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ABSTRACT
As touchscreens are the most successful input method of

current mobile devices, touch gestures became a widely used

input technique. While gestures provide users with advan-

tages to express themselves, they also introduce challenges

regarding accuracy and memorability. In this paper, we in-

vestigate the effect of a gesture’s orientation on how well the

gesture can be performed. We conducted a study in which

participants performed systematically rotated unistroke ges-

tures. For straight lines as well as for compound lines, we

found that users tend to align gestures with the primary axes.

We show that the error can be described by a Clausen func-

tion with R2
= .93. Based on our findings, we suggest design

implications and highlight the potential for recognizing flick

gestures, visualizing gestures and improving recognition of

compound gestures.

CCS CONCEPTS
• Human-centered computing → Touch screens; Em-

pirical studies in HCI; • Hardware→ Touch screens.

KEYWORDS
Touch unistroke gestures, touch input, orientation, gesture

set, user study, design guidelines, mobile device.
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1 INTRODUCTION
Touchscreens are the dominant input technique for current

mobile devices. By combining input and output in a single

surface, user interfaces becamemore intuitive as users can di-

rectly touch desired objects on the touchscreen. With direct

touch, many novel, and intuitive input methods emerged.

Users can scroll by swiping with a finger over the screen, ro-

tate by rotating two fingers and zoom by pinching/spreading

two fingers. However, this combination also entails major

disadvantages that are the focus of a wide range of previous

work. Amongst others, input (e.g. an on-screen keyboard)

and output (e.g., an image, or text document) have to share

the same limited screen space.

Touch gestures are a widely used approach to overcome

touchscreens’ limitations. Gestures can be performed at any

location on the touchscreen and do not require any dedi-

cated space in comparison to on-screen keyboards or menus.

Therefore, a large body of work proposed to use gestures for

a wide range of functionalities, such as launching applica-

tions [21], managing the clipboard [11], hierarchic marking

menus [16, 33], unlocking the smartphone [26, 29], improv-

ing text entry using gesture keyboards [15, 32], or overcom-

ing the fat-finger problem on small devices [8]. Moreover,

Appert and Zhai [1] showed that stroke-based gestures can

be better learned and recalled in comparison to keyboard

shortcuts with the same amount of practice. Users also inter-

act with their smartphone in mobile situations, such as while

walking and sharing their attention between the device and

the environment. Bragdon et al. [4] showed that gestures

https://doi.org/10.1145/3290605.3300928
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offer significant performance advantages compared to soft

buttons when the user is under environmental distractions.

A large body of work investigated how users perform

gestures. Cao and Zhai [6], for example, presented a model

to predict the production time of pen stroke gestures. The

authors were mainly interested in production time but also

showed that the orientation can have an effect on accuracy.

In particular, they stated that horizontal and vertical move-

ments tend to be more accurate. Following the work by Cao

and Zhai [6], we assume that the accuracy of gestures per-

formed with the finger is also affected by the orientation of

the strokes. While it is likely that the accuracy is affected

by orientation, it is unclear how the orientation affects the

accuracy and how the accuracy can be predicted. Further-

more, meaningful gestures typically do not only consist of

a straight stroke which makes it important to also analyze

gestures consisting of multiple segments.

The main contribution of this paper is a deeper under-

standing of how gestures are performed by users. In a study,

participants reproduced gestures consisting of one, two or

three straight segments resulting 4,104 unique gestures. In

total 40 participants performed 39,038 gestures. We show

that the orientation of the gesture significantly affects users’

accuracy and that a Clausen function can model the error

with R2 = .93. We provide design implications that can help

to design rotation sensitive unistroke gesture sets. The con-

tribution of this paper is three-fold: (1) an analysis of how

humans reproduce presented gestures, (2) a model that de-

scribes the effect of orientation on rotation sensitive gestures

and (3) design implications to improve rotation sensitive

unistroke gesture sets.

2 RELATEDWORK
Commercial devices already incorporate a wide range of

touch gestures, such as swipe to unlock or letter-shaped

gestures to launch pre-defined applications. Caramiaux et

al. [7] investigated continuous gestures and not only used

size and speed as input dimensions but also gestures’ orien-

tation. Poppinga et al. [21] further investigated these kinds

of gestures in an in-the-wild study to derive a comprehen-

sive gesture set for the frequently used actions. Previous

work showed that gestures have a wide range of advantages,

including eyes-free input [24], outperforming on-screen but-

tons while walking [4], and a better recall in comparison to

keyboard shortcuts with the same amount of practice [1].

Previous work also developed a large number of approaches

to recognize gestures, including GRANDMA [25], work that

extended the considered features [18], learning-based ap-

proaches [12, 28], and even the use of kinematic theories for

data augmentation [17].

One focus of previous work was gaining a deeper under-

standing of the way users perform gestures on touchscreens.

Cao and Zhai [6] investigated users’ performance when per-

forming pen stroke gestures and built a model that predicts

the time to perform a gesture. In their model, they count

straight lines, arcs, and corners to predict the execution time.

Tu et al. [31] found that the number of included muscles

and joints of the hand have an impact on accuracy. They

compared stroke gestures using a pen, the index finger, and

the thumb. While pen input performed best, index finger ges-

tures performed better than thumb gestures. Finger gestures

tended to be less accurate than pen gestures with regard to

shape distance and shape errors. They found a significant

bias in the gesture’s orientation by about 3
◦
.

Tu et al. [30] compared pen and touch gestures and found

that while there are differences in size ratio and average

speed, they were both similar in indicative angle difference,

axial symmetry, and proportional shape distance. Similar

results were presented by Arif and Sylla [2] who found that

pen gestures were significantly faster and more accurate.

Rekik et al. [23] report that pre-defined gestures produced

with more fingers are larger in size and take more time to

produce than single-touch gestures.

Previous work developed models to increase the accuracy

of target selection tasks on touchscreens by compensating

systematic errors [14]. Mayer et al. [19, 20] used a similar

approach to improve the accuracy of mid-air gestures. How-

ever, these approaches relied on simple polynomials and it

is unclear how to apply correction models to 2D gestures.

Overall, a significant body of research is devoted towards

understanding how users perform gestures. In particular, Cao

and Zhai [6] revealed a significant effect of orientation on

straight lines. Further, they stated that horizontal and vertical

movements tend to be more accurate. Later Burri et al. [5]

also showed that the horizontal and vertical movements are

significantly different from the diagonal unistroke gestures in

both subjective performance and subjective physical demand.

In this paper, we, therefore, aim to understand the effect

of orientation on the accuracy of unistroke touch gestures

and build a model with the potential to improve gestural

interaction.

3 HYPOTHESES
Cao and Zhai [6] investigated how users perform pen stroke

gestures. While they were mainly interested in production

time, they also revealed a significant effect of orientation on

accuracy for straight lines. Further, they stated that horizon-

tal and vertical movements tend to be performed better both

in orientation error but also in number of attempts. More-

over, Cao and Zhai [6] showed that gestures with Corners
(two-segment gestures) the angle has a significant influence
on orientation error and number of attempts. Here, they ar-

gue that the error is larger for around 67.5◦ than the extrema.



Finally, while Cao and Zhai [6] presented results on produc-

tion time on polylines (three- and more-segment), they did

not study orientation effects. We adopted the findings by Cao

and Zhai [6] since Tu et al. [30, 31] stated that pen stroke

gestures and index finger touch stroke gestures have similar

orientation errors. Thus, our paper investigates the effect of

orientation on connected straight lines and is guided using

the index finger by the following four hypotheses:

Hypothesis 1 (H1): The orientation of a gesture systemically

affects the error when performing the gesture.

Hypothesis 2 (H2): Adding straight segments to a gesture

results in a larger variation to the orientation error.

Hypothesis 3a (H3a): Users skew the orientation of lines to-

wards horizontal lines even if the visual representation

is off by some degrees.

Hypothesis 3b (H3b): Users skew the orientation of lines

towards vertical lines even if the visual representation

is off by some degrees.

Hypothesis 4 (H4): Users perform straight diagonal gestures

with a lower error than other straight gestures.

4 STUDY
We conducted a study to observe how users perceive and

perform presented gestures. Therefore, we systematically

manipulated the orientation of three types of gestures: one-
segment, two-segment and three-segment gestures. Each seg-

ment is a single straight line (see Figure 1).

Design
For our study, we used a mixed-design to keep the time of the

study reasonable for participants. As previously mentioned,

participants performed three different types of gestures: one-
segment, two-segment, and three-segment gestures. The three
segment structure is inspired by Cao and Zhai [6] who used

straight lines, corners, and polylines which respectively are

represented by the three different segment gesture number. A

selection of gestures is shown in Figure 2. For the one-segment
gestures, we used one straight line which was systematically

rotated by one degree, resulting in 360 gestures.

The two-segment gestures are built out of two consecutive
segments with different orientations. The first segment is

rotated around the full 360
◦
circle in 15

◦
steps, resulting in 24

different orientations. The second segment is rotated from

−90◦ to 90◦ in 15◦ steps (skipping 0◦), resulting in 12 different

orientations.

The three-segment gestures are built out of three consec-
utive segments each with a different orientation. The first

segment is rotated around the full 360
◦
circle in 15

◦
steps,

resulting in 24 different orientations. The second and third

segment is rotated from −90◦ to 90
◦
in 15

◦
steps (skipping

0
◦
), resulting in 12 different orientations each.

(a) (b) (c)

α

α
α

α
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Figure 1: For one-segment gestures (a) we rotated α1 around
360

◦
in 1

◦
steps. For two-segment gestures (b) we rotated α1

around 360
◦
and α2 from −90◦ to 90

◦
, both in 15

◦
steps. We

rotated three-segment gestures (c) around 360
◦
at α1 and from

−90◦ to 90
◦
at α2 as well as α3, all three angles in 15

◦
steps.

The combinations of segments result in 360 one-segment
gestures, 24 × 12 = 288 unique two-segment gestures, and
24×12×12 = 3, 456 unique three-segment gestures, resulting
in 4,104 unique gestures. As performing 4,104 gestures con-

secutively will cause fatigue effects, we decided to conduct

an experiment with a mixed-design. Therefore, participants

performed all 360 one-segment gestures. Additionally, they
performed either all two-segment gestures or 25% of the three-
segment gestures. Thus participants performed either 648 or

1,224 gestures. The order of the gestures within one segment

type was randomized.

The real world size of the two-segment gestures was 3.0cm,

for the two-segment gestures the segments were .85cm each,

and for the three-segment gestures the size was .85cm for the

first and last segment, and 1.7cm for the middle segment.

Apparatus
We used an LG Nexus 5X (LG V10) smartphone with a 5.7′′

screen (2560 × 1440px) for the study. We developed an An-

droid application to collect the gesture data. To avoid partic-

ipants to trace the gesture on the screen to improve input

accuracy, gestures were moving from the top to the bottom

of the screen. Moreover, we limited input to the lower half of

the screen as shown in Figure 3 while the gesture was only

visible in the upper half. While participants reproduced the

gesture, it stayed visible until it reached the bottom of the

upper part, white part in Figure 3. This allowed participants

to relate back to measure the actual input error and not pos-

sible memory error. In case a participant did not perform a

shown gesture, it appeared again until it was performed.

Procedure
After the participants signed a consent form, we explained

the procedure of the study and handed them the smartphone.

Participants were seated during the study. As the first step,

we asked them to fill out a demographics questionnaire on

the smartphone.

The study started with a tutorial in which the participants

were asked to perform 10 gestures randomly selected from



Figure 2: A selection of 18 three-segmented gestures used in the study.

the subset they had to perform. During the study participants

hold the device in their non dominant hand, while perform-

ing the gestures with their dominant hand using their index

finger. After each gesture, they got a score (0 = “worst”, 10

= “best”) for each input based on how well they reproduced

the presented gesture. To increase participants’ motivation,

it was not possible to reach the highest score. We, therefore,

present only scores between 3 and 7 which were randomly

generated. The score was only shown in the tutorial phase

of the study.

The remainder of the study was divided into 6 phases sep-

arated by a short break in which an overview of their perfor-

mance was shown. After performing a gesture participants

were not allowed to correct their input. The one-segment
gestures were performed in one phase while the two-segment
or three-segment gestures were randomized over five phases.

Participants had to perform a gesture while the gesture was

visible on the screen. We allowed them to take a break at any

point during the study as not performed gestures would ap-

pear again.We asked participants to fill out a rawNASA-Task

Load Index (raw TLX) [13] after each phase to investigate

Figure 3: Three screenshots of the study apparatus. The

screenshot on the left is showing the view in the tutorial.

While the other two screenshots showing the state during

the 6 phases.

the effect of potential fatigue effects. They were asked to use

their non-dominant hand to hold the phone while perform-

ing the gestures with the index finger of the dominant hand.

Overall, the study lasted about one hour per participant.

Participants
We recruited 40 participants (20 female) from the university

campus via mailing lists. We rewarded them with e 5 for

their participation. All participants described themselves as

daily smartphone users. Participants were between 19 and

46 years old (M = 24.2, SD = 5.4). Two participants were

left-handed. None had any mental or physical disabilities

such as locomotor coordination problems.

5 RESULTS
While we conducted the study with 40 participants the analy-

sis is based on 39 participants, as we excluded one participant

due to server-client connection issues in the logging process.

In contrast to Cao and Zhai [6] who adopted a normalized

measurement from Kristensson and Zhai [15], we used the

raw angular error as measurement for the orientation error.

Our participants performed 43, 128 gestures. We filtered the

gestures for wrongly performed gestures using three times

the standard deviation of the angular error per gesture type.

Finally, we used the remaining 11, 826 valid one-segment ges-
tures, 2, 287 valid two-segment gestures, and 22, 151 valid

three-segmented gestures for our analysis. We present the

evaluation of the line orientations using angles based on the

unit circle
1
. As left and right handed participants performed

gestures with their dominant hand, we assume equal quality

of the data and therefore applied no transformation to the

left handed participants.

1
In this paper, a line from the bottom to the top is defined to be as oriented

with 0
◦
and growing counterclockwise. Thus, a line from the right to the

left is 90
◦
, accordingly. The reported angles are in respect to the device

screen orientation.
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(b) Two-segment gesture (first seg.)
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(c) Two-segment gesture (second seg.)
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(d) Three-segment gesture (first seg.)
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(e) Three-segment gesture (second seg.)
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(f) Three-segment gesture (third seg.)

Figure 4: The average angle error for the three segments. The gray area shows the 95% CI. The yellow line represents the trend

line for one-segment gestures as we showed that the trend line accounts for most of the variation and correlates with the

variation in all other gestures.

Potential Fatigue Effect
First we analyzed the raw TLX to determine if we had to

consider fatigue effects. After the first phase the mean raw

TLX score wasM = 7.4 (SD = 3.1), after the secondM = 6.9
(SD = 3.5), after the third M = 7.4 (SD = 3.5), after the
fourthM = 7.4 (SD = 3.1), after the fifthM = 7.5 (SD = 3.2),
after the last phaseM = 7.5 (SD = 3.2). A one-way repeated

measures analysis of variance (RM-ANOVA) was conducted

with trial number as factor. The analysis did not reveal a

statistically significant effect, F1,38 = .493,p = .487. Thus, we
assume that the effect of participants’ fatigue was negligible.

Segmentation
Weused recursive boundary splitting to segment the gestures

as described by Sonka et al. [27]. First, the start and the end

point of the gesture is used as x1 and x2. x3 is the point

with the largest distance to the line segment (x1, x2) and
is used to split a gesture in two segments. These steps are

applied recursively to the two resulting segments (x1, x3)
and (x3, x2) [27].
After the segmentation, we approximated each segment

using orthogonal distance regression (ODR) [3] to estimate

the segment parameters. We took the orientation error as

filter criteria. We filtered, as described above, all gestures

where at least one segment exceed an error ofM ± 3SD.

One-Segment Gestures. The lines fitted to the one-segment
gestures had an average R2

of .95 (SD = .15). The average
orientation error for the one-segment gestures isM = −.9◦

(SD = 9.) while the root mean squared error (RMSE) is 9.1.
The orientation errors are presented in Figure 4a.

Two-Segment Gestures. The lines fitted to the two-segment
gestures had an average R2

of .76 (SD = 2.40) for the first
segment, R2 = .78 (SD = 1.90) for the second segment. The

average orientation error for the two-segment gestures is
M = 1.5◦ (SD = 12.7) with RMSE of 12.8 for the first segment,

and M = .9◦ (SD = 13.5) with RMSE of 13.5 for the second
segment, see Figures 4b and 4c.

Three-Segment Gestures. The lines fitted to the three-segment
gestures had an average R2

of .57 (SD = 10.01) for the first
segment, R2 = .65 (SD = 4.09) for the second and R2 = .40
(SD = 10.37) for the third segment. The average orientation

error for the three-segment gestures isM = −1.4 (SD = 13.4)
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Figure 5: The orientation variation for the different Seg-

ment × Gesture.

with RMSE of 13.5 for the first segment, M = 1.1 (SD =
14.1) with RMSE of 14.1 for the second segment, and M =
.89 (SD = 15.7) with RMSE of 15.7 for the third segment.

All errors for the three different segments are presented in

Figures 4d to 4f.

Orientation Error
To understand how Orientation, Segment, and Gesture

affect the mean orientation error in degree, we conducted

a three-way analysis of variance (ANOVA) on all samples.

The orientation factor consisted of 24 orientation levels in

15-degree steps. Since the level of segments depends on the

type of gesture (e.g., there is no 2
nd

and 3
rd

segment level in

a one-segment gesture), the levels of factor Segment (max 3

levels) are handled as nested factor of Gesture. The analysis

was conducted on subject level (averaged per participant)

with subject as random factor.

We found a significant main effect for Gesture (F2,3359 =
227.630, p < .001) but not for Orientation (F1,3359 = .897,
p = .344). There was a significant interaction effect for Ges-

ture × Segment (F3,3359 = 11.130, p < .001) but not for
Gesture × Orientation (F2,3359 = .976, p = .377). We also

found a significant three-way interaction for Gesture ×

Orientation × Segment (F3,3359 = 19.891, p < .001) which
means that the combination of all three factors have a sig-

nificant effect on the mean orientation error and have to be

considered in the development of the model.

Orientation Variance Comparison
A two-way ANOVA was conducted to reveal the effects of

Gesture and Segment on the variance measures (given as

standard deviation of the orientation samples) between Ges-

ture and Segment. We found a significant effect of Gesture

(F2,474 = 1432.671, p < .001), and Segment (F2,474 = 31.493,
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R2 = 0.93

Figure 6: The average angle error for the one-segment ges-

ture in respect to the performed gesture in blue. While the

yellow line represents the trend line fit of the Clausen func-

tion, see Equation (3).

p < .001) as well as a significant interaction effect of Ges-

ture × Segment (F1,2401 = 9.146, p = .003) Bonferroni-
corrected pairwise t-tests showed significant differences be-

tween all combinations (p < .001). All variance measures of

the orientation are depicted in Figure 5.

6 MODEL TO IMPROVE UNISTROKE GESTURE
INPUT

As we noticed a cyclic behavior of the orientation error for

the one-segment gestures, we first used a Sinus function to

model the orientation error:

f itsin(x) = a ∗ sin(c(x − d)) + e (1)

Using ordinary least squares regression, we fitted parameters

to the function f itsin(x). With our first attempt, we achieved

a R2
of .85. We then modeled our error with a skewed Sinus

function, a Clausen function [9]:

Sn(x) =
∞∑
k=0

sin(kx)

kn
(2)

To fit the skewed Sinus function to the data, we added

fitting parameters to stretch or compress the function if

needed. We again used ordinary least squares to estimate

the fitting parameters a to e for our fitting function:

f it(x) = aSb (c(x − d)) + e (3)

Using the skewed Sinus function we achieved a fit of

R2 = .93. The coefficients to model the orientation error are

[7.7218, 0.0698,−0.5702,−0.8924, 1.8915], respectively from

a to e . The fitted function is shown in Figure 6. The local max-

ima are located at [14.84◦, 104.84◦, 194.84◦, 284.84◦] and local



minima are located at [76.3◦, 166.3◦, 256.3◦, 346.3◦]. While

the zero of the function is at [14.84◦ + i ∗ 90.◦, 76.3◦ + i ∗
90.◦]with i ∈ Z, see Figure 6.

7 EVALUATION
We used leave-one-participant-out cross-validation. We fit-

ted one model for each training set and tested with the re-

maining participant. The average remaining orientation error

is M = .023◦ (SD = 6.7◦) while the RMSE is 6.9◦. This is a
reduction in mean orientation error of 97.41 %, 25.24 % in SD,
and 23.77 % in RMSE for the one-segment gestures.

Next, we show how well the correction model for the one-
segment gestures will represent the error of the two-segment
gestures and the three-segment gestures. Therefore, we used
a method proposed by Fisher and Lee [10] to study the cyclic

effect of angular data. Their method calculates the correlation

ϱ between two directional variables. The significance of this

correlation can be assessed by the p-value.

For the two-segment gestures, the correlation of the first

segment is p < .001 and ϱ = 0.7808. The correlation of the

second segment is p < .001 and ϱ = 0.8361. Therefore, on
average the function describes 80.84% of the variance of the

two-segment gestures, see Figures 4b and 4c.

For the three-segment gestures, the correlation of the first

segment is p = .002 and ϱ = .7405. The correlation of the

second segment is p < .001 and ϱ = .8748. The correlation
of the third segment is p < .003 and ϱ = .7485. Therefore,
on average the function describes 78.79 % of the variance of

the three-segment gestures, see Figures 4d to 4f.

8 DISCUSSION
We found no significant effect on the raw TLX over time. Fur-

ther, participants stated that they were motivated to reach

higher points for the gesture performance in the next phase

after a completed phase. Thus, we assume that performing

gestures for one hour did not influence the gesture quality.

Moreover, we note that from our observation, participants

were motivated to perform the gestures well due to the mo-

tivation of the tutorial were we presented them scores.

Second, our analysis focused on the five hypotheses on

which we based our study. We show that the error can be

modeled by a skewed Sinus function for the one-segment ges-
tures. We further show that the model can describe the error

of the two-segment gestures and the three-segment gestures.
The model accounts for more than 78% of the variation for

both multi-segment gestures. Thus, the model confirms H1.

Third, our analysis of the two- and three-segment gestures
revealed that the variance of the segments significantly dif-

fers. Further, post-hoc tests of the variance showed that the

variance in orientation error is significantly higher in the

subsequent segment when performing consecutive straight

line segments. We, therefore, confirm H2.

Our results show that the average error is almost 0
◦
for

horizontal and vertical lines. We further show that the orien-

tation error increases around straight horizontal and vertical

gestures, see green dotted lines in Figure 4. We assume this

is due to a shift of the gesture towards a perfectly horizontal

or vertical gesture. This can be further supported by the ex-

tremum being shifted towards the primary axes (horizontal

and vertical lines). Between the extrema to both sides of the

primary axes (−14.8◦ to 13.7◦), humans tend to ignore vari-

ation in orientation and perform a horizontal and vertical

line. Thus, we confirm H3a and H3b .

Finally, as part of our study, we also investigated diagonal

lines (45
◦
, 135

◦
, 255

◦
, and 315

◦
) which where suggested by

Cao and Zhai [6] for fast but not precise input to be more

error-prone but faster than the primary axes lines. Our re-

sults show low orientation errors for the four diagonal lines

as the zero of the fit was found to be at 42
◦
. Therefore, we

also confirm H4.

Limitations
Cao and Zhai [6] described a phenomenon which they called

“corner-cutting behavior” in which humans tend to perform

an arc instead of straight lines when they change direction.

Quinn and Zhai [22] further present an in-depth analysis of

potential reasons. This might influence the results for the

two- and three-segment gestures. However, when segmenting

gestures, we considered how many corners a gesture had.

Furthermore, the use of orthogonal distance regression min-

imizes the effect of corner-cutting on the line orientation.

While corner cutting might still cause noise in the data, to

address the orientation error we needed to fit straight lines.

One limitation of our study is that we cannot distinguish

whether wrong perception or locomotor inaccuracy of the

participants caused the error as our model only accommo-

dates the motor control aspect of unistroke gestures. This

could be examined by varying the visual feedback, which

should be investigated by further research. While this work

focused on analyzing the accuracy of performed unistroke

gestures consisting of straight lines, there is a need for ana-

lyzing the effect of orientation for other kinds of gestures.

This includes gestures consisting of arcs, corners, and the

combination of arcs, corners, and straight lines. Analyzing

these gestures aims to identify how additional gesture fea-

tures, like the bending factor of the composition of different

segment types, affect the users’ accuracy.

Implications
The findings have a number of potential implications for

the design of new gesture or gestures sets. Furthermore, the

results can also be used to improve the recognition of simple

flick gestures’ orientation, the visualization of gestures as

well as the accuracy when recognizing compound gestures.



Design Implications. Based on the five confirmed hypotheses,

we derived five general design implications which can be

used by developers when creating gestures consisting of

straight-lines.

(1) for a new gestures set start with the two horizontal and

vertical gestures in each direction

(2) for large gesture sets, combine horizontal and vertical

lines to complex gestures

(3) keep in mind that the variance is increasing with an

increasing number of segments

(4) for even large gesture sets, use 45
◦
diagonal segments to

reduce variance

(5) cover the full 360
◦
input space to maximize the distance

in orientation between two gestures

Flick Gestures. Flick gestures can be used to quickly move

2D planes such as maps or move through 3D spaces as in

games. Using our correction model for one-segment gestures

the directional error while flicking can be corrected. Thus,

the accuracy of the movement direction, particularly while

moving over large distances can be increased.

Gesture Visualization. A number of fast-paced mobile games

visualize the users’ gestures through animated trajectories

(e.g., in Fruit Ninja to cut the fruit). To optimize the visual-

ization in such games, our correction model can be used to

optimize the visualization or physical simulation caused by

the input gesture.

Improving Gesture Recognition. The accuracy of template

matching-based gesture recognizers, such as the $P-familiy,

can be improved by applying the correction model before

feeding a gesture into the recognizer. Even learning-based

gesture recognizers can benefit from the correction model

if gestures should be rotation invariant. For rotation invari-

ant gestures, the orientation errors for individual segments

changes when users rotate a gesture. Thus, reducing the ori-

entation error can reduce the variance during training and

inference.

9 CONCLUSION
In this paper, we systemically investigated the effect of ori-

entation on straight-line unistroke gestures. We conducted

a study with 40 participants which performed gestures with

their index finger constructed out of one, two, or three line

segments. We analyzed how the variation of the orientation

and the angles within the gestures affected users’ accuracy.

Our analysis revealed that users tend to approximate seg-

ments to the closest horizontal or vertical segment. We fur-

ther show that each consecutive segment adds significantly

more variation. Hence, our key finding suggests avoiding

the use of orientations close to horizontal or vertical seg-

ments. The results of this work can be used to predict users’

accuracy for gesture sets. We hope that the presented consid-

erations can help designers to develop better gesture sets and

developers to build better gesture recognizers. Finally, the

presented work is a first step in modeling and understanding

how unistrok gestures are affected by orientation error.

While the aim of this paper was purely to understand the

effect of orientation on unistroke gestures performed by the

index finger, the orientation could also have an effect on

production time. Cao and Zhai [6] excluded the orientation

in their formula for production time as they hypothesized

a small effect. However, based on our findings we conclude

that future work should investigate the production time for

different gesture orientations. Moreover, as Tu et al. [31]

showed a difference in orientation error between thumb and

index finger input, future work should systemically investi-

gate the orientation error of the thumb.
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