, arms can
still be seen when they are in front of the body.

Strategy 2 – Body gestures-based Kinesthetic Visual
Matching: For less abstract representations, such as skele-
tons and silhouettes, users wave their arms, walk around,
or walk around while moving their arms.

Participants were able to match their appearance to silhouettes
after seeing their silhouette at least once. Before its first ap-
pearance, kinesthetic-visual matching was used (Strategies 1
and 2). When asked, participants explained that once they saw
how their own silhouette looks like, they were easily able to
spot it whenever they saw it again. Mirrors were spotted as
soon as they were revealed to the participants; most of the
times there was no need to move.

Strategy 3 – Appearance Matching: Appearance match-
ing is always used for mirrors, and also for silhouettes after
the users had seen their silhouette at least one time before.

In addition to movements, participants noted that their position
relative to the display and to the other participants was influ-
ential. For example, P1 noted that knowing she was always
depicted by the leftmost representation made it easier for her
to find herself the following times.

Strategy 4 – Relative Position Mapping: Users utilize
their position relative to the display and to other users to
identify their representation.

The interviews also revealed that the participants observed the
movements of others around them and tried to stand out by
performing unique movements. For example, one participant
quickly stepped forward and backward when she noticed the
others were moving slowly towards the sides. Moreover, it
was noticed that participants who were faster in determining

their representations behaved differently after completing their
task (e.g. stopped moving, looked towards the experimenter).
This was noticeable by other participants and, in turn, helped
them exclude the representations that are behaving differently.

Strategy 5 – Tracking Surrounding Users: Users utilize
the behavior of real surrounding users to identify their
representations.

While strategies 1, 2, and 3 were partially discussed in prior
work [1, 2, 3, 30], this study is the first to consider self-
recognition in case of multiple users. Consequently, strategies
4 and 5 are novel and could not be extracted from prior work.

MAIN STUDY: EFFECTS OF USER REPRESENTATION
The goal of this study was to quantify the independent impact
of the different representations on user performance when
trying to identify oneself in front of public displays. We
studied the time taken by participants to recognize themselves,
in addition to the accuracy of the decision, i.e., whether or not
the identified representation is indeed the correct one.

Implications of Prestudy on the Main Study Design
The prestudy showed that there are several factors that could
have an influence on the identification of representations. To
study the impact of these factors, and to distinguish the impact
of the representation type from the impact of the combination
of a particular representation and one of these factors (e.g.,
distinguishing the impact of skeleton representations from the
impact of the skeleton representation’s position relative to the
user), it was necessary to make the following design decisions.

Movement Types
The prestudy showed that user movements are heavily in-
fluenced by the type of shown representation. In order to
distinguish the impact of the representation from that of the
representation-movement combination, it was necessary to
control this variable. Hence, based on strategies 1, 2, and 3,
we introduced 4 conditions to the main study:

NoMove No movement

Arms Moving arms while stationary

Walk Walking around

Walk+Arms Walking around and moving the arms

Effect of User Position
The position of the prestudy participants influenced their abil-
ity to identify themselves (Strategy 4). Hence, instead of al-
ways showing the representation in a mirrored-position, we in-
troduced a variable with two conditions: (1) mirrored-position
representation, and (2) randomly-positioned representation
(Figure 3). This was done to separate the impact of the posi-
tion from that of the representation. In the mirrored-position
condition, the correct representation is always positioned di-
rectly in front of the user, while in the randomly-positioned
one, the representation’s starting position is randomly chosen.
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Figure 3. The prestudy showed that displaying the representation in a
mirrored-position could influence the user’s decision (Strategy 4). Hence
we introduced two conditions to the main study in which the represen-
tation’s starting position is either mirrored or randomly determined at
the beginning of the session.

Effect of Surrounding Users
The prestudy participants exploited the behavior (Strategy 5)
and the position (Strategy 4) of those around them to iden-
tify their own representations. While this was the case in
our prestudy setup, this strategy is not always feasible in real
public display deployments. For example, users whose repre-
sentations are simultaneously shown might not see each other
due to physical occlusions (e.g., other users or walls), or might
not even share the same physical space like in [4, 9, 25]. To
control this but also maintain multiple user representations,
we showed fake representations on the screen (see Figure 4).

Main Study Design
The study followed a within subjects design. In addition to
the previously mentioned movement types and representation
positions, an additional independent variable in the study was
the shown user representation. Based on prior work, we chose
the abstract objects, skeletons, silhouettes, and mirrors. Each
participant performed 96 rounds: 3 blocks with each block
covering all 32 conditions (4 movement types × 2 representa-
tion positions × 4 user representation types). The randomly-
positioned representation condition was always used for the
first half of each block. This was done to avoid giving the
impression that the position of the correct representation is
always mirrored. All other conditions were counter balanced
using a Latin-square.

Recording Session
As previously mentioned, we opted for using fake on-screen
representations along with the participant’s real representa-
tion due to the aforementioned issues related to the effect of
surrounding users (Strategies 4 and 5).

To generate realistic fake representations for the study, we in-
vited 15 participants to record their on-screen representations.
Out of the 15, six participants were present in front of the
Kinect at a time. Each group of six performed each movement
type for every user representation. We made 2 × two-minute
recordings for each movement type and each representation
(2 recordings × 4 representations × 4 movement types = 32
two-minute recordings). For each recording, we shuffled the
participants such that the same group of six never appeared in
more than one recording.

Figure 4. Fake on-screen representations were used along with the par-
ticipant’s real representation. This was done as the presence of multiple
real participants would have influenced their decisions due to their be-
haviors (Strategy 5) and positions relative to each other (Strategy 4).

Participants, Setup and Procedure
We invited 19 participants (8 females) aged between 18 and
36 (M = 26.5, SD = 3.8), with heights ranging from 156 cm
to 206 cm (M = 1.78, SD = 0.12). None had participated in
the prestudy nor in the recording session.

In a setup similar to that used in the prestudy, participants were
invited one at a time and were asked to stay within a marked
area to ensure they stay within the Kinect’s range.

The experimenter started by explaining the study and asking
the participant to sign a consent form. The participant was
handed an Xbox controller. We logged the timestamps at
which any controller button was pressed. This was used to cal-
culate the recognition time, which is the time in milliseconds
from the moment participants saw the representations until
the moment participants pressed a button to signal that they
recognized what is thought to be the correct representation. As
holding the controller using both hands could have an impact
on the recognition of some representations, the participant was
asked to hold it with one hand.

After finding the correct representation, the participant ver-
bally communicated the chosen representation to the experi-
menter (e.g., “It’s the third one from the right”, “that one, at
the bottom left”). The experimenter used a laser pointer to con-
firm that he understood the participant’s choice. This allowed
us to calculate the error rate, which is a binary value that
indicates whether or not the participant’s guess was correct.

We preferred not to log the end of the recognition period
manually since it is likely it will take additional time from
the moment the participant communicates that they identified
themselves until the experimenter logs the time. However
logging the beginning of the recognition period the way we
did was essential to ensure that the participant is performing
the movement by the time he/she sees the representations.

At the beginning of each of the 96 rounds, participants were
asked to close their eyes. This gave the experimenter the
chance to load one of the two recordings that cover the re-
spective condition and launch it. Participants were asked
to start performing the respective movement type with eyes-
closed, and to keep performing it until the end of the trial;
this movement type corresponded to the movement type of
the current fake representations. Once participants started, the



Significantly different Representations p <

Abst. objects (6255 ms) Skeletons (3830 ms) 0.005
Abst. objects (6255 ms) Silhouettes (2510 ms) 0.001
Abst. objects (6255 ms) Mirrors (1376 ms) 0.001

Skeletons (3830 ms) Silhouette (2510 ms) 0.001
Skeletons (3830 ms) Mirrors (1376 ms) 0.001

Silhouettes (2510 ms) Mirrors (1376 ms) 0.001

Significantly different Movements p <

NoMove (4499 ms) Walk (2874 ms) 0.001
NoMove (4499 ms) Walk+Arms (2522 ms) 0.001

Arms (3468 ms) Walk+Arms (2522 ms) 0.05
Table 1. This means that mirrors are significantly fastest to recog-
nize, followed by silhouettes, skeletons, and abstract objects respectively.
Recognition time is significantly faster in Walk+Arms than in NoMove
and Arms, and significantly faster in Walk than in NoMove.

experimenter counted from 1 to 3. Participants were previ-
ously instructed to open their eyes at the count of 3, which
the system logs as the start time. This means that by the
time participants’ eyes are open, the participants and the fake
representations would be all performing the same movement
type. This was necessary to avoid influencing participants; for
example, if the fake representations started moving before the
participant, the participant’s stationary representation would
be easily noticeable;

Finally, participants were asked to fill in a questionnaire to
collect their subjective feedback about the recognition time
associated with each representation.

Limitations
As users walk around (Arms and Walk+Arms) silhouette repre-
sentations might hide each other. This could speed up or slow
down recognition times depending on the position of the user.
We controlled this effect as much as possible in the main study
by defining a starting position. However this effect is expected
and could probably have an impact in field deployments.

Behavior in real deployments is expected to be more simi-
lar to the prestudy than to the main study, in the main study
we aimed to understand the independent effect of each move-
ment/representation type. Thus, it was essential to exclude
external influences. For example, had the participants been
allowed to stand still while fake skeletons are moving, our re-
sults could have mislead the reader into thinking that skeletons
are as fast to recognize as mirrors.

A limitation in the design is that we use the same room for
all conditions, hence we do not cover different environments
(e.g., narrow vs. wide rooms). Nevertheless, the study covers
the movement types expected in different environments (e.g.,
NoMove in narrow areas).

MAIN STUDY RESULTS

Outliers
Previous work showed that users require a minimum of 600
ms for the mental act of routine thinking, and 100 ms for the
press/release of a button [15]. Hence we decided to exclude
all recognition times that are less than 700 ms (53 out of 1824

Figure 5. The graph shows the recognition time. Pairwise comparisons
are shown in Table 2.

time measurements). We expect that in these cases partici-
pants either pressed too early by mistake or because they were
overly confident that they will recognize their (e.g., mirror)
representation immediately.

From inspecting box plots that we drew for each condition, we
further excluded the following recognition times which were
beyond the quartile by one and a half interquartile range per
condition – and not across all of them:

• 26 recognition times for abstract objects (≥ 21249 ms).

• 43 recognition times for skeletons (≥ 9390 ms).

• 33 recognition times for silhouettes (≥ 5651 ms).

• 30 recognition times for mirrors (≥ 2505 ms).

The outliers were caused either by participants forgetting to
press the button, or due to spending too much time trying to
find their representation in the no movement condition. This
means that in total we excluded 185 out of 1824 recognition
time measurements.

It was necessary to clear out outliers that could bias the results.
Not excluding the outliers could wrongfully imply that the
benefits of a representation type outweigh its drawbacks, or un-
derrate the average performance of a representation although
it performed well in certain conditions.

Recognition Time
For statistical analysis of the recognition time measurements, a
linear mixed model was employed due to its robustness against
excluded outliers. We then performed post-hoc pairwise com-
parisons with Bonferroni corrections.

Significant main effects were found for the representation type
F3,100.1 = 47.3, p < 0.001 and the movement type F3,61.4 =
10.9, p < 0.001 on the recognition time. There was an in-
teraction between the representation type and the movement
type F9,96.1 = 6.28, p < 0.001. This means that the type of
shown representation, the type of the user’s movement, and
the combination of both all influence how fast users detect
own representations.



Significantly different Representations
NoMove: Standing still p <

Abst. objects (7950 ms) Silhouettes (3063 ms) 0.005
Abst. objects (7950 ms) Mirrors (1345 ms) 0.05

Silhouettes (3063 ms) Mirrors (1345 ms) 0.01
Skeletons (7803 ms) Mirrors (1345 ms) 0.001
Skeletons (7803 ms) Silhouettes (3063 ms) 0.005

Arms: Moving arms while stationary p <

Abst. objects (11562 ms) Skeletons (2308 ms) 0.005
Abst. objects (11562 ms) Silhouettes (1930 ms) 0.005
Abst. objects (11562 ms) Mirrors (1025 ms) 0.001

Skeletons (2308 ms) Mirrors (1025 ms) 0.005
Silhouettes (1930 ms) Mirrors (1025 ms) 0.05

Walk: Walking without moving arms p <

Abst. objects (3465 ms) Mirrors (1716 ms) 0.05
Skeletons (3336 ms) Mirrors (1716 ms) 0.001

Silhouettes (3025 ms) Mirrors (1716 ms) 0.01

Walk+Arms: Walking and moving arms p <

Abst. objects (4477 ms) Skeleton (2208 ms) 0.005
Abst. objects (4477 ms) Silhouettes (2008 ms) 0.005
Abst. objects (4477 ms) Mirrors (1424 ms) 0.001

Skeletons (2208 ms) Mirrors (1424 ms) 0.05
Table 2. When analyzing each movement type individually, the repre-
sentation always has a significant effect on recognition time.

No effect was found for the representation position (p > 0.05)
on recognition time. We also did not find any significant
effect of the number of trials done so far for each condi-
tion (p> 0.05), which means that we did not find any evidence
of learning effects.

Post-hoc analysis showed that all representation type pairs are
significantly different, while three movement type pairs are sig-
nificantly different (see Table 1). This means that mirror rep-
resentations are fastest to recognize, followed by silhouettes,
skeletons, and abstract objects respectively. Recognition time
is significantly faster when walking while moving the arms
(Walk+Arms) compared to both: standing still (NoMove), and
standing still while moving the arms (Arms). While walking
around without moving the arms (Walk) results in significantly
faster recognition time compared to standing still (NoMove).
The pair of conditions in which the user walks (Walk and
Walk+Arms), as well as the pair in which the user is stationary
(NoMove and Arms) are not significantly different.

In addition to the overall comparisons of movement types and
representation types, we investigated in-depth the effect of the
representation type on recognition time with respect to each
individual movement type.

After analyzing the effect of the representation type on recog-
nition time for each movement type, we found that it had a
significant main effect in NoMove F3,40.9 = 22.15, p < 0.001,
Arms F3,30.44 = 18.65, p < 0.001, Walk F3,59.57 = 11.15,
p < 0.001 and Walk+Arms F3,48.42 = 9.68, p < 0.001. Post-
hoc analysis showed significant differences between multiple
pairs (see Table 2).

The results show that:

• NoMove: abstract objects and skeletons are recognizable
in case of mirrored-position, but they are the slowest to
recognize. While mirrors are the fastest to recognize.

• Arms: abstract objects are the slowest to recognize, and
mirrors are fastest to recognize. However skeletons and
silhouette perform only slightly different (see Figure 5),
which explains the lack of significant differences between
them. An interesting result is that when abstract objects
were shown, participants performed slower in this condition
compared to the NoMove condition. This can be explained
by previous work, which showed that arm movements in-
duce a higher cognitive load [27], which in turn could have
slowed participants. We also expect that participants were
trying to spot any subtle changes (which never happened),
resulting in them waiting longer before making a decision.
Nevertheless we cannot generalize this assumption due to
the lack of significant differences (p > 0.05).

• Walk: the performance of abstract objects, skeletons, and
silhouette is almost similar in case of the Walk condition,
but mirrors perform better than all of them.

• Walk+Arms: arm movements during the Walk+Arms con-
dition seem to have a negative impact on performance in
the case of abstract objects (compared to Walk). Similar
to NoMove vs Arms, we believe that the arm movements
distracted the participants when recognizing abstract ob-
jects. It is worth noting that this is the only movement type
in which mirrors do not perform significantly better than
silhouettes.

Participants’ feedback (5-point Likert scale; 1=very fast;
5=very slow) collected through the questionnaire support the
quantitative results. There is a statistically significant dif-
ference in perceived recognition time depending on which
representation type was shown, χ2(3) = 52.04, p < 0.001.
Post-hoc analyses using Wilcoxon signed-rank tests with Bon-
ferroni corrections showed that all pairs are significantly dif-
ferent (p < 0.005). Participants indicated that recognition
time was fastest in the case of mirrors (M = 1, SD = 0). Sec-
ond is silhouettes (M = 1.84, SD = 0.9), followed by skele-
tons (M = 2.47, SD = 0.7), then abstract objects (M = 4.21,
SD = 0.85).

Error Rate
We used repeated measures ANOVA (Greenhouse-Geisser
corrected) to analyze the data. Significant main effects were
found for representation type on error rate F1.3,23.4 = 40.93,
p < 0.001. Significant main effects were also found for move-
ment type on error rate F1.8,32.2 = 54.78, p < 0.001. Table 3
summarizes the results of post-hoc analyses using Bonferroni
correction, which revealed significant differences between
multiple pairs.

The results show that in the case of abstract objects, users
make significantly more errors compared to the other repre-
sentations. On the other hand, there were no errors at all in the
case of mirror representations. There are significantly more



Significantly different Representations p <

Abst. objects (31.8%) Skeletons (7.68%) 0.001
Abst. objects (31.8%) Silhouettes (3.73%) 0.001
Abst. objects (31.8%) Mirrors (0%) 0.001

Skeletons (7.68%) Mirrors (0%) 0.005
Silhouettes (3.73%) Mirrors (0%) 0.01

Significantly different Movements p <

NoMove (25%) Arms (13.82%) 0.001
NoMove (25%) Walk (2.19%) 0.001
NoMove (25%) Walk+Arms (1.54%) 0.001
Arms (13.82%) Walk (2.19%) 0.001
Arms (13.82%) Walk+Arms (1.54%) 0.001

Table 3. Numbers between brackets denote the percentage of entries
where participants picked wrong representation. Mirrors are the least
error prone, while abstract objects are the most error prone. Error rate
is significantly higher in NoMove than in Arms, Walk, and Walk+Arms,
and significantly higher in Arms than in Walk and Walk+Arms.

errors when performing NoMove compared to other move-
ment types, followed by Arms. Figure 6 shows that most of
the errors occurred in the case of showing abstract objects
and performing NoMove. Many errors also occurred when
showing skeletons and performing NoMove.

No significant main effects were found for the representation
position on the error rate (p > 0.05).

Qualitative Feedback
Participants’ feedback focused on the comparison of represen-
tations. The vast majority agreed that mirrors are the fastest
to recognize. Many reported making use of their clothes (P10,
P11, P12, P16) and items such as handbags (P18). For exam-
ple, P11 noticed that she was the only one wearing blue clothes.
P13 on the other hand reported he was sometimes confused in
the mirrors conditions because “colors of the clothes are often
very similar”. Some found silhouettes to be the second best
due to the easiness of recognizing “own body’s characteristics
(big ears in my case)” (P3) and the body height (P11). Simi-
lar to the feedback from the prestudy, P18 mentioned that he
found it easier to recognize his silhouette after “one or two
encounters”. Skeletons also received positive feedback, noting
that although it “has less distinguishing features compared to
silhouettes” (P4), “at least the movements are the same” (P6)
indicating that movements are perceived to be equally helpful
with silhouettes and skeletons. P7 ranked it third because
“even with little movements its still recognizable”. P3 noted
that the body position helped decide which skeleton is hers.
P13 reported that he sometimes had to guess in the case of
abstract objects. All participants found abstract objects to be
the most difficult to recognize. P6 noted that it might get even
more chaotic with larger crowds.

Apart from recognition, participants also pointed out social
and privacy concerns. P13 preferred silhouettes over mirrors
because “a silhouette is less embarrassing in public”. P15 ar-
gued that skeletons achieve a balance between recognizability
and anonymization, noting that he found it “scary to see [his]
reflection embedded like that”.

Figure 6. The graph shows the error rate. In the case of abstract objects,
users make significantly more errors compared to the other representa-
tions. The graph shows that most errors occur in the case of NoMove.
Abstract objects are also hard to recognize in Arms. None of the partici-
pants performed any errors when selecting from mirror representations.

DISCUSSION AND RECOMMENDATIONS
In this work we focus on the users ability to recognize their
representation, which is a problem at the outset of interaction
in a multiuser scenario. The significance of this problem was
highlighted in previous research [26, 37].

Our findings confirm several aspects of previous work in the
multiuser scenario. For example, in-line with findings by
Müller et al. [26], our participants were skeptical about the
use of mirrors in public due to privacy concerns.

Privacy Concerns and Potential Implications
Participants who raised privacy concerns were concerned
about anonymity; P15 expressed that he was uncomfortable
with mirrors, citing how they fail at preserving anonymity.
Participants reported that they assume everything is being
recorded if they appear on a camera in public space. Since
they do not know what the footage is used for, they are often
concerned about its misuse. For example, users might think
the space owner is sharing their behavioral patterns with third
parties without their consent (e.g., to show targeted ads).

A direction for future work is to investigate how these concerns
could be influenced by cultural aspects. For example, in some
countries CCTV cameras are common, while in others they
are considered a breach of privacy. A cross-cultural study
could inform the choice of representation depending on the
culture the display is deployed in. The user’s background can
be estimated based on the gestures, language or eye behavior.
Silhouettes can then be used instead in such countries.

Social Embarrassment
Some participants expressed concerns about social embarrass-
ment when using mirrors. Observations and feedback from the
prestudy confirm that participants find skeletons playful [2]
and they extend interaction times [30] beyond the actual task,
while silhouettes encouraged serious attention to the task [36].

Recognition Performance
In addition to confirming multiple findings from previous
work, results of our main study contribute to better and deeper
understanding of how users behave to identify themselves, and



how their behavior impacts recognition performance. Namely,
the main study shows that strategies 1, 2, and 3 have an im-
pact on recognition performance. Although strategy 3 also
indicated that the perceived recognition time of silhouette rep-
resentations becomes faster as users become familiar with it,
we could not find any significant learning effects in the main
study. Furthermore, we could not find a significant effect
of the representation position condition that was inspired by
strategy 4 on recognition time and accuracy.

Abstract objects result in significantly slower recognition
times compared to other representations in movements that
involve moving the arms (Arms and Walk+Arms). Previous
work showed that arm movements induce a higher cognitive
load [27], which in turn could have slowed participants. We
also expect that moving arms in front of a representation that
does not respond to arm movements distracts the user and
results in longer recognition times (see Figure 5).

Skeletons perform better than abstract objects and silhouettes
perform only slightly better than skeletons in all movement
types except NoMove (no movement), where it performed sig-
nificantly better. Although participants of the prestudy noticed
that skeletons reflect the 3D position of the arm (e.g., arms
are visible even when in front of the user), and hence reported
them to be easier to recognize than silhouettes. The main study
did not show any significant differences between silhouettes
and skeletons in cases where participants moved their arms
(Arms and Walk+Arms). This means that in scenarios where
these movement types are expected, a designer’s choice of
silhouettes or skeletons should not be based on recognition
time and accuracy, but rather on aspects such as interaction
time [30] and attention to the task [36].

Our findings indicate that mirrors outperform other representa-
tion types in terms of recognition time and accuracy in every
type of movement. This means they are quickly noticeable
and thus explains why previous work found that they are sig-
nificantly better than other representations in communicating
interaction to the public [26]. However feedback from our
participants shows that they (1) are sometimes socially embar-
rassing in public, and (2) raise privacy concerns. Additionally,
user representations were manipulated in previous work to re-
flect corporate logo colors or carry content such as buttons and
interactive objects [8, 36]. While other user representations
are still expected to serve their function after integrating such
design changes, mirrors on the other hand would lose core
features that make them distinguishable, making them inflex-
ible for these use cases. For example, a user who relies on
his shirt’s color to identify his mirror representation would be
confused if the representation’s color was altered, and added
content can obscure distinctive parts of the user’s appearance.

Recommendation 1: Unless their use contradicts with the
display’s use case, use mirror representations.

The Interplay between Movements and Representations
Although the differences between the representations are sig-
nificant (see Table 1), more interesting and context-dependent

findings were unveiled when analyzing the effect of the repre-
sentations separately for each movement type. This allowed
us to extend the recommendations to consider not only recog-
nition time and accuracy, but other aspects such as privacy
concerns, social embarrassment, playfulness and interaction
times. It is important to study and understand the physical
characteristics of the public display’s deployment space, and
identify how they affect passersby behavior [20]. Hence, the
following recommendations inform practitioners on how to
design user representations, given particular setups that allow
for a specific type of movement.

NoMove: Standing Still
Deployments in which passersby are expected to perceive the
display only when they are stationary (e.g., in an elevator),
abstract objects and skeletons should be avoided as they result
in significantly longer recognition times and more errors. Mir-
rors perform significantly better than all other representations
in NoMove. Silhouettes perform significantly better than ab-
stract objects and skeletons and its performance is acceptable
(see Figures 5 and 6).

Recommendation 2: If users are expected to perceive the
display while stationary, silhouettes are acceptable and
come in second place after mirrors. Abstract objects and
skeletons should be avoided.

Arms: Moving Arms While Stationary
If users are able to move their arms but not walk around (e.g.,
while standing in a queue), skeletons, silhouettes and mirrors
reach their peak performance (see Figure 5).

Recommendation 3: Multiuser systems should encourage
arm movements (e.g., interaction via mid-air gestures) as
they positively influence recognition time and accuracy.

Abstract objects also perform significantly worse than other
representations in the Arms condition. While mirrors perform
significantly better than both of them, the efficiency of skele-
tons and silhouettes is almost similar in that condition. Hence
a designer’s choice of silhouettes or skeletons when the Arms
condition is expected should not rely on these factors, since
they perform almost equally efficient in terms of recognition
time and accuracy.

Recommendation 4: In contexts where users are expected
to move their arms while stationary, use skeletons for play-
ful and longer interaction times, or silhouettes for serious
interactions (e.g., task-oriented interactions [23]). The
differences between them are negligible in terms of recog-
nition time and accuracy but both come next after mirrors.
Do not use abstract objects when users are expected to
move their arms.

Walk: Walking Without Moving Arms
In the case of deployments where users can walk but cannot
move their arms (e.g., both hands are occupied by holding a



cup of coffee and a bag, or a suitcase and a flight ticket), dif-
ferences in performance between the different representations
are almost negligible. Although mirrors are significantly faster
to recognize in comparison to abstract objects, skeletons and
silhouettes, the three representations perform almost equally
good. This means that if one of the latter three is to be used,
design decisions should base their choice of representation on
factors other than recognition accuracy and time.

Recommendation 5: Although mirrors outperform them,
the differences between abstract objects, skeletons, and
silhouettes in recognition time and accuracy are negligible
when walking without moving the arms. Use abstract ob-
jects when a top-view of passersby is desired, skeletons
for playful and longer interaction times, and silhouettes for
serious and task-oriented interactions.

Walk+Arms: Walking and moving arms
By walking and moving the arms (e.g., unrestricted use in
museums or while shopping) abstract objects perform the
worst among all representations. As previously mentioned, it
is expected that moving the arms distracts participants, and
could induce a cognitive load [27].

Recommendation 6: If participants are walking and mov-
ing their arms, do not use abstract objects, but rather mir-
rors, silhouettes or skeletons.

FUTURE WORK
Previous work as well as our results show that skeletons result
in longer interaction times due to their playfulness. Mean-
while, our results show that mirrors are always faster to recog-
nize compared to skeletons. Hence, a promising setup would
be to attract the user’s attention first using mirrors to increase
the chances the passersby recognize them, then switch to skele-
tons as soon as the participant starts interaction, to increase
interaction times. Previous work has shown that switching
from a user representation to another does not necessarily con-
fuse the user [35]. Further experimentation in this direction
could result in an optimal sequence that utilizes a different
representation at each interaction stage [21].

Another interesting follow-up work would be to experiment
with simultaneously showing different representations. Sys-
tems can decide which representation to use for each user
based on the user’s movement type; standing users (NoMove)
would see their mirror or silhouette reflection, whilst walking
ones (Walk and Walk+Arms) would see a skeleton.

Gaze-enabled public displays are becoming more common as
gaze shows promise in addressing many challenges of public
displays (see [12] for an overview). One direction for future
work is to show the representation right where the user is look-
ing. Still, users would have to distinguish their representations
in case several users are looking at the same area, but the
probability of this happening decreases in larger displays.

Finally, it would be interesting to conduct follow up studies
with different groups of participants, and with different space
constraints.

CONCLUSION
In this work, we studied how well passersby can distinguish
their own representations from those of others on a large pub-
lic display. We identified 5 main strategies that users employ
to identify themselves in a pre-study. In a follow-up study we
quantified the time and accuracy of recognizing one’s own user
representation. Furthermore we introduced 6 recommenda-
tions to help designers choose the suitable user representation
depending on the context of their deployments.
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