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ABSTRACT
Tangible learning has received increasing attention. However, in
the recent decade, it has no comprehensive overview. This study
aimed to fill the gap and reviewed 92 publications from all the TEI
conference proceedings (2007–2021). We analysed previous studies’
characteristics (e.g., study purpose and interactive modalities) and
elaborated on three common topics: collaborative tangible learning,
tangibles’ impacts on learning, and comparisons between tangibles
and other interfaces. Three key findings were: (1) Tangibles im-
pacted learning because it could scaffold learning, change learning
behaviour, and improve learning emotion; (2) We should see the
effectiveness of tangibles with rational and critical minds. (3) Some
studies emphasised too much on the interaction of tangibles and
ignored their metaphor meanings. For future work, we suggest
avoiding an intensive cluster on collaboration and children and
consider other valuable areas, e.g., tangibles for teachers, tangibles’
social and emotional impacts on students, tangible interaction’s
meaning and metaphor.

CCS CONCEPTS
• Applied computing → Education; • Human-centered com-
puting → Human computer interaction (HCI).
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1 INTRODUCTION
Tangible User Interface (TUI) has received interests to support
learning and teaching, e.g., expanding learning opportunities [32],
transforming traditional pedagogical approach [132], problem solv-
ing [40, 54, 148], programming [21, 88, 123, 133], and social commu-
nication [126]. As an emerging field of research, tangible learning is
continuing to have more studies. In order to address the knowledge
gap and focus future research efforts in this field, it is essential to
have a comprehensive overview of the previous studies and current
research state.

To date, there are 12 review papers about learning with tan-
gible technologies. They were about children education [53, 112,
147, 149], abstract concept learning [14, 79, 123], and social inter-
action for the elderly [18]. The other three [83, 84, 99], which were
performed in 2012, 2007, and 2004, summarised the theories, case
studies and analytic framework of tangible learning. However, they
fall short when it comes to topics, such as interactive modalities,
collaborative learning, and tangible effects on learning. Moreover,
in nearly 10 years, there was no comprehensive literature review.
Thus, the recent literature on tangible learning has not been cov-
ered, and emerging topics are missing.

To close this gap, we set out to conduct a systematic literature
review. We performed a systematic review of tangible learning
studies published in the ACM International Conference on Tangi-
ble, Embedded and Embodied Interaction (TEI) conference, the most
related and influenced tangible community. We conducted the re-
view from January to August of 2021. Before reading the papers,
we established a research framework to record the basic review
information, e.g., publication year, participant, study purpose, and
study findings. Each paper had two authors to read and enter the
entries in this framework, then another different author analysed
and summarised the final contents of each entry. In addition, we
conducted a survey with 14 domain participants. We coded their
answers into four themes: definition, advantage, challenge, and
the best tangible learning application (with good examples). The
purpose is to add authentic voices and avoid incomplete opinions
dominated by publications.

With this paper, we contribute: provide a unique and insightful
analysis of tangible learning studies from perspectives of the TEI
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community. Previous literature reviews analysed TUIs’ impact on
learning from theoretical perspectives with little practical evidence.
Our review summarised and analysed all the case studies published
at the TEI conference since 2007 to show the real impact of TUI on
learning. Beyond reporting prior findings, we additionally report
on a survey with domain participants to extend our results beyond
prior findings. Finally, we point out three issues and valuable future
directions based on all the findings and expects’ perspectives. We
are trying to increase the visibility and the value of individual
studies and to focus future research efforts in this field.

2 BACKGROUND
In the following, we highlight the domains TUI and tangible learn-
ing to set up the development and trend within the larger research
space.

2.1 Tangible User Interface
At present, there is no consistent definition of TUI. Researchers
understand it from different perspectives as system, representation,
embedded technology, and computing paradigm. In the seminal
work by Ishii and Ullmer [64], they defined TUI as a user interface
that “augment the real physical world by coupling digital informa-
tion to everyday physical objects and environment.” Hornecker and
Buur [61] understood it as “systems that rely on embodied interac-
tion, tangible manipulation, physical representation of data, and
embeddedness in real space”. Later, Price [106] reckoned “Tangibles,
in the form of physical artefacts embedded with wireless, sensor
and actuator technologies, offer the opportunity to build on our
everyday interaction and experience with the world.” In 2013, Antle
and Wise [8] defined it as “a computing paradigm in which the
real world is augmented by embedding computation into physical
objects and environments that are linked to digital representations.”
Markova et al. [83] point out, the lack of a clear definition could
lead to an ambiguity whether a system was a TUI or just a sys-
tem with tangible aspects. Therefore, Markova et al. [83] provided
four criteria which a TUI must fulfil: (1) Tangible Objects: Contain
one or more tangible objects as interactive devices; (2) Embodi-
ment: Input and output are closely temporally and spatially related;
(3) Metaphor: Digital and physical spaces are closely integrated;
and (4) Continuity: Support continuous interactions [83]. This built
on earlier TUI characteristics proposed by Ullmer and Ishii [138]
as: “(1) Physical representations are computationally coupled to un-
derlying digital information; (2) Physical representations embody
mechanisms for interactive control; (3) Physical representations are
perceptually coupled to actively mediated digital representations;
and (4) The physical state of interface artefacts partially embodies
the digital state of the system” [138].

2.2 Tangible Learning
Tangible learning used a combination of gesture, motion, or full-
body interaction to convey knowledge. More importantly, tangi-
ble learning “emphasizes the use of the body in educational prac-
tice” [68]. Similarly, TUIs use the interaction with physical manipu-
latives and embodied metaphors to communicate abstract concepts.
Here, TUIs embed technology in everyday objects and allow natu-
ral action such as grabbing, in the manner technology embedded

in TUIs becomes ubiquitous [143]. Here as a skilled subjectivity,
the human body enables learning and knowledge transfer [130].
Additionally, Wilson [144] describes that physical states and bod-
ily structures influence all cognitive processes, further support-
ing learning. Thus, it is beneficial to learn by manipulating real
physical objects, which results in haptic interactions and embod-
iment effects [84, 99]. This resembles the pedagogical approach
of learning-by-doing. From the cognitive load theory perspective,
understanding how tangible design might change how we perceive
and think about learned concepts [106]. Embodiment in practice
reduces the burden of learners’ mental cognition and provides them
with hands-on interactive experiences.

Learning with TUIs has three advantages. First, due to their
playful and intuitive nature, TUIs have been seen as a new trend
for teaching and learning. Tamim et al. [137] noted in their meta-
analysis over the past 40 years that classrooms with digital tech-
nology had resulted in a remarkable increase in students’ achieve-
ment. TUI, as a new technology, has been used in many fields,
such as programming [21, 88, 133], storytelling [135, 136], and
mathematics [47, 73, 124]. Second, it has a broad beneficiary group,
which ranges from preschool to university. Meanwhile, some com-
mon TUIs are becoming easier to approach, e.g., paper [19, 133],
blocks [66, 118], and robots [21, 45]. Finally, TUIs seem well suited
for whole-class activities and discussion [58] and had the advan-
tage to create pedagogical environments for collaboration and
creativity [71]. Some previous studies have reviewed tangible ob-
jects [31, 36, 52, 62, 128]; however, few target the learning perspec-
tive [15, 121].

2.3 Summary
Tangible technologies have created a wealth of novel chances to
support and improve learning. First, we want to establish an in-
sightful overview conveying the characteristics of previous studies.
In detail, we aim to address the following questions: which areas
have used TUIs to support learning? How have these studies been
conducted? Which kind of users and what contexts were common?
Tangible learning was featured for embodied and active interaction.
What were the actual interactive modalities in the review results?
What were their influences on learning? In addition, after reviewing
all the related studies, what are the common topics? What will be
the most likely upcoming topics for future research in the next few
years?

3 METHOD
Our investigation aims to perform a systematic literature review on
all the tangible learning publications from the ACM International
Conference on Tangible, Embedded and Embodied Interaction (TEI),
first held in 2007. The publication types included paper, demo, work
in progress, art exhibition, studio, graduate student consortium,
and student design challenge.

A common approach to gathering a corpus of works in the
first Identification Phase [92] of a literature review is a keyword
search. However, we identified TEI to be the main venue for tangible
learning publication. We started with 720 papers in the Identifi-
cation phase. Thus, we went into the second phase, the Screening
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Phase [92], with these 720 papers. We first went through all publica-
tions andmade an initial selection based on their titles and abstracts.
This resulted in 112 relevant publications. Second, two authors read
each paper’s entire content and excluded 20 publications based on
two criteria: (1) the interaction is not tangible; (2) the purpose of
tangible interaction is not mainly for learning. As shown in the
Appendix (Table 9), our final data set contains 92 publications for
review, which included 64 full papers and 28 extended abstract
papers.

We established a research framework to record the basic review
information, e.g., publication year, participant, study purpose, and
study findings. For these, two authors entered each entry. Then,
the first two authors checked and summarised them to finalise it.
We picked up the “study findings” entries and discussed them to
find the common topics in the findings. Here, we identified three
common topics, which were shown frequently in the review results.

To add authentic voices and avoid incomplete opinions domi-
nated by publications, we interviewed 14 domain participants. We
used the convenience sampling method to recruit them. However,
they were all qualified by being from one of the following pools
of participants: (1) experts from education and Human-Computer
Interaction (HCI), (2) human-computer interaction master students
with a strong background in TUIs for learning; (3) educational PhD
students who have teaching experience with technologies, such as
interactive whiteboard and tablet. We received 4, 5, and 5 responses,
respectively. For education experts and computer science master
students, the questions were: (1) Can you use one or two sentences
to let me know your definition of tangible learning technology? If
possible, can you give me one or two examples? (2) What are the
three advantages of tangible learning from your perspective? Who
may benefit from it most, and in which situation will it create the
best benefits? (3)What are the three challenges of tangible learning
that come to your mind? For educational PhD students, we gave
them the definition of tangible learning and showed them two tan-
gible learning examples with videos first; Then, we asked them the
questions: (1) What are the three advantages of tangible learning
from your perspective? Who may benefit from it most, and in which
situation will it create the best benefits?, and (2)What are the three
challenges of tangible learning that come to your mind?

4 FINDINGS
Based on our literature review and the survey, we will introduce
seven findings organised in three categories. First, characteristics
of previous studies, which includes study purpose (Section 4.1), par-
ticipant, context, research time & data resource (Section 4.2), and
tangible interaction (Section 4.3); Second, common topics which
were formed from all the 92 publications, which contains tangi-
ble collaborative learning (Section 4.5), TUIs’ impacts on learn-
ing (Section 4.6), and comparative studies between TUI and other
interface (Section 4.7). Finally, we report the results from our sur-
vey (Section 4.8).

4.1 Study Purpose
All the studies were classified into four contribution types [131]:
material contribution, design contribution, technology contribu-
tion, and theoretical contribution. Most studies (68) were design

contributions. Twenty-three studies were theoretical contributions,
and the last one was a technology contribution. In addition, we cat-
egorised all studies into three study types: case study, exploration,
and guidance. There were 27, 48, and 6, respectively.

To explore the applications of tangible learning, 95.65% of re-
searchers developed TUI prototypes to show their research ideas.
As shown in Table 2, we grouped them according to their primary
purposes and introduced some good examples from each category,
to get an overview.

The most common study purpose (24 studies) was to facilitate
collaborative learning. For example, SciSketch: A Tabletop Collabo-
rative Sketching System [25] developed SciSketch to allow collabo-
rative sketching. There were 20 studies to test or compare the TUI
properties for learning. We found that many tangible prototypes
were compared to their digital counterparts. For example, Catala
et al. [22] compared a digitally augmented tabletop with its phys-
ical version for collaborative creative tasks. One more instance
was How Does the Tangible Object Affect Motor Skill Learning? [82],
where the effects of similarity of physical and digital representa-
tions were analysed. Thirteen studies were explored to teach people
programming [59], languages [65], writing [129], reading [110], mu-
sical skills [102] and proper behaviour/usage [3]. For example, in
Hangul language [65], an interface with physical blocks was devel-
oped to help users learn Hangul characters. For writing skills [129],
a prototype was designed to enable users to self-train their calligra-
phy skills by giving automatic feedback while writing. The study
“Brush and learn: transforming tooth brushing behaviour through
interactive materiality, a design exploration” [3] aimed to teach
users the right brushing behaviour with a special toothbrush (used
as a tangible interface).

Twelve studies focused on providing learners with an embodied
learning environment or experience. It is important to note that
they aimed to provide an experience (learn by doing) rather than
have a specific learning goal as the outcome. One example could
be seen in IRelics: Designing a Tangible Interaction Platform for the
Popularization of Field Archaeology [76]. It provided an immersive
experience into the world of archaeologists by allowing users to
explore and discover virtual excavation sites with the aid of tangible
tools. Similarly, Gläser et al. [49] made a virtual space for children
and teenagers to conduct chemistry experiments without dangers.
In addition, museums often designed equipment for visitors to
have different learning experiences. Seven studies were designed
to help people (particularly children) with learning difficulties or
disabilities. For example, Dyslexia [6, 42] can cause problems with
reading [43], writing and spelling [42]. For visually impaired chil-
dren, TUIs can provide an affordable and accessible means to learn
(e.g., music creation [117], Geometry [116]). Another six studies
helped students with learning tasks in general. For example, Bakker
et al. [12] presented two prototypes: Caw Clock and NoteLet. Caw
Clock was designed to support time awareness for teachers and stu-
dents by visualising the time. NoteLet was a device to help teachers
observe and document unintentional behaviour of children.

Finally, there were 10 studies either had no prototypes or did not
fit into previous categories. For example, Gennari et al. [46] studied
how to scaffold turn-sharing norms in small group conversations for
primary school children. Patel et al. [101] explored the freedom and
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Table 1: Numbers of tangible learning studies in the TEI conference.

TEI ’21 ’20 ’19 ’18 ’17 ’16 ’15 ’14 ’13 ’12 ’11 ’10 ’09 ’08 ’07 In all

All papers 40 37 36 37 41 45 63 46 48 42 65 54 70 46 50 720
First select 2 4 5 12 5 7 14 7 10 15 6 4 7 4 10 112 (15.56%)
Final select 2 4 4 10 3 6 11 7 9 9 6 6 5 2 8 92 (12.78%)

spontaneity among the audience, performers, interactive prototypes
and theatrical space.

4.2 Participant, Context, Research Time & Data
Resource

Out of the 92 publications, 67 have performed user studies. Regard-
ing their participants, 55 studies had homogeneous participants.
More specifically, children were the main participants for studies,
with 40. Then, 15 studies were for adults (7 for university students,
2 for teachers, and 1 for experts), and 5 for teenagers. Twelve stud-
ies had heterogeneous participants (5 for children and adults, 3
for children and teachers, 1 for children and caregivers, 1 for chil-
dren, parents and museum staff, 1 for families, and 1 for children,
teenagers and teachers). The number of participants ranged from 2
to 240. Most studies (55) had participants below 50; 12 were between
50 and 100. There were 1.27 more females than males. Regarding
the context, most studies 34) were conducted in school. In addition,
seven were in museums, and three were in rehabilitation centres.
The remaining studies were conducted in other places, such as
learning centres, labs, workshops, and homes.

Regarding the experiment duration, 54 of them conducted
only one experiment (from less than 10 minutes to 3 hours), 11
multiple experiments (from 4 days to 10 months), and two did not
mention the time the experiment took. Twenty-two studies had a
study duration of less than 1 hour. More specifically, five studies
were conducted in less than 10 minutes, 8 were less than 30 minutes,
9 were less than 1 hour, and the other 3 were less than 1 month.

In the studies, researchers collected various data using different
methods. Most data gathered were qualitative data (60) and the
rest were quantitative (23). The most used mediums of documenting
data were observations, interviews, and questionnaires. The least
used method was self-documentation, usability scale and “again
and again table” format, which were all used once.

Table 2: Primary study purposes of the reviewed results.

Primary study purposes Count Examples

Facilitate collaborative learning 24 [25]
Test or compare tangible properties (e.g., em-
bodied) for learning

20 [22, 82]

Teach skills (e.g., programming, language, play-
ing music)

13 [3, 65, 129]

Provide an embodied learning environment or
experience

12 [49, 76]

Help people with learning difficulties or disabil-
ities (e.g., Dyslexia and visually impaired)

7 [6, 42, 117]

Support teaching 6 [12]
Others 10 [46, 101]

4.3 Tangible Interaction: Input & output
To understand the tangible interaction, we analysed input and out-
put methods used in the review results. As shown in Figure 1a,
input methods used in the review results were summarised into
five categories: (1) Object + Body-based/ Gesture (17.02% studies),
focusing on human gesture, movement, and other body-based in-
teractions; (2) Object + Phone/ GUI (Graphic User Interface)/ Projec-
tor (15.96%), using physical objects with an additional GUI, e.g.,
projector and phone; (3) Object + Interactive board/ Tabletop/ Write-
board/ Tablet (25.53%),which usually had tokens on a surface; (4)Ob-
ject + assembling/ Structuring (9.57%), referring to digital augmented
tangibles that could be constructed or assembled; and (5) Object
manipulation (31.91%), interacting with one or several physical ob-
jects. As shown in Figure 1b, we could find three features: First,
between 2007 and 2015, the combination of physical objects and
interactive board, tabletop, write-board, and tablet was a popular
research focus; Second, from 2010 to 2018, researchers were more
interested in user’s body gestures and movements. Finally, a few
studies took advantage of the composability of the physical objects
and supported users to construct and assemble tangibles.

Regarding the output modality, there mainly were three types:
visuospatial, audial, and haptic. As shown in Figure 2 and Table 3,
most studies (40 publications) had visuospatial as only output, and
39 used the combination of vision and other perceptions. Visual
and auditory were the most common feedback combinations (20),
12 used visual and tactile feedback, and one used audio and haptic
feedback simultaneously. In addition, since 2014, eight studies [6, 13,
20, 42, 63, 97, 101, 148] have tried to incorporate all three modalities
into their interaction design. However, only 4 [10, 87, 114, 117] were
auditory and 2 [3, 82] tactile feedback.

Table 3: Output modality in the review results.

Modalities Count Reference

Visuospatial (V) 40 [1, 2, 4, 22, 24–26, 28, 29, 34, 35, 37, 39, 40,
46, 48, 50, 51, 57, 59, 67, 75, 81, 89–91, 95,
96, 98, 105, 107–109, 111, 115, 120, 122, 125,
134, 141]

Audial (A) 4 [10, 87, 114, 117]
Haptic (H) 2 [3, 82]
V + A 20 [5, 7, 11, 12, 17, 41, 43, 44, 55, 56, 60, 65, 69,

86, 110, 129, 140, 142, 145, 146]
V + H 12 [23, 27, 30, 49, 54, 72, 74, 76, 85, 100, 104,

119]
A + H 3 [63, 102, 116]
V + A + H 7 [6, 13, 20, 42, 97, 101, 148]
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Figure 1: Tangible input methods used in the review results (a. Method distribution; b. Year distribution)

Figure 2: Output modality in the review results.

4.4 Materials Used for TUI
We found three main considerations to build TUI prototypes in
the surveyed papers: production, usability, and learning applica-
tion. For production, research considered more about the cost and
convenience, which made them usually use wood [17, 24, 42, 44,
46, 55, 102, 141] or acrylic [2, 5, 6, 65, 75, 90, 107, 120]. In addition,
TUI researchers usually selected appropriate materials based on the
component’s function. For example, using wood [5, 28, 86, 109, 120]
and metal [3] to support the structure, soft fabric [57, 141] or trans-
parent acrylic [5, 6] as a surface, and foam [23, 30, 82] as the filler.
Researchers used paper [29, 35, 37, 54, 97] and modelling clay [30]
to build preliminary and more sophisticated models due to their
plasticity.

To increase tangibles’ usability, researchers also used materi-
als and objects from daily life to develop tangible prototypes, e.g.,
gloves [63], piano [145], torch [107], skateboard [109]. In addition,
using tools like injection syringe [122] and laboratory flack [98]
helped students to transfer the knowledge and more accessible to
apply them in practice. Interestingly, materials suitable for wearable
prototypes were used to design peripheral tools to avoid interfering
with participants to complete the main tasks [4, 63, 101]. For in-
stance, in ClassBeacons [4], an adjustable Velcro structure was used

to ensure the garment was suitable for different teachers. Moreover,
the material texture was another factor that was considered for TUI
design. Some studies [22, 39, 142] used 2D icons and labels or even
3D shapes [23, 117] to distinguish different tangibles. However,
Tactile Letters [42] explored the design space of materials by using
different textures to help users distinguish different tangible letters
for learning to read.

For learning applications, specific learning content and task may
have constraints on materials selection. For example, when using
TUIs to learn the optical properties in physics classes, the properties
like refraction, reflection may affect students’ understanding and
experience of learning [96]. In addition, children’s safety needs to
be considered. For instance, we should avoid using tangibles which
had sharp edges and might be eaten by mistake [65]. In addition,
some researchers used everyday materials, like paper, because such
prototypes have the advantage to be scalable and customised easily
for different age groups [54]. Finally, a number of studies [117]
had no special materials requirements because they aimed to make
TUIs to be easily duplicated and widely used in teaching practice.

4.5 Tangible Collaborative Learning
As shown in study purpose, 24 studies’ purpose was to enable and
facilitate collaborative learning. To achieve this, as shown in Ta-
ble 4, TUIs had three different collaborative mechanisms: sharing
resources, multi-touch interaction, and single-touch interaction.
For shared resources, different resources required to complete a
task were divided among group members to prevent one person
from taking over the whole activity. For example, Futura [5], a
tabletop game, gave participants decision-makers in different per-
spectives for planning land use to support the growing population
and sustainable environment. By incorporating multi-touch interac-
tion, TUIs can offer multiple tangible objects to be interacted with.
For instance, BacPack [75], a tangible museum exhibit, provided
multiple tangible tokens for visitors to explore bio-design. Here,
they designed single-touch interactions making participants have
to take turns fostering collaboration. For example, CodeAttach [148]
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Table 4: Collaborative mechanisms of TUI designs in the
review results.

Mechanisms Count References

Share resources 3 [5, 87, 98]
Multi-touch interaction 16 [1, 11, 22, 25, 40, 46, 54, 67, 74, 75,

81, 91, 107, 108, 140, 146]
Single-touch interaction 5 [48, 56, 65, 86, 148]

Table 5: Group sizes for collaborative interaction in the
review results.

Group size Count References

Pair (2) 9 [22, 25, 56, 67, 81, 91, 108, 140, 146]
Small group (3-5) 12 [1, 5, 40, 46, 48, 54, 65, 74, 75, 87, 98, 107]
Large group (6+) 3 [11, 86, 148]

attached everyday objects for playing physical games together via
interacting with only one tangible interface.

We found a diverse number of people who could take part in
collaborative interaction. As shown in Table 5, we divided them
into three categories: pair (2 participants), small group (3-5), and
large group (6+). For pairs, studies used a game, e.g., tangible jigsaw
puzzle [146], in which the pairs had to complete problem-solving
tasks. For small groups, the interactive designs were supposed to
include all the participants. Esteves et al. [40] proposed a tangi-
ble four-in-a-row game board for three players. In addition, some
TUIs were designed to be suitable for small groups as well as single
learners. For instance, Code Bits [54] is a tangible toolkit for com-
putational thinking, with which individual players or groups could
be defined by placing tangible paper bits on the table. Code could
then be executed by using a mobile application. On the other hand,
Martinez et al. [86] proposed a TUI for large groups, where eight
participants could stand in a circle and discuss a special topic by
passing around a tangible token to talk.

As shown in Table 6, we found four different contexts for tangible
collaborative interaction. Exploration means to explore and learn a
topic presented or guided by TUIs. For example, Price et al. [108]
allowed learners to explore light behaviours. Problem solving re-
ferred to participants completing a task with TUIs. For example, in
TagTiles [140] (a tangible board game), all participants were asked
to reproduce a pattern from a central display with tiles. Skill de-
velopment could be language learning or machine learning, e.g.,
LinguaBytes [56] helped non- or hardly speaking children to im-
prove their language development. Finally, TUIs could act as a
medium for communication. TurnTalk [46] is a visualising example;
it presented turn-taking norms during conversations and simul-
taneously offered participants the possibility to reflect on their
actions.

Participants were willing to collaborate instead of working alone
during tangible learning activities [120]. For example, children
were observed to develop rules and turn-taking strategies on their
own [26]. They could collaborate synchronously or asynchronously
[120] and in different ways, such as working together or in paral-
lel [22]. It has been shown that TUIs can create more opportunities

Table 6: Contexts for collaborative tangible interaction in
the review results.

Contexts Count References

Exploration 8 [1, 5, 48, 75, 87, 98, 107, 108]
Problem solving 8 [22, 40, 54, 74, 81, 140, 146, 148]
Skill development 4 [56, 65, 67, 91]
Communication 4 [11, 25, 46, 86]

for collaboration than multi-touch interaction [75] because TUIs’
configuration and function design influenced users’ communication
and collaborative style. More specifically, we found the following
five contributing reasons. (1) Good visibility and externalisation.
For instance, in the museum, although the negotiating control was
centred, the content could be easily shared among a group of vis-
itors [60]. (2) Participants’ position (e.g., opposite, adjacent, mov-
ing) impacted their actions, activities, and talking between each
other [60]. (3) Flexibility of the TUI design fostered intended role
play and role switching [5]. (4) Shareable TUI tools motivated so-
cial engagement [89]. (5) Integrating physical objects and digital
representation increased children’s social learning. For instance,
LinguaBytes [56] provided non-or hardly speaking children the
opportunity to express, communicate, and learn and improve their
social and emotional development.

Besides collaboration among peers, some studies also found it
promoted collaboration between parents and their children because
“an adult’s reaction to children’s behaviour is important” [101].
Bonani et al. [17] indicated that required adult support allowing
them to gain a better understanding. For example, caretakers could
scaffold children while leaving enough space for surprises and
challenges [101]. In Ghost Hunter, parents provided their children
with physical assistance and conceptual elaboration, which helped
them find electricity consumption sources [13]. Futura [5] showed
that grouping children with their parents encouraged collabora-
tion. TUIs encouraged educational conversations between adults
and children, which helped their interactions with the system con-
versely [60] and the discussion [72].

4.6 TUIs’ Impacts on Learning
More than 26 studies found TUI had a positive impact on learning.
In the review results, there were four applications. First, program-
ming was one of the popular subjects. By using coding to create
new physical activities or change rules of existing activities [148],
TUI helped children foster their computational thinking [59, 142].
Second, it helped learners learn the correct gesture for instruments
(e.g., piano) playing [145] and tooth brushing [3]. Third, it assisted
learners to understand complex knowledge, e.g., veterinary con-
cepts [29], bio-design operations [98], ecological strategies [50],
and gene editing basics [141]. Finally, it raised children’s awareness
of energy-saving and sustainability [5]. As shown in Table 7, we
summarised TUI effects on learning into three impacting themes:
(1) scaffold learning, (2) influence learners’ behaviours, and (2) affect
their emotions.

4.6.1 Scaffold Learning. As shown in Table 7, scaffold learning has
some impacts on learning. Helping children understand knowledge
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Table 7: The survey papers grouped by the impact on learning.

Impacts Dimensions Examples Ref.

Sc
aff

ol
d
Le

ar
ni
ng

Concept understanding

Get insights from an expert view [23]
Correct previous misunderstandings [90]
Consolidate ideas and test a hypothesis [90]
Bridge time and size scale [98]

Cognition
Support an imitation [114]
Foster epistemic actions and reduce cognitive costs [40]
Improve meta-cognition [120, 145]

Task perform
Simplify tasks [119, 148]
Enable spatial complementary actions [7]
Support an integrated motor-cognitive process [7]

Tolerance of errors Flexible, reconfigurable and low-cost prototype [95]

Creativity Foster an ideation and divergent thinking [87]

Self-regulation Exposed structure explicitly [96]
Visible infrastructure and allow to umassemble and reconstruct [87]

Le
ar
ni
ng

B
eh

av
io
ur Attention Extend attention spans [56]

Increase focus and considerations [96]

Control Empower with self-control and sense of ownership [148]
Increase the control of time [55]

Expression
Facilitate more communication with surroundings [55, 89]
Strengthen the storytelling and narrative [5, 115]
Help to convey sophisticated ideas [96]

Le
ar
ni
ng

Em
ot
io
n Engagement Foster explorations and improvisations [56]

Enjoyment Make it more interesting [76]
Fun, tactile and embodied [101]

Immersion
Provide a direct, personal and immersive experience [17]
Create a close relationship with the avatars [50]
Facilitate children’s experiments in the real world [1]

Confidence Positive impact on self-esteem and self-confidence [56]
Build a confidence and trust with the teacher [95]

concepts: The review results showed TUIs had helped children and
teenagers learn concepts in different fields, e.g., music [10], math-
ematics [89], gravitational force [89], principles of physics [90],
and popularisation of archaeology [76]. We summarised the rea-
sons came from: first, TUIs allowed students to get insights from
an expert view, e.g., SpinalLog [23], which provided passive hap-
tic feedback combined with immediate visual feedback, showed
in immersive interaction the high fidelity of physical shape had
little impact on task performance but was praised in participants’
comments. Second, TUIs could correct children’s previous misun-
derstandings and allow them to use a concrete object to design and
test their hypothesis [90], which at the same time could be shared
with others. Finally, it bridged time and size scale, e.g., SynFlo [98]
represented a complex biological creation by integrating authentic
tangibles, which enabled children to do biological creation through
observation, parent intervention, and peer collaboration.

Scaffolding cognition. Compared to traditional GUIs, tangible
interaction is more intuitive and straightforward [20]. For instance,

COMB [114] showed that physical shapes as a meaningful indica-
tor of functionality could support children’s imitation, which was
regarded as an important behaviour for early learning. In addi-
tion, by coupling physical objects with digital content, TUI fostered
epistemic actions, which allowed users to reduce their cognitive
cost [40]. Physical actions and manipulations facilitated tangible
thinking [126] and enabled learners to use external resources to un-
derstand the current state [40] and simplify the problem-solving pro-
cess [70]. Finally, TUIs improved meta-cognition, i.e., self-reflection
and self-explanation, which was very important for learning. For
instance, compared with mouse and touchscreen interfaces, TUIs as
closer interfaces could foster reflection and planning, making them
more suitable for problem-solving tasks [34]. MirrorFugue [145]
enabled piano learners to reflect on their playing gestures by watch-
ing and imitating others. Process Pad scaffolded explanation to help
children learn to explain [120].

Simplifying tasks. TUI was good at simplifying tasks, e.g., en-
abling complementary spatial action to support integrated motor-
cognitive processes [7]. With CodeAttach [148], limited connecting
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possibilities of coding blocks made it easier for young children
to learn to program; Touch Wire [119] used a TUI to emphasise
the most important components to simplify the circuit-building
process and hide complex features until children were equipped
with enough knowledge. Increasing tolerance of risks or errors: TUIs
increased the tolerance of risks and errors in the learning process,
which allowed learners to gain familiarity with concepts and opera-
tions. For example, after experimenting independently with flexible,
reconfigurable tangible lighting proxies [95], students learned to
control equipment and related hardware and software knowledge
without worrying about breaking expensive equipment.

Promoting children and teenagers’ creativity. Four studies men-
tioned that interacting with tangibles had a positive effect on chil-
dren’s and teenagers’ creativity [22, 87, 95, 96]. TUIs provided chil-
dren opportunities for risk-taking and exploration, enabling them
to “flex their creative skills with tangibles.” This was a good method
to foster their ideation and divergent thinking [87]. For instance,
Tangible Lighting Proxies [95] were used in the K-12 creative arts
classroom to allow students to learn the design and operation of
stage lighting by experimenting with different possible configura-
tions. When children developed their own narrative material, they
were more engaged and creative [96].

Encouraging self-exploration, self-correction, and self-regulated
learning. TUIs encouraged children’s self-exploration, self-correction
and self-regulated learning, especially when the structure of TUIs
was explicitly exposed [96]. The tangible installation structure ex-
tracted curiosity and conveyed system operations to very young
children. For instance, in the Digital Dream Lab [96], children could
explore and comprehend the system’s operating principles by peer-
ing through transparent windows into the tabletop. This design
aimed to improve “the walk-up usability of the tangible system”
for younger learners. In addition, unassembled objects prompted
children’s understanding to provide a kind of curiosity about how
things work in the world [94]. For example, Matthews et al. [87]
pointed out that it was a challenge or even an obstacle for novices
to use the tangible system as a design material to implement their
ideas. It was better to show the infrastructure and design of the
TUIs that not only enabled children to decipher the problem quickly
and supported them to unassembled and reconstruct to explore the
possible solutions. Rossmy and Wiethoff [114] also mentioned that
“the ability to detect and correct false mental models can be seen as
beneficial for self-regulated learning.”

4.6.2 Impact on Learners’ Behaviour. In addition to making it easier
to learn, researchers have also found the effects of TUI on learners’
behaviours, such as attention, control, and expression.

Attention. Children’s attention span was found to be longer in a
tangible and playful interaction style [56]. For children to explore
programmatic concepts, Hyunjoo Oh et al. [96] developed Table-
top Puzzle Blocks to allow them to create scenarios while playing
with puzzle blocks. In this case, children’s focus and concentration
were increased. Therefore, interactive installation could provide
responsive and direct feedback to engage younger learners. In the
classroom, Caw Clock [12], a TUI at the periphery of teachers’ at-
tention, supported time awareness without interfering with the
everyday routine.

Control. TUIs empowered children with self-control and a sense
of ownership [148], which benefited their initiative and imagina-
tion [56]. For example, the design of LinguaBytes [56] involved chil-
dren in activities typically conducted by their teachers or parents,
such as setting up the system through placing the story module and
programming their toy’s RFID label. Moreover, manipulating TUIs
slowed down the interaction to better control time for students and
teachers [55].

Expression. Many studies indicated that the performative as-
pects of tangible interaction provided children and adolescents
with a powerful medium for self-expression [89] and facilitated
more communication with their surroundings. More specifically,
tangibles gave children more opportunities for facial, gestural, and
verbal expressions [55] as well as strengthened their storytelling
and narrative [5, 115] during game play or even in the mathematics
curriculum [89]. In addition, The Digital Dream Lab, jigsaw puzzle
pieces, enabled children to convey sophisticated ideas [96]. Finally,
for others, TUI was also used as persuasive technology to train
certain performance skills, such as healthy habits, because of the
direct feedback and influences on behaviours. For example, an ac-
tive tooth-brushing [3] helped users significantly distinguish the
right and wrong tooth-brushing actions.

4.6.3 Impact on Learners’ Emotion. Except for the usability of the
interface and learning effects, some studies were more focused on
the quality of the overall experience [13]. The interactive experience
could influence students’ concepts understanding [27]. It had an
effective or emotional influence on learning, such as engagement,
initiative, playfulness, enjoyment, immersion, and confidence.

More than 19 studies in the review results showed that learners
were more active or engaged when using TUIs [148], e.g., narrative
material development [96], mini-game and quiz [72]. For instance,
children said they liked the tangible game very much [142] and
were willing to repeat the learning experience [17]. It showed that
high engagement with TUI “benefits for critical thinking, problem-
solving and also supporting active learning” [26] and fostered ex-
ploration and improvisation, which gave children more initiative
for learning [56]. Eight studies found participants enjoy tangible
learning experiences [5, 29, 56, 76, 101, 110, 115, 141], even though
sometimes the tangible task was too difficult for them [91]. Com-
pared to screen-focused interaction, TUIs were more interesting
[76] and appealing to children [56] because the multi-sensory and
ambiguous aspects of TUIs were fun, and had tactile, embodied in-
teractions and patterns [101], e.g., story creating [56] and activities
on the theatre stage [101].

TUI enabled children to be more immersed in in-class learning
and other contexts like museums. Hornecker [60] designed a con-
textually embedded system, which provided children with a direct,
personal, and immersive experience in the Natural History Museum
in Berlin. In the Hunger Games [50], children had a close relation-
ship with the avatars and formed a strong sense of ownership [50].
Some of them even imagined themselves as natural animals and
mimicked their behaviours during the game. Moreover, physical
setups augmented with digital settings provided a multi-sensory
tangible interface to facilitate children’s experiments in the real
world and even go beyond reality [1]. Finally, TUIs helped to build
children’s confidence and trust with teachers [95]. For instance,
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with the help of LinguaBytes [56], disabled children could play as
well as normal peers in the language learning application, which
positively impacted their self-esteem and confidence.

4.7 Comparative Studies: TUI and Other
Interfaces

As shown in Table 8, we found eight comparative studies in the
review results. Before 2012, researchers focused more on TUIs’
digital characteristics. One of the main research interests was to
compare purely physical interaction with digitally augmented TUIs,
which were shown to promote children’s motivation and creativ-
ity. For example, Catala et al. [22] found that the interaction with
a TUI produced more ideas and balanced the interaction better.
However, since 2013, more researchers have begun to see the ad-
vantages of TUI’s natural physical properties on learning. It was
compared to screen-based interfaces interaction, such as mouse-
controlled or touch-controlled GUI. There were three advantages
of TUIs. First, TUIs brought motor-cognitive benefits in spatial
problem-solving tasks. As Antle and Wang’s study [7] showed,
TUIs facilitated tactile and 3D interaction, which simplified epis-
temic strategies. Second, intuitive tangible interaction increased
efficiency. Donahue et al. [34] showed that children who used TUIs
were significantly more efficient than using mouses. Finally, TUIs
afforded instantiation of problem-solving. In other words, “mean-
ingful physical representation of a problem space can improve user
performance” [40].

Children showed different behaviours when using tangible inter-
action methods. For example, both digital and tangible representa-
tions could be used to study ancient Egyptian sculptures. However,
educational technologies and interaction styles would influence
their learning process and outcome [105]. Loparev et al. [75] showed
that children tended to focus on the design problem and paid more
attention when using a TUI to process and context.

4.8 Survey Results
We coded the survey results from domain participants, develop-
ers and teachers. Based on the survey questions, we categorised
the answers into four aspects: definition, advantages, challenges,
and best applications with good examples. For the definition, de-
velopers paid more attention to tangible properties and interactive
modalities. Teachers considered learning requirements and inter-
active naturalness more. For example, developers understood it as
“Learning with tangible objects, which can use movement, touch
or gestures, and have haptic feedback.” Teachers considered it was
“Emphasise the reality of the subject and the human interaction
with the object, interaction should be familiar and makes sense for
the task in a human sense.” Participants thought it was “Students
and teachers interact with their physical environment or with each
other in physical ways (e.g., proximity, co-location).”

For the advantages, developers proposed some popular topics for
TUIs, e.g., playfulness and natural interaction. Teachers thought
it was empathy, engagement, emotion and meaning. Participants’
opinions were comprehensive and included perspectives of engage-
ment, interaction, teacher, and environment. For instance, develop-
ers proposed natural interaction, remote group collaboration, play-
fulness, reduced cognitive overload. Teachers deemed it: maximised

empathy and engagement for students who are bored or disabled, es-
pecially during formal learning situations; Left an emotional impact
while participating in bodily activities for collaborative learning
situations; Allowed for multiple meanings to emerge when learning
an open concept with a learning community. Participants’ opin-
ions were: (1) More human-native and social forms of engagement,
(2) More team interactions, (3) Help teachers know activity progress,
(4) Multi-modal learning through embodied interaction, spatial cog-
nition, and social-emotional factors, (5) Immediate visibility to all
participants and shared discourse.

For the challenges: Developers were worried about the system,
interaction and cost. Teachers were about suitability and purpose.
Participants were about abstraction, representation and good appli-
cation. More specifically, developers accounted for cost and effort,
design intuitive interaction, and technical reliability. Teachers held
the opinions of ambiguity of meaning and purpose of a learning
activity might lead to disengagement; Efficiency and accuracy of
knowledge transmission; Learning outcome is hard to assess; Not
suitable for all learning situations; Drive to make “cool” tech, ignore
the abstraction; and shoehorning technology into space/situation
where that technology is not helpful or needed. Participants reputed
it was hard to bring abstraction, represent complex situations, build
a prototype and think about good applications, and it had costs and
installation time, physical-digital interface remained elusive.

For the Best Application, the developer felt it was to support
group works and tangible learning for children. Teachers reputed
educational games for K12 and personalised learning for those with
disabilities. Participants thought about basic cognitive operations
(age 4 8), manual professions, and vocational training. For example,
TinkerLamp [33], BeeSim [103], Ambient Wood [113], Embedded
Phenomena [93], and EvoRoom [77].

5 DISCUSSION
In the following, we will discuss the findings gained from our
literature review and survey to shed light on the current state of
TUIs in learning.

5.1 Was TUI Really Effective or More Effective
than Other Interfaces?

From the findings of participant data, we know more than 75% had
participant numbers below 50. For all the reviewed publications,
around 65% of studies have conducted user studies, but around 80%
implemented only one experiment with a study duration from 10
minutes to 3 hours. In other words, most of the results came from a
small sample and short experiment time. Therefore, we should look
at the effectiveness of TUIs with a rational and critical mind. Some
comments from domain participants could help us understand the
issues better. For example, teachers were concerned: researchers
were “Drive to make ‘cool’ tech, ignore the abstraction”, “Shoehorning
technology into space/situation where that technology is not helpful
or needed”, and “Learning outcome is hard to assess.”

As a result, we should be aware: First, compared with “old” tech-
nology, e.g., computer, tablet or interactive whiteboard, TUI is a
new approach for learning. However, “new” does not mean “better.”
One reason is that some students could be distracted by TUIs for
their novelty effect [4]. Besides completely focusing on interacting
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Table 8: Comparative studies of different interfaces in the review results.

Ref. Year Compared Interfaces Tasks

Physical GUI (mouse) GUI (touch) TUI

[146] 2008 ✓ ✓ ✓ Jigsaw puzzle game
[85] 2010 ✓ ✓ Balance beam task
[22] 2012 ✓ ✓ Problem solving (creating Rube-Goldberg machines)
[7] 2013 ✓ ✓ Spatial problem solving (jigsaw puzzle)
[34] 2013 ✓ ✓ ✓ Abstract problem solving (modified board game - Mastermind)
[40] 2013 ✓ ✓ ✓ Problem solving (customised game of Four-in-Arrow)
[75] 2017 ✓ ✓ Bio-design activity
[105] 2018 ✓ ✓ Tasks in archaeology class

with tangibles, they might overlook or skip over other useful infor-
mation, e.g., text introduction or dialogue displayed on screen [76].
Kaspersen et al. [67] found even though TUIs made the machine
learning concept less abstract, participants still struggled to under-
stand the model artefact’s representation and functionality. They
found was a challenge to connect the machine learning process
with real-life applications. Second, not well designed TUIs could
affect understanding. For example, Dünser and Hornecker [37]
found it was hard for children to navigate from one page to the
next when combining paper and onscreen elements. They were also
spatially confused by the mirror view of their actions on the screen.
In addition, “swapping between literal and symbolic mappings with
the same kind of objects proved to be problematic for children.”
Finally, TUIs might have no or even negative effects on learning.
For example, sometimes, even though the positive interactive ef-
fects for adults has been proven, it was not optimised for kids [76].
Hyunjoo Oh et al. [96] developed Tabletop Puzzle Blocks to allow
children to create scenarios while playing with the puzzle blocks. In
this case, children’s focus and concentration were increased. How-
ever, compared to older children, the younger had shorter attention
spans.

We summarised three advantages of TUI compared with other
interfaces, such as TUI brought motor-cognitive benefits in spatial
problem-solving tasks. However, we should be careful to make
a conclusion, as: (1) the summary was from only 8 studies; (2) a
number of studies found no differencewhen using TUIs. Thus, while
literature presented a number of studies where TUIs have been
effective, our analysis showed that this might not be universally
the case. Further research is needed to show the effectiveness on a
wider content range, a larger sample size, and over a longer time
period to make a more reliably conclusion on the effectiveness of
TUIs.

5.2 Did TUIs Really Have a Tangible
Interaction?

Markova et al. [83] mentioned that there was an issue to clarify
whether a system was a TUI or an interface with some tangible
aspects. A similar dilemma happened in the review results, where
some studies designed interactions with a physical object, but it
might be not counted as a tangible interaction. As we know from
tangible interaction findings, tangible inputs (see Figure 1) came

from: interacting with one or several physical objects, using phys-
ical objects with an additional GUI, moving tokens on a surface,
assembling or structuring objects, interacting with gestures, body,
andmovement. The chosenmodality in the review results depended
on study context variables and had specific advantages. For example,
moving tokens on a surface could give learners feelings of augmented
reality; At the same time, it made the extension of learning con-
tent easy and flexible. However, it had an obvious discrete input
modality design, which limited the interactive experience.

The output was mainly haptic, visuospatial and audial infor-
mation. There was a physical-digital integration, which has three
types [139]: (1) Discrete: A physical input and digital output are
positioned vertically on a surface; (2) Collocated: physical input
and digital output are positioned and displayed on a surface; (3) Em-
bedded: the system is embedded within a physical object. Embed-
dedness is a unique characteristic of TUIs. As Ullmer and Ishii [138]
explained: “when viewed from the perspective of HCI, the abacus
is not an input device. The abacus makes no distinction between
‘input’ and ‘output.’ Instead, the abacus beads, rods, and frame serve
as manipulable physical representations of numerical values and
operations.” In other words, TUIs integrate interactive control and
physical and digital representation with physical objects. At the
same time, the interactive control should have a metaphor, which
was one of the criteria for TUIs [83]. However, we found in the
review results, some studies emphasised embodied interaction too
much and ignored its mapping and meaning.

In addition, the influence of materials on tangible interaction was
overlooked. A number of studies (15), e.g., [48, 69, 140] focused on
the size and shape of the TUI and the functions it provided, ignoring
the used material or only using one sentence to describe it in the
implementation section. Moreover, in some cases, we could only
recognise its materials from the prototype pictures [28, 56], only
very few discussed the impacts of materials [23, 42, 76, 101, 104].
For instance, to give users the feeling of using a real baseball bat,
Chacon et al. [82] tried to use the tangible bat model with similar
shape and size, but its material and texture were not considered.

To have a better understanding of TUIs’ meaning and advantages,
it is beneficial to analyse them from a HCI perspective. First, hu-
mans (H), which refers to the users, might have no evident changes
over time. However, the human-centred idea (the second wave of
HCI [16]) requires us to consider how to design an HCI to be more
intuitive and natural for human interaction. Tangible interaction
research provides a good direction for us to envision this possibility.



A Meta-Analysis of Tangible Learning Studies from the TEI Conference TEI’22, February 13–16, 2022, Daejeon, Republic of Korea

Therefore, one of the core ideas of tangible interaction should be
natural and intuitive for humans. Second, computer (C), which is be-
yond a traditional computer (e.g., laptop and tablet), can be tiny and
ubiquitous. Its size changes how users give and receive feedback,
which is as Ullmer and Ishii [138] said: “TUI had no distinction
between input and output.” When we think about how to design a
TUI for learning, its applications could go beyond learning tools
to integrating into the learning environment. Representation [106]
could increase the representational capacity and functionality of
the environment. Finally, interaction (I), which emphasises tangi-
ble and embodied interactive experience, should have a figurative
meaning. It is the bridge between physical and digital presentation,
not just having a physical object to interact with.

We conclude that while a large number of prototypes fulfil the
criteria for a TUI. On the other hand, not all the prototypes fulfil
the criteria for a TUI. However, researchers aimed to build a TUI.
Thus, for the future, it is important to focus on all the details when
designing a TUI, especially the currently underrated aspects such
as material and texture.

5.3 How Can TUIs Evolve in the Future?
As shown by earlier reviews [53, 84, 112, 147, 149], we confirmed
that children and collaboration were two popular areas for tangible
learning. Therefore, it might become harder and harder to make an
innovation or new contribution if we concentrate on them. In order
to enrich the community of tangible learning, researchers should
try to avoid this cluster and disperse to find other good topics. For
example, in order to take advantage of embodied interaction, we
could consider some groups who have visual or communicative
problems (e.g., elderly [18], visual-impaired [116], autism [38] and
depressed people). In addition, TUI is also good for learning abstract
knowledge, which could be embedded into tangible objects to reveal
by interaction.

As we could see from survey results about the opinions of TUI
advantages and best applications, we recommend the future work
could be: First, designing TUIs for the teacher to understand stu-
dents’ behaviours and do their learning analysis. TUIs make it
possible to track and record individual behavioural, which is ideal
for the teacher to diagnose each student’s problems. Second, making
TUIs have a social and emotional impact on students. Emotional [9],
social learning [150] and academic achievement are highly related.
Therefore, researchers could think about how to leave an emotional
and social impact on students while they participate in physical
activities. Finally, further developing the meaning and metaphor
of tangible interaction. As we know, tangible interaction does not
only mean having a physical object to interact with. The metaphor
between physical and digital representation is essential, as it im-
proves the learning by endowing an inner relationship into the
interactive processes.

As a result, while we argue that it will be important to focus
on the good quality of the prototypes, we found that the current
direction of tangible learning is very much focused on children.
Thus, future work should explore new research avenues such as
elderly and cognitive impaired people.

6 LIMITATIONS
As a review for tangible learning was long overdue, we focus specif-
ically on the TEI conference to capture the latest trends on tangible
technology. In detail, we provide a whole picture of tangible learn-
ing from all TEI conference proceedings (2007–2021). In doing so,
we keep our investigation focused, which allows us to specifically
provide support for researchers and educators, providing themwith
a better understanding of tangible learning. However, this means
that we have not covered all perspectives from all other conferences,
such as Conference on Human Factors in Computing Systems (CHI),
Interaction Design and Children (IDC), Designing Interactive Sys-
tems (DIS), and Creativity & Cognition (C & C). While this limits
the point of view on tangible learning only to cover the TEI per-
spective, we argue that our investigation is a great starting point
for future investigations and will help other communities better
understand the TEI perspective.

Additionally, we set our main audience to be researchers and
technology developers. Thus, the tone we used is very scientific
and suggestive towards future trends. Finally, we have an emphasis
on collaborative learning and the impacts of TUIs on learning.
However, it will be also beneficial to compare them with some
other specific review studies.

7 CONCLUSION
In recent years, tangible learning research has received increasing
attention. With this review, we analysed the tangible learning stud-
ies published in the TEI conference proceedings and provided a
comprehensive overview; and thus, providing an updated overview.
We reviewed 92 publications from 2007 to the present and provided
characteristics of previous studies, such as the study purpose and
types of tangible interaction. We categorised three common topics
from all the publications: collaborative learning, TUIs’ impacts on
learning, and comparative studies between TUI and other interfaces.
We provide detailed explanations of each topic, especially about
how TUI have influenced learning. Additionally, we investigated
feedback and insights from 14 domain participants, which provided
a more practice-oriented view.

We got three important findings: First, TUI has an impact on
learning is because it can scaffold learning (e.g., facilitate concept
understanding, reduce cognitive load and increase the learning
activity), change learning behaviour (e.g., increase the attention,
control and expression) and improve learning emotion (e.g., make
it more engaged, immersive and enjoyable). Second, we should
see the effectiveness of TUIs with a rational and critical mind.
There are many reasons, for example, most of the previous studies
were conducted with a small sample and a short experiment time;
Students could be distracted by TUIs for its novelty effect; if it is
not well designed, TUIs could affect understanding and have no or
even negative effects on learning. Finally, some studies emphasised
too much on embodied interaction and ignored its mapping and
meaning. However, the interactive control should have a metaphor,
which was one of the criteria for TUIs. For future work, we suggest
avoiding an intensive cluster on collaborative learning and children
education. Some other valuable research areas, such as TUI for
teachers, TUIs’ social and emotional impacts on students, develop
the meaning and metaphor of tangible interaction.
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Table 9: Overview of the papers included in our litterateur review. Note: Col. = Collaborative learning; RA = Research Article,
WIP =Work In Progress, C = Child aged 1-12, A = Adolescent aged 12-18, + = Adult older than 18, T = Teacher, N = Not specific.
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