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ABSTRACT
While first-generation mobile gaze interfaces required special-
purpose hardware, recent advances in computational gaze
estimation and the availability of sensor-rich and powerful
devices is finally fulfilling the promise of pervasive eye track-
ing and eye-based interaction on off-the-shelf mobile devices.
This work provides the first holistic view on the past, present,
and future of eye tracking on handheld mobile devices. To
this end, we discuss how research developed from building
hardware prototypes, to accurate gaze estimation on unmod-
ified smartphones and tablets. We then discuss implications
by laying out 1) novel opportunities, including pervasive ad-
vertising and conducting in-the-wild eye tracking studies on
handhelds, and 2) new challenges that require further research,
such as visibility of the user’s eyes, lighting conditions, and
privacy implications. We discuss how these developments
shape MobileHCI research in the future, possibly the next 20
years.
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INTRODUCTION
Eye tracking and gaze-based interaction on handheld mobile
devices have been studied for more than 15 years in Mo-
bile HCI. Recently, advances in visual computing, processing
power of said devices, and their front-facing cameras, pave the
way for eye tracking to deliver its promises on off-the-shelf
handheld mobile devices. In particular, the introduction of
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high-quality or even depth cameras on commodity devices,
such as Google’s Project Tango and Apple’s iPhone X, will
be a turning point, and even more significant than how head-
mounted eye tracking is currently transforming mobile gaze
recordings [16]. These advances have the potential to take eye
tracking on mobile devices from research labs to consumer
mobile devices and, thus, to be used by billions of users on a
daily basis. This will make pervasive eye tracking on hand-
helds an “app-installation away”, which can in turn have a
strong impact on Mobile HCI research.

Despite the mentioned advances and the significant potential
this creates both from a research as well as from a commercial
perspective, a holistic view of how research on gaze-enabled
handheld mobile devices developed in the past decades is
missing as of today. With this paper we close this gap.

We identify three major applications areas of eye tracking on
handheld mobile devices, namely 1) gaze behavior analysis, 2)
implicit gaze interaction, and 3) explicit gaze interaction. We
then summarize existing research in these different areas over
the last 15 years, and describe latest technical advances that,
for the first time, enable full on-device processing. Finally,
we make an attempt to look into the future of eye tracking on
handheld mobile devices by discussing both the challenges and
novel opportunities that these technical advances will bring.

In our review, we cluster the existing work into the “past”,
where hardware modifications were necessary for gaze-
enabled handheld mobile devices, followed by the “present”,
where eye tracking and eye-based interaction is performed
on off-the-shelf devices without any hardware modifications.
We studied the lessons learned from each phase, and based
on that we discuss the “future” of gaze-enabled handheld mo-
bile devices. By doing so, we uncover novel opportunities:
For example, the recent developments allow for conducting
field studies of gaze behavior in the wild when, for example,
using location-based services, or when perceiving websites
and mobile apps while commuting, walking, etc. At the same
time, these developments present novel challenges that are
beyond hardware limitations of the past. This opens up new
frontiers for research: How can mobile devices adapt to dif-
ferent levels of face and eyes visibility which are influenced
by holding postures and user’s clothing? How can accuracy of
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gaze estimation be maintained with the naturally shaking and
mobile environment of handheld devices? How can eye track-
ing adapt to lighting conditions that vary widely in mobile
contexts? What are the implications of pervasive eye tracking
on privacy? We discuss these questions among others and
propose recommendations and directions for future work.

Contribution Statement
This work makes the following contributions: (1) we present
the first holistic view of the past, present and future of eye
tracking on handheld mobile devices, and the learned lessons
from the former two, (2) we summarize and cluster existing
applications of gaze into gaze behavior analysis, implicit and
explicit interaction, and (3) we discuss challenges and novel
opportunities to guide future MobileHCI research in this area.

GAZE-ENABLED HANDHELD MOBILE DEVICES
Handheld mobile devices can leverage the user’s gaze for
a multitude of HCI applications. This is demonstrated by
the continuously increasing contributions in this area by the
research community. As shown in Figure 1, out of the 62
papers related to eye tracking on handheld mobile devices, 44
were published in the last 5 years.

Eye tracking has a lot of potential in understanding users’
behavior on handheld mobile devices. Furthermore, it is a
capable tool for usability analysis [45]. The unique context
of handheld devices has resulted in eye tracking uncovering
behaviors that are different compared to those associated with
similar desktop systems [59, 86].

Apart from passive monitoring, employing eye tracking for
interaction on handheld mobile devices can bring in many tan-
gible benefits to the user. Being handheld, at least one of the
user’s hands is partially occupied throughout most interactions,
thus limiting touch-based input. Furthermore, there are activ-
ities in which the user might not be able to operate a mobile
device due to their hands being occupied, for example, when
cooking or driving. Touch-based input is also limited in terms
of reach – UI elements at the top of the interface are some-
times challenging to reach [11]. While there are voice-control
alternatives for operating smartphones and tablets, they are
not suited for situations when it is crowded or noisy. These are
among the reasons why gaze has been deemed to be an attrac-
tive modality for interacting with handheld mobile devices. In
addition to allowing hands-free interaction, there are particular
use cases in which gaze outperforms other modalities, such as
authentication [55, 74] and supporting disabled users [119].

Utility of Eye Tracking on Handhelds
While there has been prior classifications of eye tracking tech-
niques and applications, such as Duchowski’s survey of eye
tracking applications [27], and the continuum of eye tracking
applications by Majaranta and Bulling [77], our survey pro-
vides the first review of uses of eye tracking and eye-based
interaction on handheld mobile devices. We discuss in-depth
the application areas, as well as the chronological develop-
ment of the adopted techniques. Prior research for mobile
gaze interfaces broadly falls into three application domains:
passive analysis of gaze behavior, implicit gaze interaction,
and explicit gaze interaction.

Figure 1. Research on eye tracking on handheld mobile devices started
as early as 2002. Until 2010, researchers used external hardware (e.g.,
eye trackers, cameras, and processors) to process eye tracking data in
real time. Advancements in hardware and gaze estimation methods in-
spired researchers switch attention fully on-device eye tracking. This is
evidenced by an increasing number of contributions involving unmodi-
fied handhelds. The figure reflects the papers we reviewed - we reviewed
all papers that involve eye tracking on mobile devices.

Gaze behavior analysis refers to the silent tracking of the
user’s eyes for later analysis. While eye tracking has been
around in human-desktop interaction since the early 1980s
[10], the unique context of handheld devices results in eye
tracking uncovering behaviors that are different compared to
those associated with desktop systems.

Implicit gaze interaction refers to interactive systems in
which the system reacts to the user’s natural eye behavior,
without requiring the user to deliberately perform any explicit
eye movements. This type of gaze-based interaction has been
previously referred to as “passive eye interaction” [100], or
attentive user interfaces [15, 110].

Explicit gaze-based interaction refers to the deliberate and
conscious use of eye gaze to provide input. It can be further
classified to (1) Gaze-only interaction, and (2) Gaze-supported
interaction, i.e., multimodal interaction.

These classifications were developed after a detailed review of
the 62 papers published about eye tracking published between
2002 and 2018. We first labeled each paper with a set of
themes. Common themes were clustered to eventually develop
the three aforementioned classifications.

History of Eye Tracking on Handhelds
We distinguish three phases in the history of eye tracking
on handheld mobile devices. Like many research areas
within HCI, researchers started investigating the opportunities
brought forth by eye tracking on mobile devices as a novel
technology in the early 2000s. Due to the limitations of mobile
devices at that time, researchers used external cameras and
processors, assuming that consumer devices will eventually
catch up with research. We refer to this phase as the “past”,
and denote it by ��� in the following sections, to help readers
navigate the paper. Commodity mobile devices then gradually
started to feature better front-facing cameras and processors,
driving the research community to explore eye-based interac-
tion and eye tracking on unmodified handhelds. As shown in
Figure 1, the last 3 years witnessed an ever-increasing number
of contributions targeted to enabling seamless eye tracking



and gaze interaction on unmodified handheld mobile devices.
We refer to this phase as the “present”, and denote it by ���.
Finally, the “future” phase is one where eye tracking is finally
used daily in different contexts and scenarios rather than in
the lab. We denote this phase by ���.

EYE TRACKING ON MODIFIED HANDHELDS ���
In the early 2000s, phone manufacturers started introducing
front-facing cameras in handheld mobile devices. However,
since these devices were mainly intended for video conferenc-
ing, their performance was often inadequate for real-time eye
tracking. Specifically, these devices were limited in processing
power, battery life, and resolution of the front-facing camera.
The first works to explore eye tracking on handheld mobile
devices overcame the hardware limitations in different ways.
Some augmented the user by having participants wear a head-
mounted eye tracker [35, 75, 87], while others augmented the
device either by building their own hardware [24, 111, 85] or
by using remote commercial eye trackers [25, 86].

Gaze Behavior Analysis ���
Previous work conducted gaze behavior analyses while read-
ing [9, 24, 67, 83, 86], or while consuming user interfaces for
usability analyses [59, 60, 61, 79, 80] on mobile interfaces.
Most of these works relied on one of two approaches: using
real mobile devices and simulating mobile devices.

Using Real Mobile Phones
In the first category, a mobile device was held by the partici-
pants while wearing a mobile eye tracker [18, 75, 86] or the
mobile device was fixed on a holder while using a remote eye
tracker or camera [9, 59]. For example, to track eye behavior
during interaction with a mobile phone, Öquist and Lundin
used a goggle-based system that consists of cameras and IR
LEDs to track the user’s eyes while using a cell phone [86].
They found that users prefer horizontal pagination over vertical
scrolling. Biedert et al. used an eye tracker intended for desk-
top settings to track eyes of mobile device users while reading
text on smartphones [9]. The mobile device was mounted on
a holder, while the tracker was placed upside down behind
it. This enabled them to identify recurrent behaviors; namely,
they found that some users prefer reading one page at a time
before scrolling to replace the entire page with new content.
Others read line by line and scrolled almost constantly to
keep information flowing to a preferred area. The majority
of their participants preferred blockwise scrolling in which
they change parts of the screen every now and then. Kunze
et al. described their vision to quantify reading activities by
tracking eyes on tablets and phones [67].

Eye tracking is a capable tool for usability analysis [45]. This
motivated many researchers to explore the usability of UIs on
handhelds. Kim et al. studied different aspects of UI design
when displaying search results on mobile devices [58, 60].
They used a commercial remote eye tracker and a smartphone
fixed on a holder. They found that gaze behavior is different
when viewing search results on a large screen compared to
a smaller mobile screen; on smaller screens, users scan the
results narrowly with fewer skips and less frequent changes in
scan direction, and tend to read from top to bottom. In another

study, they made a similar observation to that by Öquist and
Lundin [86]; they found that users prefer horizontal pagination
over vertical scrolling when browsing search results on mobile
devices, most likely due to its resemblance of flipping book
pages [59]. In follow up work, they found that users scan al-
most a similar number of links when search result snippets are
longer, making the search task longer; hence, unlike desktop
settings, shorter search result snippets are more suitable for
mobile settings [61].

Simulating Mobile Devices
In the second category, gaze behavior on mobile devices was
studied without using mobile devices at all. Instead, simula-
tors that run on desktop computers were used. For example,
Cuadrat Seix et al. studied gaze behavior when using an An-
droid emulator that ran on a desktop computer, to which an eye
tracker was connected [22]. The size of the emulator’s screen
was adapted to match that of a smartphone. A similar approach
was adopted in multiple studies [20, 58, 79, 80, 95]. Several
works explored cross-platform usability [23, 94], where us-
ability across several platforms, including handheld mobile
devices, was evaluated and compared [79, 80]. For example,
Majrashi et al. identified eye movement patterns associated
with cross-platform usability issues, i.e., usability problems
related to switching from an interface to another [80].

Implicit Gaze Interaction ���
As early as 2005, Dickie et al. introduced eyeLook, a sys-
tem to detect eye contact with a mobile device [24]. They
presented two applications of eyeLook. The first is seeTV,
where a mobile device that plays a video automatically pauses
content when the user is not looking. The second is seeTXT,
which employs Rapid Serial Visual Presentation (RSVP) by
showing and advancing text only when the user is looking at
the mobile device’s screen. They augmented a mobile phone
with wireless eye contact sensors to detect when the user looks
at the display [24]; a proxy server coordinated between the
sensor data and the mobile apps wirelessly via bluetooth or
GPRS. GeoGazemarks [35] presented users with a history of
their visual attention on maps as visual clues to facilitate orien-
tation. Showing the Gazemarks significantly increased the ef-
ficiency and effectiveness during map search tasks, compared
to standard panning and zooming. The authors employed a
head-mounted eye tracker to create GazeMarks when view-
ing a map on a mobile device [35]. Paletta et al. presented a
toolkit to assist developers in eye tracking on handheld mobile
devices when the user is wearing an SMI eye tracker [87, 88].

Explicit Gaze Interaction ���
Explicit gaze-based interaction on handheld mobile devices
can be classified to (1) gaze-only interaction, and (2) gaze-
supported (multimodal) interaction.

Gaze-only Interaction
Work on gaze interaction with handheld mobile devices
adopted a number of techniques for gaze-only interaction. For
example, researchers used commercial eye trackers to compare
dwell time and gaze gestures on mobile devices; they found
that gestures are faster, less error-prone and better perceived
by users [25, 28, 97]. To perform this comparison, Drewes
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Figure 2. Eye Tracking and Eye-based Interaction on handheld mobile devices required external hardware in the past. Recent advancements in
processing power of off-the-shelf devices, and their front-facing cameras made eye tracking and eye-based interaction feasible on unmodified handhelds.
At this stage, the next step is pervasive eye tracking on handheld mobile devices in the wild. Note that the purpose of this figure is to visualize the
developments and what is feasible with each period’s technologies. Yet, there are many present-day works that still augment handhelds with additional
hardware for eye tracking.

et al. [25] attached a mobile phone to a screen under which
an eye tracker was stationed and users had to use a chin-rest
(see Figure 2), while Dybdal et al. attached a breadboard with
six infrared LEDs above a mobile phone, and placed a we-
bcam close to the location of the front-facing camera [28].
The camera was connected to a separate computer, and gaze
coordinates were sent back to the phone via WiFi. Rozado et
al. also experimented with gaze gestures on mobile devices;
they modified a smartphone by attaching a camera and IR
LEDs to its bottom [98]. More specifically, they attached a
webcam to the bottom of a smartphone, and a set of IR LEDs
to the bottom right to detect gaze gestures [98]. Previous work
showed that vibrotactile feedback significantly improves the
use of gaze gestures in terms of efficiency and subjective ex-
perience, mainly because it helps users confirm if input was
recognized, and cope with errors [49, 96]. To study that, Kan-
gas et al. built a contact list app that users can navigate via
gaze gestures, and detected the gestures using a commercial
desktop eye tracker [49].

While the aforementioned works used video-based eye track-
ing [77], Valeriani and Matran-Fernandez detected EOG sig-
nals by attaching electrodes on the user’s face, enabling them
to leverage eye winks for interaction [109]. The electrodes
were connected to an OpenBCI board which communicated
with a laptop via Bluetooth, which in turn performed the pro-
cessing and forwarded commands to the smartphone via WiFi.

Gaze-supported Interaction
A second line of work focused on gaze-supported interaction
on mobile devices, where gaze was used alongside another
modalities. Nagamatsu et al. introduced MobiGaze, where

users gaze at areas that are unreachable by the index finger
on a mobile device screen, then tap anywhere on the touch-
screen to activate the area being looked at [85]. They attached
stereo cameras and an IR-LED to a mobile device, and per-
formed the image processing on a laptop that is tethered to
the cameras and connected wirelessly to the mobile device.
Pfeuffer and Gellersen attached a Tobii EyeX tracker to the
bottom of a Microsoft Surface Pro tablet to experiment with
multimodal interactions on a handheld tablet [90]. For ex-
ample, the user could pinch and zoom at the location they
are gazing at, while performing the touch gestures elsewhere
on the interface. Turner et al. introduced a series of systems
for cross-device content transfer; using a head-mounted eye
tracker, they explored transferring content from public dis-
plays to handheld mobile devices by, for example, gazing at
the item on the display, and then tapping on the mobile device
to transfer the content to said device [105, 106, 107]. Zhou
and Velloso experimented with multiple concepts for input
using eye tracking with back of the device interaction [124].

Lessons Learned ���
While the use of remote eye trackers allowed researchers to
overcome some of the hardware limitations, this approach
offered only limited ecological validity. Head-mounted eye
trackers, especially in their early days, were cumbersome to
wear, and required knowledge of the device’s bounds by, for
example, marking the corners of the mobile device [35] or
performing edge detection [87], in order to map gaze points
to locations on the device’s screen. Finally, perhaps the most
impeding disadvantage of head-mounted eye trackers is that
they were not yet commonly worn by users; it is not feasi-



ble to conduct field studies in which the handheld device is
“mobile”. On the other hand, researchers who built their own
prototypes had a lot of flexibility. However it was often chal-
lenging to identify the reasons behind unexpected behavior
since the prototypes were often not rigorously tested. Those
who used commercial remote eye trackers had the advantage
that the technical performance had already been evaluated.
The availability of technical specifications of trackers makes
results from different studies relatively easy to compare.

On the downside, the vast majority of studies that used remote
eye trackers had the device fixed on a mount rather than held by
the user, hence reducing the ecological validity of the results.
Ecological validity problems become even more prominent
when using on-screen simulators, since all the form-factor
related aspects are lost in that case. This is especially the
case when the user needs to interact with the interface; even
if a touchscreen is used while simulating the interface on
a computer screen [22], interacting with a vertical mobile
interface at eye’s height is not usual when using an actual
mobile device. Moreover, remote eye trackers are often placed
below the device’s screen, making it more likely that the user
will occlude the camera’s view with their hands or arms when
interacting or holding the device, which in turn results in losing
track of the user’s eyes.

In terms of explicit interaction, a clear message from a large
body of early work is that interaction using eye behavior (e.g.,
gestures [26], smooth pursuit [113]) is a more promising di-
rection than interaction by dwell time [25, 28, 97]. Gestures
and Pursuits are not only better perceived than dwell time, but
they are easier to implement since they do not require accurate
gaze estimates, which in turn means that they are less reliant
on calibration [26, 113]. This is an important advantage, since
the mobile nature of handhelds makes it likely that calibration
would break often.

To summarize, we can make the following conclusions from
the discussed body of work:

• The use of external hardware or simulators limits the eco-
logical validity of study results.

• Rather than using traditional dwell time for explicit inter-
action, leveraging eye behaviors, such as smooth pursuit or
gaze gestures, is a more promising direction for handhelds.

EYE TRACKING ON UNMODIFIED HANDHELDS ���
Prior works that utilized external eye trackers were the first
to analyze gaze behavior on mobile devices and hence made
a myriad of interesting findings. However, this was at the ex-
pense of lower ecological validity. In 2010, researchers started
considering eye-based interaction using unmodified mobile
devices [84]. The interest in enabling eye-based interaction
and even fine-grained gaze estimation on handhelds increased
exponentially since then (see Figures 1 and 2).

Gaze Behavior Analysis ���
Several approaches for gaze estimation on unmodified mobile
devices were proposed in the last 5 years. They can be classi-
fied to model-based and appearance-based gaze estimation.

Model-based Eye Tracking on Unmodified Handhelds
Researchers investigated model-based approaches for gaze
estimation on unmodified handheld devices. In model-based
approaches (also referred to as geometric-based approaches),
the system leverages the visible features of the user’s face and
eyes (e.g., pupil center, eye corners, etc.) to build a geometric
model of the user’s eyes, and estimate the gaze direction by
extending a vector from the center of the user’s eyeball, going
through the center of the pupil, and eventually intersecting the
screen at the gaze point. For example, in EyeTab, Wood and
Bulling employed a model-based approach by detecting the
eye positions, followed by a 2D limbal ellipse fitting procedure,
and then finally projecting a gaze vector to estimate where it
intersects the screen [117]. Their approach was evaluated on a
tablet and ran near-realtime with an accuracy of 6.88 degrees
at 12 Hz without the need for calibration. The EyeTab system
was further evaluated and ported to Android by Hohlfeld et
al. [38], but accuracy dropped to 15 degrees of visual angle.

While the aforementioned works focused on tablets, Michael
X. Huang et al. proposed a novel approach to estimate gaze on
smartphones by leveraging the reflection of the screen on the
user’s cornea [41]. In their approach, called ScreenGlint, they
perform face detection followed by extraction of the iris and
estimating its center, and then the brightest reflection closest to
the iris center with a perimeter less than 60 pixels is assumed
to be the glint of the smartphone’s screen. Afterwards, they use
some features including interpupillary distance and glint-iris
vectors of both eyes, and then utilize Gaussian Processes [99]
for regression to estimate on-screen gaze coordinates. Kao et
al. overcame the hardware limitations of an Android mobile
device by performing the heavier part of the computation on
the cloud [50]. Namely, face detection was done on the client,
while blink, iris and eye features detection, as well as the gaze
mapping done by a neural network, were all performed on
the cloud, which in turn sent the gaze coordinates back to the
client’s device.

Appearance-based Eye Tracking on Unmodified Handhelds
Another body of work employed appearance-based ap-
proaches, that is, approaches that employ machine learning
based on training datasets, in order to map eye images directly
to gaze coordinates. For example, Holland et al. [39, 40] used
the front-facing camera of a commodity tablet to perform face
and eye detection using Haar classifiers [114], followed by
iris detection, and then finally applied a neural network of
two layers to map the image of the iris to a gaze coordinate
on the screen. They achieved a 3.95 degrees accuracy at a
sampling rate of 0.7 Hz. Ishimaru et al. also employed an
appearance-based approach and achieved 12.23 mm accuracy
at 30 cm in their setup using user-dependent training [44]. The
authors do not report the accuracy in degrees of visual angle,
but with the given setup parameters, it can be estimated to be
2.26 degrees. Face, eye, and iris detection were done using
CIDetector (iOS’s face detection library), and then eye cor-
ners were detected using the Harris corner detection method
[112]. The inner eye corners and image coordinates of both
irises were used to calculate the gaze coordinate by regression.
Krafka et al. introduced iTracker, which estimates gaze with
an end-to-end appearance-based approach, i.e., without uti-



lizing any features such as head pose or eye center location
[66]. Their model is based on Caffe, a framework for deep
learning algorithms [47]. They achieved an accuracy of 2.58
degrees on unmodified iPhones and iPads. Qiong Huang et
al. applied an appearance-based approach to estimate gaze
on unmodified tablets [42]. Their approach started by image
normalization, followed by feature extraction and regression.
They experimented with different features and tested four re-
gressors. Using multilevel histograms [78] as features and a
random forest [12] as a regressor yielded best results—3.17
cm in their setup. The accuracy cannot be reported in degrees
due to the varying user-to-screen distance in the study.

Implicit Gaze Interaction ���
The previous implicit gaze systems used external eye trackers
or augmented the mobile device. Recent works performed
implicit gaze interaction on unmodified mobile devices.

Song et al. introduced Eye Veri, an implicit biometric authen-
tication scheme [101]. In EyeVeri, fixations and saccades
are detected from the front-facing camera of a smartphone in
response to on-screen visual stimuli. Illegitimate users are
locked out automatically since their gaze behavior is different
than that of the legitimate one. The system first detects the
face position using six-segmented rectangular filter [51], and
then eye and iris positions are determined. After that, a gaze
vector is projected from the estimated center of the eye ball
through the center of the iris to eventually estimate a gaze
point on the screen. While they do not report the accuracy of
gaze estimation, they reported the sampling rate to be 5 Hz,
and the accuracy of the system in terms of allowing access
to the legitimate user—it was between 67.95% and 88.73%,
depending on the shown stimuli.

Another implicit gaze-based system is SwitchBack, which
used the front-facing camera to determine if the user is not
paying visual attention to the device to pause the task and
help them resume it when they gaze back at the device [83].
The system relied on the number of frames between each two
consecutive saccades to determine whether the user is read-
ing on-screen text or if they looked away from the display.
SwitchBack achieved a mean absolute error of 3.9% in deter-
mining the line the user is currently reading. In another project,
Mariakakis et al. measured the pupil diameter in response to a
smartphone’s flashligh using its rear camera [82]. They used a
convolutional neural network to find the pupil diameter and
achieved a median error of 0.3 mm. Jiang et al. presented
VADS, a system that allows users to interact with objects in
the environment by holding an unmodified handheld device
in a way such that the rear camera sees the object, and the
front camera sees the user’s face [48]. They used an optimized
version of Active Shape Models (ASM) [21] for face tracking,
followed by EPnP [71] to estimate the face pose, the iris center
is then detected, and finally a gaze vector is estimated via
linear regression. By knowing which smart object the user is
looking at, the object can react to the user.

Explicit Gaze Interaction ���
Recent systems detected gaze input directly through the front
facing camera. EyePhone by Miluzzo et al. was among the first

works about eye-based interaction with unmodified mobile
devices [84]. EyePhone enabled eye-based interaction by
moving the phone relative to the user’s face such that the
user’s left eye is in one of 9 possible positions in a 9-grid,
and then blinking to trigger input. The approach employed
template matching for detecting the eye and its position. While
they used existing algorithms intended for desktop scenarios,
they adapted them to match the reduced computation speed
and camera resolution of the N810 phone they used. A more
recent system, Reflector, utilizes the user’s reflection on the
screen by using a face feature (e.g., right eye) as a virtual
cursor for performing selections [70]. The system estimates
the reflected image through the front-facing camera, and is
then calibrated using one of the user’s eyes as a cursor to
perform 9-point calibration.

Several systems that detect gestures through the camera of
unmodified handheld devices were also introduced [33, 32,
52, 49, 72, 108, 119]. Vaitukaitis and Bulling detected gaze
gestures in near real-time with an accuracy of 60% on an
unmodified Android smartphone [108]. The experiment was
done in a controlled setting in which the lighting conditions
were constant and the smartphone was mounted on a dock. In
GazeSpeak, Zhang et al. detected gaze gestures in four direc-
tions as well as blinks to allow the disabled to communicate
using the rear camera of an unmodified mobile device [119].
To do so, they had each participant calibrate by performing
blinks and gaze gestures in all directions. Gaze gestures were
then classified by matching the normalized eye images ex-
tracted from the video in real time to the templates stored
during calibration. The template with the lowest mean squared
error to the detected gesture is deemed to be the closest match.
The accuracy of the system was 89.7% without corrective
lenses, 89% with corrective lenses, and 80.4% with glasses.
In Gazture, Li et al. introduced gaze-based gesture control
on tablets by first estimating gaze in low accuracy but in real
time, and then recognize gaze gestures [72]. Their system
supported 8 directions, detected through a sliding window that
gradually detects and refines the detected direction. Gestures
were recognized successfully 82.5% of the time at a distance
of 50 cm, and 75% of the time at a distance of 70 cm.

Multimodal systems were also implemented on unmodified
handhelds. Khamis et al. proposed a series of multimodal au-
thentication schemes for unmodified mobile devices in which
users entered passwords and PINs using both touch input and
gaze gestures [52, 55, 56]. In their approach, the face and eyes
were detected using a Haar classifier [114], and then the ratio
of the distances between each eye and the center of the face
was used to determine if the gaze gesture was to the left or
to the right. Depending on the configuration, their systems
achieved accuracy between 60% and 77%. Another series
of multimodal systems were by Elleuch et al., who proposed
interaction with unmodified mobile devices using gaze ges-
tures to four directions [32, 33], as well as using gaze gestures
alongside mid-air gestures that are also detected through the
front-facing camera of a smartphone [34]. The system de-
tects faces using Haar cascade classifier [114]. Pupil positions
are then compared across consecutive frames to detect gazes
upwards, downwards, left and right.



While promising, only few work leveraged smooth pursuit eye
movements on mobile devices. Liu et al. proposed a unimodal
authentication scheme for unmodified mobile devices where
the user follows the trajectory of one of 4 moving on-screen
targets via smooth pursuit eye movements [74]. They employ
the Pearson correlation to measure the similarity between the
eye movements and movements of the on-screen targets (as
in [113]). The average authentication accuracy was 91.6%.

Lessons Learned ���
Eye tracking and eye-based interaction using front-facing cam-
eras of commodity devices opens doors for a multitude of op-
portunities. For example, it allows field studies to investigate
gaze behavior in the wild, it enables usability testing outside
labs, and empowers users with novel input methods. Neverthe-
less, further improvements in gaze estimation on unmodified
devices is needed. Many of the proposed gaze estimation meth-
ods were evaluated in settings where the device was mounted
on a holder. And some highly accurate approaches were not
tested in real time [41]. Even though gaze-based interaction
(e.g., by gestures or smooth pursuit eye movement) has been
achievable in real time, researchers and practitioners need to
deal with issues pertaining to the user’s holding posture of the
handheld device. Nonetheless, with more commodity devices
adopting depth cameras (e.g., iPhone X and Google’s project
Tango), and increasing processing power that allows perform-
ing complex calculations directly on the device, the future is
promising for eye tracking on unmodified handhelds.

To summarize, we can draw the following conclusions:

• Eye Tracking and eye-based interaction are feasible on un-
modified mobile devices, and are expected to improve even
further.

• Researchers are facing different types of challenges now.
For example, users do not always hold devices in a way that
allows the camera to see their eyes.

THE FUTURE OF EYE TRACKING ON HANDHELDS ���
The impeding challenges in the early days of eye tracking
were mostly hardware-related. Nowadays, advances in visual
computing, front-facing cameras, and processors on handheld
mobile devices make eye tracking an app-installation away.

Furthermore, the advent of front-facing depth cameras is a
turning point that will take eye tracking from research labs
to consumer mobile devices that are used daily in the wild.
While eye tracking on commodity devices was so far evaluated
on mobile devices that use RGB front-facing cameras, all of
the discussed techniques are not only applicable to depth front-
facing cameras such as those of Project Tango and iPhone
X, but are expected to yield even better results. For example,
the geometric modeling of the eyes, and the extraction of the
user’s face and eye images can both be significantly improved
with the use of depth imaging [36, 118].

The discussed developments are expected to have a significant
impact on Mobile HCI research. However, even with the
major hardware limitations almost overcome, some unique
aspects of handheld devices pertain to impose challenges to
eye tracking and gaze-based interaction on said devices. Now

that eye tracking on handhelds is on the verge of becoming
pervasive, novel challenges and opportunities arise. Further
research is needed to address the challenges, and opportunities
can be leveraged to expand our knowledge of user behavior,
and enhance the user experience of handhelds.

Opportunity: Eye Tracking on Handhelds in the Wild
High quality gaze estimation on unmodified handheld mobile
devices sets the scene for wide scale eye tracking studies in
the wild. Although field studies are one important research
method in Mobile HCI [63, 64], eye tracking for analysis of
gaze behavior on mobile devices has always been conducted
in the lab. For the first time, we will be able to conduct
ecologically valid field studies where users’ gaze behavior is
tracked in every day life scenarios. For example, this will allow
us to study gaze behavior when using location-based services;
previous work could not achieve that due to participants being
required to stay in the lab, or even at a fixed distance from a
“mobile” device that is held by a mount. Usability analysis can
now cover contexts that were never studied before, such as how
users perceive websites and mobile apps while commuting,
while walking, or while engaging with others in conversations.

Pervasive advertising is another interesting opportunity. Gaze
data analysis can reveal if users see advertisements, if place-
ment of ads is ideal, and could reveal potential interests that
can be used to tailor advertisements. Advances in this direc-
tion could potentially encourage manufacturers of handheld
devices to invest in integrating cameras with wider lenses, or
employ movable cameras that would enable active eye tracking
(e.g., setting focus on the user’s eyes [57]). On the downside,
this comes with privacy implications, which we discuss later.

Opportunity: Making Eye Tracking Concepts Mobile
Future work in gaze-based interaction on handheld mobile
devices can go beyond labs and provide tangible benefits in
the wild instead.

In the simplest form of implicit gaze interaction, attention
detection can be leveraged to save battery life and protect
privacy by turning off the screen when the user looks away
[100]. While existing works enhanced reading experiences on
unmodified handhelds [83], there is a wide range of applica-
tions that are yet to be explored. Biedert et al. explained their
vision of how eye tracking can be leveraged for attentive text
[8]. Many of these concepts were never realized on handheld
mobile devices, mainly because the technology was not ma-
ture enough to perform reliably. These concepts can now be
adapted or even extended to fit the mobile context. For exam-
ple, some works proposed protecting private content on large
public displays by estimating gaze direction of bystanders to
alert the user of potential shoulder surfers [1, 14, 123]. Now
these approaches can be deployed on unmodified mobile de-
vices, and evaluated in public settings where shoulder surfing
actually occurs the most (e.g., in public transport [31]).

Furthermore, implicit gaze can facilitate interaction on touch-
screens of handhelds, which are continuously increasing in
size, making it challenging to reach out for far UI elements at
the edges of the screen via touch. Some existing systems use
touch gestures to reach the top of the interface [43]. Future
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Figure 3. Datasets of photos taken from the front-facing cameras of smartphones in the wild (top), and tablets in the lab (bottom) indicate that the
user’s entire face is not always visible in the cameras’ view. This has implications on eye tracking since many gaze estimation methods require detecting
a full-face (Figures adapted from: [42, 53])
systems could detect if the user is reaching out for far targets
through their gaze, and bring them closer to the user’s domi-
nant hand. Gaze can be leveraged implicitly for correcting for
parallax errors [54], which is a problem on touchscreens, par-
ticularly when styli or pen-shaped instruments are used [69].
Cognitive load can be estimated through the pupil’s diameter
[91], blink rate [29], or smooth pursuit eye movements [65].

Explicit gaze interaction on mobile devices can provide many
tangible benefits. Users could navigate through albums using
gestures [121], unlock phones using gestures [52, 55, 56], or
smooth pursuit [74]. Users could navigate installed applica-
tions, answer calls, speed dial, and respond to system prompts
by eye movements. Although gestures and smooth pursuit
might require more cognitive effort than natural eye move-
ments, they are promising for gaze-based input on handhelds
because they are robust against gaze estimation inaccuracies
[16]. Moreover, many types of eye movements are promising
for handheld mobile devices, but were never exploited before.
For example, Optokinetic Nystagmus are eye movements that
combine saccades and smooth pursuits. They were demon-
strated to be promising for interaction in desktop scenarios,
and they also show promise in mobile context [46]. Eye ver-
gences, which are simultaneous movements of both eyes in
opposite directions, can also be exploited for interaction. In
particular, convergences were used for gaze input [62], but
were never explored for mobile devices. Vestibulo-ocular-
reflex (VOR) is a reflex action that takes place when humans
fixate at a target and move their heads; humans can remain
focused on the target despite their head movements, since the
eyes reflexively compensates for the head movements by mov-
ing in the opposite direction of the head. VOR was exploited
to detect head gestures, in an approach called eye-based head
gestures [81, 93]. Detection of VOR is as straightforward as
detecting gaze gestures, since the reflex can be seen from the
camera’s perspective as a gaze gesture to the direction opposite
to the head movement’s direction.

Challenge: Holding Posture and Face Visibility
Users hold their handheld devices in different ways. Previ-
ous work suggested that the user’s activity (e.g., running apps)
affects the way they hold their phone [13, 53, 115], hence influ-

encing the visibility of their faces and eyes in the front-facing
camera’s view (see Figure 3), which in turn influences the
reliability of eye tracking on handheld devices. This problem
is amplified by the fact that many gaze estimation algorithms
require full-face images [5, 37, 72, 102, 116, 120].

Researchers have investigated how often the user’s face is visi-
ble in the front-facing camera’s view. Khamis et al. collected
a dataset of 25,726 photos taken from front-facing cameras of
smartphones used in the wild [53]. In their dataset, the user’s
full face was visible in only 29% of the taken photos, while the
eyes were visible in 48% of the photos. In the vast majority of
the dataset, the face is either partially hidden due to the angle
from which the phone is held, the range of the lens, or occlu-
sions by the user’s hands, hair, or tools. Some of the photos in
their dataset are labeled with the holding posture of the user
(e.g., dominant hand vs non-dominant hand vs both hands),
in addition to the state of the user (e.g., standing, walking,
sitting). While Khamis et al.’s dataset focused on photos from
smartphones used in the wild, Huang et al. collected a dataset
from tablets used in controlled settings, in which participants
were standing, sitting, slouching, or lying down [42]. Despite
being collected in the lab, the full-face was visible in only
30.8% of the photos in their dataset, suggesting that the prob-
lem is also prominent on tablets, which are held differently
than smartphones [13]. Figure 3 shows examples of photos
taken from front facing cameras of handheld devices. Other
works also investigated eye tracking when the user is sitting at
a table, sitting on a chair, slouching on a chair, sitting on the
floor, lying prone, lying supine, standing, and walking [41].

Research Directions
Although hand postures are different across smartphones and
tablets [13], the problem of face visibility is prominent in
both cases [42, 53]. Khamis et al. [53] proposed borrowing
concepts from research on user guidance in front of public
displays to address this problem. Users can be guided to the
optimal position of holding a phone by using a face outline
overlaid on a mirror video feed [122], or by distorting the view
and deblurring it as the user is implicitly guided to the correct
position before the screen can be seen clearly [3].



Khamis et al. found that it is more likely that both of the user’s
eyes are visible to the front-facing camera, opposed to the full
face [53]. This means that gaze estimation algorithms that
assume that the user’s full face is entirely visible [5, 37, 72,
102, 116, 120] are not well suited to the dynamic nature of
handheld mobile devices. There is a need to further investigate
methods that rely on the eyes only for gaze estimation and not
the entire face. For example, appearance-based methods can
perform better by using eye images for training rather than full
face images. There are also approaches for gaze estimation
that are based on the whites of the eyes [7], which might be
more suitable for this context.

Challenge: User’s Clothing and Accessories
A conceptual problem that affects eye tracking is that mobile
devices are often used outdoors, and depending on the weather
conditions users could be wearing scarfs that partially occlude
the face, or sunglasses that occlude the eyes (see Figure 3).

Research Directions
This problem is similar to the problem of interacting with mo-
bile devices via touch while wearing gloves; unless conductive
gloves are worn, users need to take off handwear before they
can provide touch input. Similarly, users might need to take
off sunglasses that completely obscure the eyes. However with
Eyewear computers becoming indistinguishable from regular
daily eyewear [17], future sunglasses can already have eye
trackers integrated within them, and communicate gaze infor-
mation to the mobile device directly. Another more daring
solution is to visualize the user’s eyes on the surface of the
eyewear, in order for the front-facing camera to detect it and
estimate gaze; there has been work on visualizing the user’s
eyes on the front-facing surface of head-mounted displays
(e.g., VR headsets) to facilitate communication with people
surrounding the user [19, 76].

Challenge: Calibration and Shaky Environments
Many approaches for gaze estimation either require calibration
[41], or improve significantly with calibration [66]. Systems
that require calibration would likely need to be recalibrated if
the user’s posture changes amid interaction. Even if the user
holds the device in the same way, inevitable shaking of the
device would make the calibration data obsolete.

Research Directions
Calibration is known to be tedious and time consuming, but
is nevertheless useful for accurate gaze estimation [77]. Pino
and Kavasidis worked around the shaking device problem by
leveraging the device’s inertial sensors to determine if the
current posture is different, and accordingly decide whether
to collect new eye images or to use the last collected ones
[92]. Li et al. also exploited the accelerometer to selectively
determine which frames to use for gaze estimation [73]. A
clever approach would be to automatically compensate for the
changed posture to avoid the need to recalculate parameters.

For interactive applications, a plausible approach is to use
gaze interaction techniques that do not require calibration such
as gaze gestures [26], smooth pursuit eye movements [113],
Vestibulo-ocular-reflex [81], convergence [62], and optokinetic
nystagmus [46].

Challenge: Lighting Conditions
Majaranta and Bulling classified eye tracking techniques to
Video-based, Infrared-based Pupil-Corneal Reflection (IR-
PCR), and Electrooculography (EOG) [77]. Video-based eye
tracking is done using RGB cameras, which are the most com-
monly used for front-facing cameras on mobile devices today.
This technique’s disadvantage is that it does not work in the
dark, and might misbehave if part of the user’s face is ex-
posed to more light than the other, or if the user is wearing
make-up, contact lenses or eye glasses. On the other hand,
IR-PCR works better in the dark and is more robust against
varying light conditions. Incorporating IR emitters and IR
sensors—the building blocks for IR-PCR eye tracking—into
commercial mobile devices is increasingly becoming common
(e.g., Project Tango and iPhone X). However the technique
often breaks down in sunlight because of its interference with
the IR sensors. On the other hand, EOG is not influenced by
light conditions, and can even work while the user’s eyelids
are shut [77]. However due to the need to attach electrodes on
the user’s skin, it has rarely been investigated in the context of
mobile devices. The only exception is the work of Valeriani et
al. who detected eye winks on smartphones using EOG [109].

Research Directions
Lighting conditions has always been a challenge in eye track-
ing research, and will remain a challenge in eye tracking on
handhelds. Particularly because mobile devices are often used
in public and areas of varying light conditions. Research in
this direction can investigate how to preemptively detect situa-
tions where eye tracking would fail and warn or inform that
user. For example, mobile devices are often equipped with
light sensors; using them to determine if the surrounding light
conditions are suitable for eye tracking, and then providing
the user with an alternative modality if needed or fallback
to video-based eye tracking, could be a way to mitigate the
impact of the problem.

Challenge: Privacy Concerns
Although they might not always have the necessary technical
knowledge to understand the privacy risks behind certain tech-
nologies, privacy-aware users are willing to take additional
measures to protect their privacy [30]. This means that some
users might not be willing to allow eye tracking on their mo-
bile devices, lest it puts their privacy at risk. Users already
show discomfort knowing that mobile apps that have persmis-
sions to access the camera can be taking pictures all the time
[53]. This concern is not unjustified. Gaze behavior can reveal
many things about the user, including but not limited to their
visual attention [89, 103], mental illnesses [6], neurological
disorders [104], and corneal reflections can be even used to
learn about third parties (e.g., who the user is looking at [68]).

Research Directions
Being ubiquitous, the thought of tracking the user’s eyes
through mobile devices anywhere and at any time might intim-
idate users. To reassure them that their eyes are tracked only
when needed, existing approaches that have been proposed to
alert users when private data is shared wit an app can be used
[2, 4]. Another way to reassure users is to process images on
the fly without storing them or uploading them on to the cloud.



To make sure this practice is enforced, app stores could require
app developers to make their code open source. Although this
will not help the average user to identify whether or not a
mobile app violates their privacy, there has been cases in the
past where developers and enthusiasts found loopholes in open
source software and made them public, which in turn informed
average users. Similar to how certificate authorities are em-
ployed in HTTPS certification, mobile apps could be certified
by trusted entities that they do not violate privacy. Another
research direction is to try to understand privacy perceptions
of users of eye tracking on handheld mobile devices. Another
direction is to try to better understand the users’ changing
notion of privacy amidst technologies.

Other Challenges
Being mobile devices that need to be charged periodically,
eye tracking on handhelds needs to be highly optimized to
reduce battery consumption. Battery capacities are continu-
ously increasing, and faster methods for charging handhelds
are now available. However, if eye tracking algorithms are
to continuously process the front-facing camera feed, future
optimization to reduce battery consumption are needed. Fur-
thermore, algorithms that require less processing power would
in turn lessen the device’s overheating.

CONCLUSION
Mobile HCI research is on the verge of new possibilities that
were never available before. We were able to identify chal-
lenges and opportunities after a literature review, where we
investigated how researchers approached eye tracking on hand-
helds in the past, and how advances allowed eye tracking to
take place on unmodified devices. Eye tracking on handheld
mobile devices are now feasible, allowing researchers to in-
vestigate novel use cases, and explore areas that were never
possible before. For example, studies of gaze behavior in re-
sponse to advertisements, apps, websites, etc. is now feasible
in the wild and not only in labs. Gaze-based interaction can
provide tangible benefits to the user by simply installing an
app on their personal off-the-shelf handheld mobile device,
especially by using gestures, smooth pursuit and other eye
behaviors for interaction. We have also provided recommen-
dations and identified directions for future research to address
novel challenges in this context; we need to investigate ways
to accommodate to cases where the user’s face is completely
or partially hidden from the front-facing camera’s view, and
we need to understand the privacy perceptions of users of eye
tracking mobile applications.
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