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1 Introduction

The age of ubiquitous computing has brought a large number of interactive surfaces into our lives. In-
teractive surfaces are present in various forms, and various contexts from tabletops to mobile devices,
and touchscreens continue to remain the main input technique. In current systems, a finger touching
a screen or surface is typically reduced to simple two-dimensional coordinates. To overcome the lim-
ited expressiveness when using touchscreens, a large body of research proposes to enrich such a touch
interaction. In particular, previous work suggests using the finger orientation as a means of input, to
address this is the fundamental problem when using touchscreens. Wang et al. [13] have proposed to
adapt menus to finger orientation, e.g., for pie and torus menus. Finger orientation was also consid-
ered for creating novel interaction techniques for mobile devices. For example, understanding touch
as a finger orientation was the underlying concept of Z-touch [12] which used finger pitch angle as an
input dimension in a drawing application. Similarly, Kratz et al. [5] enabled finger orientation gesture
detection with a depth camera above the touchscreen. While Z-touch and the work by Kratz et al. [5]
detect finger orientation using a vision-based sensing system, Rogers et al. [11] used a capacitive
sensor array to detect the pitch and yaw of the finger. Finally, Xiao et al. [14] used an off-the-shelf
consumer touchscreen device to detect pitch and yaw as additional input. Xiao et al. [14] reported
their method leads to a pitch error of 9.7◦ and a yaw error of 26.8◦ for their prototype. They further
reported that during their study they faced ergonomic problems, such as long fingernails and cretin
finger orientations which are hard to perform. Therefore, they limit their input space.

This work focuses on three different aspects in using finger orientation as a additional input dimen-
sion. First, we investigative two different approaches to detect the finger orientation when interacting
with touchscreens. Second, we study the ergonomic constraints which constrain designers in the ways
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Figure 1: The prototype with the 8.4-inch tablet and the depth camera.

they can implement finger orientation in new systems. Third, we contribute a new method which al-
lows us to study the social implications of new interaction techniques, in detail this enables us to study
the impact of finger orientation on face-to-face conversations.

2 Recognition

In the attempt to recognize the finger orientation while interaction with a touch screen we investigated
two different approaches. The first approach uses a depth camera which is attached above the touch-
screen and can, therefore, observe finger while approaching the touchscreen. Here we extend from
the work by Kratz et al. [5] and improved accuracy for both pitch and yaw recognition and extend the
recognition to all fingers but the thumb (published at MobileHCI’17 [9]). The second approach uses
an off-the-shelf smartphone and uses Machine Learning (ML) to recognizance the fingers orientation.
Using a Convolutional Neural Network (CNN), we reduce the estimation error for pitch by 9.8% and
yaw by 45.7% in comparison to existing approaches; these results are published at ISS’17 [7].

2.1 Depth Camera Approach

We developed a prototype with a depth camera mounted on a tablet that can determine the finger
orientation. We conducted a study with 12 right-handed participants (3 female, M = 25.83years,
SD = 3.31) to record ground truth data for all fingers but the thumb to evaluate the accuracy of our
prototype using the PointPose [5] algorithm to estimate the finger orientation. By applying 2D linear
correction models, we show a reduction of RMSE by 45.4% for pitch and 21.83% for yaw.
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(a) Index finger (b) Middle finger (c) Ring finger (d) Little finger

Figure 2: The scatterers are showing the samples from the study. The underlining plain represents the
correction model for the yaw correction based on pitch and yaw of the depth camera.

2.1.1 Prototype

For our prototype, shown in Figure 1, we use a Samsung Galaxy Tab Pro 8.4 which offers 2560 ×
1600 px on an 8.4-inch screen resulting in 359.39PPI. As a depth camera, we use an Intel RealSense
F200. The camera has a minimum sensing distance of 20 cm and a resolution of 640 × 480 px at
120FPS. We used this camera due to its small minimum distance in comparison to other depth cam-
eras. However, we needed to overcome the 20 cm between the tablets screen and the depth camera.
Therefore, we 3D printed a mount for the tablet and laser cutted a connection plate to attach the
camera to the tablet. We firmly connected the parts using metal screws.

2.1.2 Study

We designed the study using a repeated-measures design with four independent variables: TARGETS,
YAW, PITCH, and FINGER. We randomized the order of FINGER, and within FINGER we randomized
TARGETS and YAW. To cover a broad range of possible positions, we used 20 TARGETS arranged in
a 4× 5 grid on the tablet. The targets further represented five PITCH input angles: 15◦, 30◦, 45◦, 60◦

and 75◦. Further, we used five YAW input angles: −60◦, −30◦, 0◦, 30◦ and 60◦.
The study procedure was as follows: the experimenter marked each finger with two red dots on the

left and right side and on top of the finger to later calculate the finger orientation. Then, we explained
that they have to touch the center of the red crosshair while aligning the finger with the longer red line
indicating the yaw angle; while changing the pitch to cover all pitch angles (see Figure 1).

2.1.3 Results and Summary

Using the red marker we analyzed the data and calculated the average error of PointPose [5]. We
modeled the error with a full second order two-dimensional polynomial. For the final model we used
the training and test data to fit the model, we achieved an RMSE reduction by 45.4% for pitch and
21.83% for yaw. Further the fitness of the pitch correction functions for the four fingers functions is
on average R2 = .5, and for the four yaw functions the fitness is on average R2 = .66 (see Figure 2).
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Figure 3: For different capacitive images form a Nexus 5 with different finger orientations. The labels
represent the finger orientations pitch, yaw.

First, we build a prototype to determine the accuracy of the algorithm by Kratz et al. [5]. Second,
we showed a reduction in RMSE when applying our offset correction model. Further, we showed that
the algorithm proposed by Kratz et al. [5] also could determine the pitch and yaw of the middle, ring,
and little finger with an equal accuracy. We build a prototype which can be applied to any flat surface
to determine the yaw and pitch of the finger. This is especially handy when working with paper
prototypes to investigated new interaction techniques that take the finger orientation into account.

2.2 Machine Learning Approach

Approaches for determining a finger’s orientation using off-the-shelf capacitive touchscreens pro-
posed in previous work already enable compelling use cases. However, the low estimation accuracy
limits the usability and restricts the usage of finger orientation to non-precise input. We provide a
ground truth data set for capacitive touch screens recorded with a high-precision motion capture sys-
tem. Using this data set, we show that a Convolutional Neural Network can outperform approaches
proposed in previous work. Instead of relying on hand-crafted features, we trained the model based
on the raw capacitive images. Thereby we reduce the pitch error by 9.8% and the yaw error by 45.7%.

2.2.1 Study

In a study, we collect capacitive images and respective finger orientation angles as ground truth using
a motion capture system. We followed the approach by Holz and Baudisch [4] to collect ground truth
data of the finger orientation. Here participants continusily entered touch samples while their finger
is tracked in space using the motion capture system. We recruited 35 participants (7 female) through
our university’s mailing list. Due to due to technical issues we excluded two participants. For the
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remaining 33 participant (7 female) the age ranged from 20 to 33 years (M = 22.9, SD = 3.4).

2.2.2 Results and Summary

In our study, we collected a data set of capacitive images which represents the change in capacitance
caused by fingers touching the display in different finger orientations. These images are labeled
with the pitch and yaw angles of the finger through a high-precision motion capture system. In our
study we collected 457, 268 labeled samples which the used to train our models. The feature-based
approach by Xiao et al. [14] is based on a Gaussian process (GP) and a simple heuristic to estimate the
finger orientation using a set of engineered features. In contrast, our model uses the representation
approach using a Convolutional Neural Network (CNN) trained with raw capacitive images. We
reduces the estimation error for pitch by 9.8% and yaw by 45.7% in RMSE when comparing to our
pseudo implementation of the Xiao et al. [14] approach using their features. Besides the data set, one
outcome of this work is an improved finger orientation estimation model that can be readily deployed
to Android and iOS devices. We are publicly releasing the model for others to deploy them on their
mobile devices, as well as the data set for further usage.

Using the latest ML algorithms, we showed a noticeable improvement over previously presented
approaches. The next steps to improve finger orientation estimation on mobile devices would include
using a touchscreen that provides a higher capacitive image sampling resolution. Moreover, using
touchscreens with sensing capabilities above the display would enable a reconstruction of the full
finger and provide more vital information to estimate the finger orientation.

3 Ergonomic Constraints

Understanding of the physiological restrictions of the hand is required to build effective interactive
techniques that use finger orientation as an additional input. We conducted a study to derive the
ergonomic constraints for using finger orientation as an effective input source. In a controlled ex-
periment, we systematically manipulated finger pitch and yaw while performing a touch action. We
found that finger pitch and yaw do significantly affect the perceived feasibility and 21.1% of the touch
actions were perceived as impossible to perform. Our results show that the finger yaw input space can
be divided into the comfort and non-comfort zones. We published these results at MobileHCI’17 [6].

3.1 Study

In a repeated measures experiment, we asked 18 participants (9 female, M = 25.9 years, SD = 2.7)
to perform touch actions with their index finger. We asked them to rate the feasibility (RATING) of
the touch action. Feasibility, in this context, was defined as the effort required to perform the touch
action. The experiment was conducted with three independent variables: PITCH and YAW of the index
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Figure 4: The average feasibility RATING (from 0 = ’easy’ to 100 = ’hard’) for the different PITCH

inputs.

finger, as well as HAND. We used 10◦, 32.5◦, 55◦, and 77.5◦ for PITCH. For YAW, we covered the full
360◦ range resulting in 0.0◦ to 337.5◦ with 22.5◦ steps. All combinations were tested with the index
finger of the right and the left HAND.

3.2 Results

We collected 2304 ratings, out of these 485 (21.1%) were marked by the participants as not feasible to
perform. All inputs that the participants marked to be not feasible where considered to be hard (100
points) for the analysis. Our results show that finger orientation has a significant effect on perceived
feasibility of touch actions. As expected, participants perceived actions performed with the dominant
HAND as more feasible than those performed with the non-dominant hand, see Figure 4.

3.3 Summery

We conducted a study to investigate the ergonomics of finger pitch and yaw as an additional touch
input parameter. We asked participants to rate the perceived feasibility of performing touch actions
with different finger orientations. We systematically manipulated the finger pitch and yaw while
performing a touch action. We varied the input orientations using 4 different pitch and 16 different
yaw angles. All combinations were performed with the index finger of the left and the right hand. The
results show that not all orientations are equally feasible, with some orientations being infeasible to
perform. Furthermore, we show that the input space for each hand can be divided into two zones; the
comfort and non-comfort zones. Only 135◦ out of 360◦ of all yaw orientations are within the comfort
zone and perceived as feasible.
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Figure 5: The study procedure in our new mixed-method approach. Data collection methods are:
video, audio and eye tracking.

4 Social Implications

While the proliferation of mobile devices has rendered mobile notifications ubiquitous, researchers
are only slowly beginning to understand how these technologies affect everyday social interactions.
In particular, the negative social influence of mobile interruptions remains unexplored from a method-
ological perspective. We contribute a mixed-method evaluation procedure for assessing the disruptive
impact of mobile interruptions in conversation. The approach combines quantitative eye tracking,
qualitative analysis, and a simulated conversation environment to enable fast assessment of disrup-
tiveness. It is intended to be used as a part of an iterative interaction design process. We contribute a
mixed-method evaluation approach for assessing the disruptiveness of mobile interaction techniques.
We postulate an approach that uses a conversation task for two participants. We employ eye tracking
as a quantitative measure and combine it with qualitative evaluation based on semi-structured final
interviews. In traditional coding techniques for face-to-face conversations used in past work [2, 3],
hour-long encoding of video and audio material is needed. In contrast, our work offers an alternative
approach that highlights how the eye-tracking and interviews can offer complementary yet different
insights. Our method is interestingly different from past approaches as it is designed to offer quick
answers that result in actionable insight during a design process. This work is published at CHI’18 [8].

4.1 Choice of Participants and Stimulus

As we endeavored to design an approach that would allow for rapid evaluation, we considered flexi-
bility in terms of participant choice as a key feature. Participants are often hard to recruit, especially
for studies early in the design process, when rapid feedback is needed. Our approach can be used
with a wide variety of participants as it uses a generic conversation stimulus. Participants are grouped
in pairs randomly. Further, the experimental design allows for large within-pair variability in eye
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tracking metrics and thus it does not put any restrictions on the participants’ gender, age, race, native
language etc. Previous work showed that gaze fixations are an effective way to evaluate two sys-
tems [1]. Moreover Okamoto et al. [10] showed eye movements are affected by conversations. Thus,
when using eye tracking in conversations, this should be taken into account in the design. As a result
measuring the time of eye contract or time spent looking for the conversation partner is not efficient
as a disruption measurement. Therefore we propose time spent on the disruption as the measurement.
Therefore, a between-groups design for the experiments is necessary as sequence effects are likely to
appear when a conversation is prolonged.

We use a generic discussion task in our approach where we use a task designed by language
experts specifically for conversations between strangers with a particular focus on paying attention
to the other party in the discussions. Consequently, we use the discussion task from the University
of Cambridge’s English for Speakers of Other Languages Certificate in Advanced English Speaking
Test. The task provides a stimulus that is both manageable for advanced non-native speakers and
engaging enough for native speakers. The task also includes a shorter introductory segment that can
be used as an icebreaker for the discussion. An additional advantage of using a speaking exam task
is the fact that analogous tasks exist and can be easily found for other languages. Again, using such a
task necessitates a between-groups design, as there is no possibility to assure that different discussion
topics are equally stimulating to a given randomly assigned pair of participants.

4.2 Study Plan

The final study procedure in our approach is shown in Figure 5. At the beginning of each study ses-
sion, the facilitators conduct individual semi-structured interviews (Entry Interview, see Figure 5).
The interview serves as a means of collecting demographic data on the participants. Further, it intro-
duces the conversation task. The purpose of the study is not revealed to the participants until the end
of the study. Informing the participants about the focus on mobile disruptiveness may cause potential
bias due to increased awareness to interruptions. Thus only one participant will be introduced to the
additional disruptive task. After the instruction and training phace, the participants are introduced to
each other and start wearing the eye trackers. The facilitator then presents the experimental task. First,
the participants run through a warm-up phase to get confident with their conversation afterward also
the disruption is taking place to observe the participants reactions and potential behavior change. Af-
ter the discussion is concluded (we recommend a time of 10 minutes, based on language examination
experience), individual debriefings (Final Interview, see Figure 5) are performed. All interviews are
audio recorded. As a safety precaution, we also recommend video recording the conversation. After
the study, eye tracking data is analyzed using inferential significance testing and simplified qualitative
analysis with affinity diagramming is performed on the interview data.
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4.3 Summery

We contribute a new mixed-method approach to measuring the disruptiveness of technology. Our
new approach uses eye tracking and semi-structured interviews in a generic conversation task to offer
rapid, actionable insights for designing interaction techniques that may be used in conversations.
Designing techniques beyond existing ones to study the influence of different interaction mechanisms
on conversational engagement remains an important challenge. We are eager to see how future designs
will explore the design space that we merely begin to understand.

5 Conclusion and Future Work

In this work we investigated in three aspects in using finger orientation as an additional input dimen-
sion: first the recognition, second ergonomic constraints, and lastly we contribute a method to evalu-
ate new interactions in social settings. In detail, we presented two approaches to estimate the finger
orientation, using a depth camera or an off-the-shelf touchscreen. We showed that both approaches
outperform the existing approaches. We further, presented that due to ergonomic restrictions, not all
finger orientations are suitable for touchscreen input. Finally, we laid the foundation to investigate
the social implications of finger orientation by presenting a new evaluation method for interactions
techniques in face-to-face conversations.

5.1 Social Implications of Finger Orientation

In a next step, we want to investigate possible social implications of using finger orientation as an
input. Here we will use the new mixed-method approach. We plan to compare finger orientation
input and regular touch input using a set of common interactions in face-to-face conversations, such
as researching a near by location or responding to an incoming instant message.

5.2 Discoverability of Finger Orientation

Lastly, we want to investigate ways to communicate the new interaction technique to the user. While
a number of use cases have been proposed in previous work, the discoverability of using the finger
orientation as an input is still not answered. We see hosting focus groups as one way to investigate
possible representations in the graphical user interface and implications for designers. While these
results tend to be vague outcome another option is to conduct expert interviews with a possible focused
outcome. In both cases, we would like to study the proposes solutions in a follow-up study, in which
users are able to test these new ways of communicating finger orientation input.
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