
A  Model  Relating  Pupil  Diameter  to  
Mental  Workload  and  Lighting  Conditions  

Bastian Pfleging1,3, Drea K. Fekety2, Albrecht Schmidt3, Andrew L. Kun4 
1University of Munich (LMU), Munich, Germany 

2Clemson University, Clemson, SC, USA 
3University of Stuttgart, Stuttgart, Germany 

4University of New Hampshire, Durham, NH, USA 
bastian.pfleging@ifi.lmu.de, dfekety@g.clemson.edu,  

albrecht.schmidt@vis.uni-stuttgart.de, andrew.kun@unh.edu 
 
 

ABSTRACT  
In this paper, we present a proof-of-concept approach to es-
timating mental workload by measuring the user’s pupil di-
ameter under various controlled lighting conditions. Know-
ing the user’s mental workload is desirable for many appli-
cation scenarios, ranging from driving a car, to adaptive 
workplace setups. Typically, physiological sensors allow in-
ferring mental workload, but these sensors might be rather 
uncomfortable to wear.  

Measuring pupil diameter through remote eye-tracking in-
stead is an unobtrusive method. However, a practical eye-
tracking-based system must also account for pupil changes 
due to variable lighting conditions. Based on the results of a 
study with tasks of varying mental demand and six different 
lighting conditions, we built a simple model that is able to 
infer the workload independently of the lighting condition in 
75 % of the tested conditions. 
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INTRODUCTION  
A large body of literature exists on the topic of estimating a 
person’s mental workload while engaged in cognitively-de-
manding tasks. Although mental workload is not something 
that can be measured directly, in recent years many different 

technologies have been used to gather data that can accu-
rately infer a person’s mental workload. Measurements in 
this area can be in the form of pupil diameter (collected from 
remote as well as head-worn eye-trackers), electroenceph-
alography (EEG), heart rate (HR), heart rate variability 
(HRV), skin conductance (GSR), skin temperature, and res-
piration rate, to name a few. These methods have their 
strengths and weaknesses, but all have been used in some ca-
pacity to estimate how a person uses mental resources to pro-
cess information and where a person’s upper limits of cogni-
tive capabilities lie.  One important advantage of remote eye-
trackers in comparison to other established physiological 
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Model: 𝑃𝐷 = 𝑃𝐷&'()* + 𝑃𝐷*,-.  

 𝑃𝐷*,-. = 𝑃𝐷 − 𝑃𝐷&'()*  

Estimate: 𝑚𝑒𝑛𝑡𝑎𝑙	
  𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ≈ 𝑓(𝑃𝐷*,-.)  

Figure 1: For many applications (e.g., online learning), knowing 
the user’s workload is beneficial for instance to adapt the inter-
face. With a model extracted from our study, we are able to esti-
mate mental workload based on pupil diameter retrieved 
through remote eye-tracking under different controlled lighting. 
conditions. 



measurements of mental workload is that they are rather un-
obtrusive and do not require the user to be tethered to meas-
urement equipment. 

The study outlined in this paper uses pupil diameter data to 
estimate mental workload (Figure 1). A large number of 
studies have confirmed that, in an effect called the task-
evoked pupillary response (TEPR), pupil diameter increases 
when the cognitive difficulty of a task increases [3]. This 
change in pupil diameter occurs rapidly, both when the pupil 
dilates and when it contracts, making eye trackers attractive 
in efforts to estimate mental workload. However, pupil di-
ameter also depends strongly on lighting conditions: the pu-
pillary light reflex constricts the pupil in response to in-
creased light levels and vice versa. Pupil size can change by 
several millimeters due to the pupillary light reflex. In con-
trast, changes related to mental workload are an order of 
magnitude smaller–usually between 0.1 mm and 0.5 mm [3]. 
These small changes can be overwhelmed by the large 
changes due to the pupillary light reflex. This work addresses 
this issue by modeling the effects of TEPR and the pupillary 
light reflex on pupil size, and by using this model to separate 
the two effects.  

We propose a simple model as a proof of concept that we 
extracted from our experiment data on pupil size changes un-
der different known levels of light reaching the eye, and un-
der different levels of task difficulty. We then use this model 
to estimate pupil diameter changes occurring as a result of 
cognitive load, and ultimately to estimate the task difficulty 
that resulted in the measured pupil diameter. In this work we 
constrain the model to cases when both the light reaching the 
eye and the mental task difficulty are constant during a cer-
tain condition.  

The pupillary light reflex will respond to both ambient light 
(such as room illumination) and visual target luminance 
(such as the light emitted from a computer screen). We 
demonstrate these effects in the different lighting conditions 
of the experiment.  

CONTRIBUTION  STATEMENT  
The contribution of this paper is an investigation of the com-
bined influence of light and mental workload on the user’s 
pupil size. Previous studies investigating eye-tracking and 
mental workload often fixed lighting conditions to one level 
in order to eliminate the effects of the pupillary light reflex. 
Instead, we conducted a study in which users performed dif-
ferent tasks and were exposed to six different (and con-
trolled) lighting conditions. We used the results of this study 
to create a simple model of pupil diameter change that incor-
porates both the pupillary light reflex (for our controlled con-
ditions), and the pupil diameter change that is due to changes 
in mental workload. We see this model as a first step towards 
pupil-based illumination-independent workload estimation. 

Estimating the user’s workload is helpful for many situations 
where people interact with computing devices or machines. 
One example is the automotive domain where it is important 

not to overload the driver as they interact with in-vehicle de-
vices [28] or communicate with remote conversants [21, 38], 
since performance degrades with increasing workload [6]. 
With automated driving modes and non-driving-related ac-
tivities [37], workload estimation can be useful to track and 
support the driver’s reengagement in the driving task [20]. In 
a desktop setup, one application domain would be online 
learning where the estimation of mental workload is used to 
adapt the content and/or interface to improve the learner’s 
performance. 

RELATED  WORK  
Measuring the user’s mental workload has been the subject 
of various studies.  

Eye-­Tracking  Data  Used  as  Indices  of  Mental  Workload  
Eye gaze data has been established as an effective method 
for measuring mental workload in response to a cognitively 
demanding task, by focusing on certain parameters of auto-
nomically-driven eye behavior. Pupils tend to dilate in re-
sponse to greater mental workload (often called the task-
evoked pupillary response). A number of early studies sup-
ported this relationship between pupillary changes and work-
load, and in a way established the foundation for this ap-
proach to psychophysiology [15, 16]. A dated but thorough 
review of the literature surrounding task-evoked pupillary re-
sponses outlined the relationship between changes in pupil 
size and mental workload [3]. 

Other early research with eye-tracking indicated a greater 
time interval between blinks for a visual identification task 
compared to a visual detection task [8]. Blink duration and 
frequency were also found to decrease in response to in-
creased difficulty of a visual identification game [46]. Nunes 
& Recarte [32] found increased pupil diameter and higher 
blink rates when participants were engaged in more difficult 
secondary tasks while driving an automobile. Ahlstrom & 
Friedman-Berg [1] found that air traffic controllers exhibited 
greater pupil diameter and shorter blink duration in response 
to increased task difficulty. In response to performing an au-
ditory workload task while driving, Tsai et al. [45] found that 
participants’ blink frequencies and pupil diameters signifi-
cantly increased, though measures of blink duration did not 
reflect these results. Benedetto and colleagues [4] also re-
cently found that increased dual-task difficulty was accom-
panied by shorter blink duration and longer duration between 
blinks in a simulated driving environment, though the former 
provided more reliable data. The contextual qualities of these 
selected studies suggest that inferences about mental work-
load indicated by eye-tracking data are robust and not neces-
sarily domain-specific.  

A key issue with using eye-tracking data to infer mental 
workload is that physiological changes in the eye are influ-
enced both by lighting conditions and the difficulty of the 
task a person is engaged in. In creating algorithms to predict 
eye gaze changes based on mental workload, researchers 
have to parse out the effects of changes in lighting and mostly 



do so by choosing constant lighting conditions for experi-
ments. A series of recent preliminary studies have addressed 
this issue in further detail, in the context of a simulated driv-
ing environment [23, 34, 35]. Methods have also been devel-
oped to gather eye gaze data in sub-optimal lighting condi-
tions [49, 50]. Furthermore, Marshall proposed the Index of 
Cognitive Activity, which attempts to estimate cognitive 
load [24] independent of lighting, based on rapid fluctuations 
of pupil size. However, Marshall’s proprietary algorithm by 
default outputs a sequence of estimates once a second, which 
can obscure interesting changes in cognitive activity that oc-
cur at a quicker pace, such as those observed in spoken inter-
actions [14, 22, 36]. Using TEPR and compensating for light-
ing conditions should allow us to detect such changes.  

Presentation  Modalities  of  Workload  Tasks  
In many studies where eye-tracking data were used as indices 
of mental workload, the task used to induce workload was 
often a visually-based stimulus [7]. This highlights the need 
to identify and isolate the separate influences of lighting and 
workload on gaze data. One potential solution to this issue 
could be to introduce an auditory-based workload task and 
have participants focus on a single point in a visually neutral 
or uninteresting stimulus [18]. Ideally, this would allow for 
the measurement of gaze data in response to a cognitively-
demanding task without the interference of changing lighting 
conditions. 

Tasks used to induce mental workload, such as the N-back 
test, delayed digit recall test, or the PASAT [12, 17, 27] can 
be presented as either a visual stimulus or as an auditory 
stimulus. The auditory N-back task has been successfully 
used to induce workload, with different physiological 
measures (e.g., [25, 39]). This protocol has been used in a 
number of studies in the realm of automobile driving. Mehler 
and colleagues found that heart rate and skin conductance 
were reliably indicative of driver workload estimates in sim-
ulated driving tasks [25, 26]. In an on-road driving study they 
also found similar changes in heart rate and eye gaze meas-
urements with respect to task difficulty [48]. The same re-
search group showed that pupil diameter can be used to esti-
mate workload for drivers engaged in the N-back task [47]. 
More recently Gable et al. found evidence that in driving 
simulator studies pupil diameter might be a more sensitive 
measure of cognitive load changes than heart rate [9]. 

Klingner et al. [19] found that the difficulty of a task may 
change between different perceptual modalities. However, 
the peer-reviewed literature has yet to fully explore the dif-
ferences between these modalities. For our study, we chose 
to use an auditory presentation, working memory mental 
workload task to minimize the effects of extraneous visual 
stimuli which may influence eye-tracking measurements. 

Other  Physiological  Measures  of  Mental  Workload  
Physiological measures such as functional near-infrared 
spectroscopy (fNIRS) [11, 44], electroencephalography EEG 
[5, 10, 33, 42], heart rate [31, 40] and heart rate variability 
[31, 41], and skin conductance [13, 43], have also been used 

to track mental workload while engaged in a cognitively de-
manding task. One advantage of using these physiological 
measures instead of eye-trackers is that they are not depend-
ent upon the lighting conditions of the environmental config-
uration used for data collection. However, these methods can 
be rather obtrusive since they require the user to wear or con-
nect sensor technology and also reveal health-relevant per-
sonal data. Furthermore, these types of solutions can invoke 
unnatural participant behaviors which confound the data 
(e.g., jaw clenching with EEG). Remote eye-tracking is ad-
vantageous in this domain as it can maintain reliable record-
ings while alleviating participant discomfort, which could 
otherwise negatively influence experimenters’ data yield. 

Summary:  Measuring  Mental  Workload  
As outlined in this section, various methods have already 
been used to measure and estimate mental workload. With 
regard to unobtrusiveness, measuring the pupil diameter 
through a (remote) eye-tracker seems to be one of the most 
promising approaches. In contrast, many of the approaches 
that employ physiological sensors require the user to wear 
specific sensor hardware. 

For eye-tracking, one drawback is the concurrent influence 
of the pupillary light reflex and the task-evoked pupillary re-
flex on pupil diameter. That is why previous work often re-
quired strongly controlled lighting setups. With the experi-
ment presented in this paper, we want to broaden the flexi-
bility of this approach by investigating different lighting con-
ditions and generating a model that allows for workload es-
timation in different cases. 

EXPERIMENT:  ANALYIZING  THE  INFLUENCE  OF  LIGHT  
AND  WORKLOAD  ON  PUPIL  DIAMETER  
Our study explores how we can separate the effects of light 
and mental workload on pupil diameter. We therefore con-
ducted an experiment where we explored the combined ef-
fect of lighting (variable ambient light or visual target lumi-
nance) and cognitive load on pupil diameter.  

Variable  Light  Conditions  
We used six different lighting conditions in order to demon-
strate pupil changes in typical situations of varying ambient 
light (such as differences from office lighting); and target il-
lumination (such as screen content). The six lighting condi-
tions consisted of three conditions (part 1) where the envi-
ronmental illumination was varied using different lamps 
(1 lamp, 2 lamps, 3 lamps) while keeping the target constant, 
and three conditions (part 2) where the target illumination 
(screen content) was varied (25%, 50%, 75 % grey) while 
keeping the environmental illumination constant (3 lamps). 

Auditory  Delayed  Digit  Recall  Task  
In the experiment we utilized an auditory delayed digit recall 
task [27] as the primary task to induce workload. For each 
trial of the delayed digit recall task, participants heard a ran-
domized set of 20 digits ranging between 0 and 9 spoken by 
a computerized voice, with a 1.5-second interval between 
each spoken number. In total, each trial was 30 seconds long. 



Our pilot testing revealed this rate of presentation to be opti-
mal for participants engaged in our workload test (i.e., no 
secondary tasks) after sufficient practice. For each trial, par-
ticipants were instructed to verbally repeat the number that 
they heard N numbers ago. The number N corresponded to 
the difficulty level of the task they were currently perform-
ing, i.e. 0-, 1-, or 2-back. Table 1 shows examples of the tasks 
performed. The same delayed digit recall tasks were em-
ployed throughout the whole experiment, and numbers were 
randomly generated for each trial. 

Participants were allowed one minute of resting time be-
tween the end of one trial and the start of the next trial. This 
was done to allow for a recovery to a baseline state of work-
load before the next trial. In situations where lighting condi-
tions changed between the end of one trial and the start of the 
next trial, the experimenters allowed a 2.5-minute recovery 
period in order to allow the participants’ eyes to appropri-
ately adjust to the new lighting conditions. 

Design  
The experiment was designed as a within-subject experi-
ment. Participants completed three trials with different levels 
of difficulty (0-back, 1-back, 2-back) for each of the six 
lighting conditions. This results in a total of 3 x 6 = 18 trials 
with level of difficulty (3 levels) and lighting (6 levels) as 
independent variables. Given that the pauses between tasks 
of different difficulty were between one minute and 2.5 
minutes, we did not expect any need to counterbalance the 
order of task presentation. After all, prior research shows that 
after the end of a cognitively-demanding task, pupil diameter 
returns to its pre-task level within a few seconds (see for in-
stance [3, 22]). Nevertheless, we introduced two task orders, 
such that in each lighting condition participants started with 
the 0-back task, while the order of the next two tasks (1-back 
and 2-back) was counterbalanced between participants.  

As dependent variables, we recorded workload task perfor-
mance (percentage of correct responses), pupil diameter (as 
well as other eye-tracking measurements), and eye behavior 
(blinks, saccades, and fixations). Due to time restrictions, 
subjective workload ratings (NASA TLX) were collected 
only at the end of the experiments to get a summative rating 
for each level of difficulty. 

Participants  
In total, 24 participants (19 male, 5 female) aged between 19 
and 42 (M = 25.00 years, SD = 6.16 years) took part in this study. 
Participants were recruited from students and faculty members 
of the University of Stuttgart. All participants were compen-
sated for their time by receiving a small give-away. Student re-
cruits also received course credit for their participation in the 
study. Eye tracking data from 3 participants were excluded 
from our analysis due to technical difficulties. We also ex-
cluded data from one other participant because he did not 
follow instructions in completing the delayed digit recall 
task. Thus, our sample size is N=20. 

Apparatus  and  Data  Collection  
The study took place in a windowless room. The partici-
pant’s seat was placed in a white-walled “cubicle” in which 
three (temporary) poster walls surrounded the participant. 

 
Figure 2: Experiment setup. The eye-tracker was placed 

between participant and wall/ TV; the computers to log all 
measurements were located out of the participant’s sight 
next to the cubicle. Lamps as illumination sources were 
placed on tripods behind the participants about 40 cm 

above the participants’ heads. This figure shows the config-
uration as it was used for part 1 of the experiment. 

 
Figure 3: In part 2 of the study participants sat in the 3-
walled white ‘cubicle’ with the LCD TV in front of them. 

 

You hear: 6 5 2 7 4 4 

You say (0-back): 6 5 2 7 4 4 

You say (1-back):  6 5 2 7 4 

You say (2-back):   6 5 2 7 

Table 1: Example numbers spoken by a computer voice, 
followed by correct participant responses for the three task 
difficulties of the auditory delayed digit recall task. Blank 

cells indicate that the correct response for the participant is 
to say nothing. 

 



These walls were covered with large white sheets of paper 
(see Figure 2). The participants’ eye movement and pupil 
data were sourced from an SMI RED250 eye-tracker1 and 
recorded using the iView X software from SMI.  

The lighting intensity variable for part 1 of the experiment 
was manipulated such that the participant’s cubicle was illu-
minated by 1, 2, or 3 professional-grade studio lamps (Prod-
uct number 400894 from TecTake.de) as only sources of il-
lumination with 55-watt white fluorescent bulbs.  The TV as 
gaze target was covered with white paper in this part 1 of the 
study to have a homogeneous, constant target. 

For part 2 of the experiment, we used a 55-inch FullHD 
(1920x1080 pixels) Philips 55PFL7606/K02 television (see 
Figure 3 for equipment setup) displaying a full-screen view 
of one of three gray images with different brightness. The 
major device settings were: Contrast: 90, Brightness 76, 
Color 67, Sharpness 5, Color Temperature Cold, Dynamic 
Contrast: Minimum, Light Sensor: Off, Ambilight: Off. In 
this part, the environmental illumination was kept constant 
(all three lamps on).  

The lamps and the TV screen were the only light sources in 
the windowless room. At the beginning of each trial, we 
measured the amount of light reaching the participant’s eyes 
with a lux meter (iClever digital lux meter LX1330B2) placed 
at the participant’s forehead. The amount of illumination 
reaching the participant’s eye (in lux) for the three different 
levels of environmental illumination (part 1) were 
M=133.50, SD=5.45 (1 lamp); M=247.55, SD=23.55 (2 
lamps); M=387.14, SD=22.81 (3 lamps). The amount of illu-
mination reaching the participant’s eye (in lux) for the three 
levels of different target brightness (part 2) were M=255.19, 
SD=31.51 (25%); M=308.10, SD=28.69 (50%); M=364.76, 
SD=35.07 (75%). 

Procedure  
When the participants arrived at our lab, we first introduced 
them to the topic and procedure of our experiment. Next, the 
participants read and signed the consent forms and filled out 
an initial demographic questionnaire. The participants were 
then seated in the experiment room. Participants remained 
seated for the duration of the experimental session, and were 
asked to visually focus on a small crosshair at a centrally lo-
cated position in front of them.  

Before the start of the experiment, we introduced the partic-
ipants to the cognitive workload task (the auditory delayed 
digit recall test). Participants were given up to 12 practice 
sessions of non-scored trials at each level of task difficulty 
in order to fully familiarize themselves with the different dif-
ficulty levels of the task. Also, we presented them an empty 
copy of the NASA TLX questionnaire as a preparation for 
those sheets that should be filled out at the end of the exper-
iment. Afterwards, the eye-tracker was calibrated using a 

                                                             
1 http://www.smivision.com, last access 2016-01-07 

nine-point calibration method that was provided with the 
eye-tracking software. 

As explained before, the experiment itself was then con-
ducted in two parts. The difference between the two parts 
was the way in which the participant experienced lighting 
conditions. We chose to split the experiment into these parts, 
since technical reasons prevented us from switching easily 
between these setups. The order between the two experiment 
parts was counter-balanced such that half of the participants 
started with part one and the other half with part two.  

For each scored delayed digit recall trial in both parts, we 
asked participants to focus on a small “+”-shaped target lo-
cated on the white board / TV set seen in front of the partic-
ipant. This was done to minimize the possibility of eye 
movements interfering with eye-tracking data while the par-
ticipant performed the task. 

Part  1:  Controlling  Environmental  Illumination  
In this part, we controlled the amount of environmental illu-
mination that reaches the participant’s viewing perspective. 
We manipulated ambient room illumination such that the in-
fluence of illumination and workload on pupil diameter 
could be examined in different lighting conditions.  

Part  2:  Controlling  Large  Field-­of-­View  Stimulus  Brightness  
In this part, we controlled the intensity of target luminance 
the participant was viewing. Participants were seated in the 
same location (with illumination provided by all three lamps 
at the same time) and viewed a homogeneous single-color 
gray image on the TV screen while engaged in the same de-
layed digit recall test. These gray images were created such 
that they represented 25%, 50%, and 75% brightness relative 
to a full-white color image. The TV screen covered much of 
the participants’ field of view (see Figure 3). All other factors 
between the two experiments were kept constant.  

Both independent variables were manipulated in the same or-
der as in experiment part 1. Because all data were collected 
from participants in the same session, participants experi-
enced the conditions of experiment part 2 either immediately 
before or immediately after experiment part 1 (depending on 
the condition they were assigned). 

At the end of the experiment, the participants were asked to 
fill out three NASA TLX questionnaires, one for each level 
of the cognitive workload task. 

DATA  SET    
We compiled the recordings made during the experiment into 
a data set that is publicly available under an open data li-
cense. Details about the full dataset are available at 
http://www.hcilab.org/research/workload-pupil-diameter/. 

Apart from the analysis in this paper, we believe that this data 
set will be helpful for the research community in various pur-
poses. Especially, it will be helpful towards the development 

2 http://goo.gl/qNCdNB, last access 2016-01-07  



of generalizable models that allow for workload detection 
based on eye-tracking data independent from the current il-
lumination situation. 

Participants performed a total of 18 delayed digit recall tasks 
across the two experiment parts, and a counter-balanced de-
sign controlled the order in which participants experienced 
the conditions of each trial (i.e., some combination of light-
ing conditions, and task difficulty). While we excluded data 
for four of the 24 participants from the dataset, and subse-
quently used data from 20 participants, the loss of data did 
not skew our counter-balanced design; approximately equal 
sample sizes were maintained between groups. Additionally, 
main effects of trial order on task performance were not pre-
sent. Means and standard deviations for pupil diameters for 
all participants can be found in Table 2 and Table 3. 

Eye-­Tracking  Data  
The eye-tracking data was recorded using the SMI RED 250 
remote eye-tracker. This time-stamped data was recorded at 
120 Hz. The measurements include all available information 
the SMI software provided. This includes pupil diameter for 
both eyes, and gaze position (on the screen). Also, details 
about the current eye behavior, i.e., blinks, saccades, and fix-
ations were recorded and added using the SMI-internal soft-
ware using default parameters for the event detection. 

Hand-­Coded  Data  
We collected NASA-TLX scores, the participants’ error rates 
on the delayed digit recall task, and measurements of the 
amount of light reaching the participants’ head in each light-
ing condition.  

NASA  TLX  
After both experiments, the participants were asked to also 
complete NASA TLX questionnaires. Due to time re-
strictions of the experiment, we could not ask for subjective 
ratings after each condition. In order to get at least some sub-
jective feedback, we did an overall assessment for each of 
the levels of the digit recall task (rating across all conditions 
with the corresponding level).  

Participant  Performance  /  Error  Rates  
We hand coded the participants’ responses to the delayed 
digit recall task on paper. We later transcribed these scores 
and stored them in electronic form. 

Illumination  Measurements  
Whenever the lighting conditions were changed we meas-
ured and recorded the illumination (in lux) reaching the par-
ticipant’s eye. 

Pupil  Diameter  Data  Preprocessing  
For each of the 20 participants we found the average pupil 
diameter for each of the experimental condition. Given that 
the participants experienced 3 task difficulty levels at each 
of the 6 lighting levels, we calculated 20 x 3 x 6 = 360 pupil 
diameter averages. 

To calculate the pupil diameter averages we started with the 
raw measurements from the SMI software. Since some of the 
data from the SMI software was provided with non-uniform 
sampling rates, we first used the “interp1” Matlab function 
to resample the raw measurements to attain a uniform sam-
pling rate of 120 Hz. Next, we excluded samples for which 
the raw measurement values remained constant for at least 
100 ms, as these samples were generated when the eye 
tracker failed to accurately track pupil diameter. Finally, we 
plotted pupil diameter changes over the 30 second periods 
delayed of the digit recall tasks for each of the 360 measure-
ments. By visual inspection we identified three cases where 
the pupil diameter data was noisy for the majority of the ex-
perimental condition, and we rejected this data. We then cal-
culated averages for 360 – 3 = 357 cases. Finally, we used a 
single imputation method [2] to fill in the remaining 3 aver-
ages: in our method the missing average is set equal to an 
average calculated for the same participant, and same light-
ing conditions, but a different task difficulty. Note that this 
method is conservative in that it does not artificially improve 
our chances of confirming our expectation that pupil diame-
ter will increase with increased task difficulty. 

 Part 1: Environmental Illumination 

1 lamp (“low”) 2 lamps (“medium”) 3 lamps (“high”) 

Metric Units 0-back 1-back 2-back 0-back 1-back 2-back 0-back 1-back 2-back 

Left pupil 
diameter 

mm 3.889 
(0.492) 

4.044 
(0.483) 

4.210 
(0.578) 

3.406 
(0.382) 

3.610 
(0.416) 

3.742 
(0.478) 

3.139 
(0.317) 

3.206 
(0.313) 

3.328 
(0.367) 

Table 2: Means and standard deviations of pupil diameter measurements of workload under each condition in Part 1 

 Part 2: Stimulus Brightness 

25% (“low”) 50% (“medium”) 75% (“high”) 

Metric Units 0-back 1-back 2-back 0-back 1-back 2-back 0-back 1-back 2-back 

Left pupil 
diameter 

mm 3.719 
(0.434) 

3.947 
(0.482) 

4.100 
(0.467) 

3.086 
(0.298) 

3.203 
(0.342) 

3.318 
(0.321) 

2.903 
(0.283) 

3.010 
(0.316) 

3.099 
(0.313) 

Table 3: Means and standard deviations of pupil diameter measurements of workload under each condition in Part 2 



DATA  ANALYSIS  AND  DISCUSSION    

Lighting  Conditions  
We analyzed whether the settings chosen for our lights cre-
ated measurable differences in the stimulus and room light-
ing. At the same time, we analyzed potential order effects 
related to the counter-balanced lighting conditions.  A one-
way ANOVA comparing the lighting conditions of each trial 
to the lighting condition order showed no significant differ-
ences in lighting conditions based on order effects (p>.05). 

For the purposes of this analysis, we treated all 6 lighting 
conditions as levels in one variable. Consequently, we com-
pared the average illumination reaching the participants’ 
eyes between all 6 lighting conditions using a one-way re-
peated measures ANOVA. 

Mauchly’s test failed to detect a violation of the sphericity 
assumption in our illumination data, χ2(14)=14.672, p>.05, 
therefore no corrections to degrees of freedom are needed. 
The results indicate a significant main effect of lighting ma-
nipulations on illumination reaching the eye, 
F(5,100)=461.987, p<.001, η2=.959. Least Significant Dif-
ference (LSD) post-hoc analyses within lighting conditions 
revealed significant differences (p<.001) in average illumi-
nation reaching the eye between all levels, except for the “2 
lamps” vs. “50%” conditions (p>.05). 

Task  Performance  
Participants’ performance on each delayed digit recall task 
was measured in terms of percentage of correct responses. 
Percentage correct was used instead of a measure of fre-
quency of correct responses, because the 3 different diffi-
culty levels of the task are designed in such a way that yields 
a different number of responses from the participant. In other 
words, the 2-back task (if performed correctly) yields fewer 
responses from the participant compared to the 1-back and 
0-back tasks, because the participant has no response for the 
first two numbers they hear. This effectively means that 0-
back tasks produce 20 responses from participants, where 1-
back tasks produce 19 and 2-back tasks produce 18 re-
sponses. 

A one-way ANOVA revealed statistically significant differ-
ences in average task performance among difficulty levels, 
F(2,63)=27.300, p<.001, η2=.464. A Least Significant Dif-
ference (LSD) post-hoc analysis showed statistically signifi-
cant differences between all pairwise comparisons of diffi-
culty level except for the 0-back-to-1-back comparison 
(p=.247). This suggests our participants were able to perform 
equally well on the easiest and middle-difficulty tasks fea-
tured here. However, it is important to remember that the fo-
cus of this paper is estimating users’ workload and not their 
ability to perform tasks. Thus our measurements of TEPR 
inferring workload should have more value to our model than 
task performance in this situation. 

Subjective  Workload  
Subjective workload was measured after the end of the ex-
periment, where participants were asked to fill out a NASA-

TLX form for each task difficulty level. Each subjective 
workload rating (one per difficulty level) represents the par-
ticipants’ average workload from 6 trials of that difficulty 
level. Unweighted subjective workload scores for each par-
ticipant were calculated by averaging participants’ ratings on 
a scale of 1-20 over the six dimensions of the NASA-TLX 
questionnaire [29]. 

A one-way ANOVA revealed statistically significant differ-
ences in average subjective workload among task difficulty 
levels, F(2,63)=94.660, p<.05, η2=.750. A Least Significant 
Difference (LSD) post-hoc analysis showed statistically sig-
nificant differences between all pairwise comparisons of dif-
ficulty level such that 0-back<1-back<2-back, p<.001. 

There are moderate, negative correlations between partici-
pants’ task performance (percentage of correct responses) 
and their subjective ratings of workload (NASA-TLX) for 
the 1-back task (r=-0.445, p<.05) and the 2-back task  
(r=-0.466, p<.05). In other words, as participants performed 
better on the workload task, they felt that the task was less 
workload-inducing. However, a weak positive correlation 
exists between task performance and subjective workload for 
the 0-back task, although this relationship is not significant 
(r=0.154, p>.05). 

Eye-­Tracking:  Pupil  Diameter  
We conducted a 6 (lighting level) x 3 (task difficulty) re-
peated measures ANOVA to examine the separate and com-
bined influences of these factors on pupil diameter. For the 
remainder of this section, we only consider the left eye’s pu-
pil diameter because we observed fewer inaccurate/missing 
data points in this eye throughout our data set. Mauchly’s 
tests detected a violation of the sphericity assumption in our 
pupil data for the main effect of lighting (χ2(14)=63.728, 
p<.001, ε=.478), the main effect of task difficulty 
(χ2(2)=11.162, p<.05, ε=.684), and the interaction between 
lighting and task difficulty (χ2(54)=107.262, p<.001, 
ε=.436). Therefore, Greenhouse-Geisser corrections are re-
ported here. We observed a significant main effect of lighting 
level on pupil diameter, F(2.391,45.424)=167.143, p<.001, 
η2=.898. Post-hoc LSD comparisons revealed significant dif-
ferences in pupil diameter among all lighting levels (p<.001), 
except for the comparisons between “1 lamp” vs. “25%” and 
“3 lamps” vs. “50%” (p>.05). This omnibus test also re-
vealed a significant main effect of task difficulty on pupil 
diameter, F(1.368,25.990)=71.903, p<.001, η2=.791. Fur-
ther, post-hoc LSD comparisons showed significant differ-
ences in pupil diameter among all task difficulty levels, 
p<.001.  

Another result observed within this omnibus test was the sig-
nificant interaction between lighting level and task difficulty 
on pupil diameter, F(4.356,82.767)=3.633, p<.05, η2=.161. 
Post-hoc LSD comparisons of pupil diameter also revealed 
significant differences among all task difficulty levels within 
each of the 6 lighting conditions (p<.05). 



TOWARDS  A  MODEL  FOR  WORKLOAD  ESTIMATION  
The eye-tracking results indicate that average pupil diameter 
increases with increased task difficulty, and that we can de-
tect this under all lighting conditions. These results are also 
in agreement with the performance results and the subjective 
workload ratings. 

But how well can individual measurements of pupil diameter 
be used to assess workload? To answer this question we first 
plotted all of the pupil diameter measurements (18 data 
points for 20 participants) as shown in Figure 4. On the x-
axis of Figure 4 we vary the task difficulty – this results in 3 
groups of data points, one for each delayed digit recall task. 
Within each group we also vary the lighting condition – this 
results in the six columns of measurements, one for each 
lighting condition.  

Two trends are visible in the data in Figure 4. First, the aver-
age pupil diameter clearly changes with light. Second, the 
average pupil diameter also increases with task difficulty. 
However, the data shows that, if we want to use individual 
pupil diameter measurements to assess the user’s current 
workload we have to address two problems. First, we must 
account for lighting conditions. As the data in Figure 4 
demonstrates, the same pupil diameter can be the result of 
different workloads under different lighting conditions. Se-
cond, pupil diameter measurements are noisy. Thus, even if 
we know the lighting conditions we might not be able to al-
ways correctly identify workload. 

To address these issues we introduce a model that serves as 
a proof-of-concept for the idea that if we know the lighting 
conditions then we can use pupil diameter values to identify 
the task difficulty. Thus, for each participant p, we model 
pupil diameter 𝑃𝐷	
  @	
   as a sum of two contributing factors: 

𝑃𝐷	
  @ = 𝑃𝐷	
  @,&'()* + 𝑃𝐷	
  @,*,-. 

Equation 1 Modelling pupil diameter. 

In Equation 1, 𝑃𝐷	
  @,&'()*	
   is the pupil diameter for participant 
p given lighting condition light, while 𝑃𝐷	
  @,*,-. is the nor-
malized pupil diameter for that participant’s pupil diameter 
given task difficulty task.  

For a given level of light we calculate 𝑃𝐷	
  @,&'()* as the aver-
age pupil diameter for all three levels of task. Expressing 
𝑃𝐷	
  @,*,-. as the difference between 𝑃𝐷	
  @ and 𝑃𝐷	
  @,&'()*, we 
get the normalized pupil diameter data presented in Figure 5. 

Next, we classify the normalized pupil diameter readings as 
indicating one of the three task difficulties. We perform the 
classification by comparing the normalized pupil diameter to 
the lower and upper limit of the 1-back region (shown as blue 
lines in Figure 5): pupil diameters below the lower limit are 
classified as indicating a 0-back task, diameters between the 
limits as indicating a 1-back task, and those above the upper 
limit as indicating a 2-back task. In this paper we identify the 
upper and lower limits using a simple heuristic approach: we 
first find the mean of the normalized pupil diameter values 

for the 1-back task, and set the upper and lower limits one 
standard deviation away from this mean. We visually 
demonstrate the results of this approach in Figure 5. Here we 
use all of the 360 data points to calculate the limits, and then 
apply the limits to the same 360 data points, and the correctly 
classified data points are shown in green. We evaluated this 
approach using k-fold cross-validation. With k = 4, we get 

 
Figure 4: Pupil diameter measurements. Each data point 

shows the average pupil diameter (y-axis, in mm) of one par-
ticipant during one 30 second-long trial. The trials on the x-
axis are grouped by task (0-, 1-, and 2-back) and lighting (1, 

2, and 3 lamps, and 25%, 50%, and 75% brightness).  

 

 
Figure 5: Using Equation 1, we can calculate the normalized 
pupil diameter by subtracting the participant’s average pupil 
diameter for a given level of light (𝑷𝑫	
  𝒑,𝒍𝒊𝒈𝒉𝒕) from the pupil 

diameter of the trial. This diagram shows the normalized pu-
pil diameter (y-axis) using the pupil diameters shown in Fig-
ure 4, for all participants during the different trials (x-axis) 
separated by task and illumination. Blue lines indicate the 

thresholds we used to classify the underlying workload: data 
above the top line was classified as workload due to 2-back 
task, between the two lines as due to 1-back, and below bot-
tom line as due to 0-back. For correctly classified workloads 
we marked the data points in green, and for incorrectly clas-

sified workloads we marked them in red. 

 



result of 75% correct classification. In our k-fold cross vali-
dation we found the threshold values based on data from ¾ 
of the participants (15 of 20), and tested them with data from 
¼ of the participants (5 of 20). 

GENERAL  DISCUSSION  
In this study we explored the combined effects of light and 
cognitive load on pupil diameter and we proposed a model 
that allows us to estimate task difficulty based on pupil di-
ameter measurements. Having such an estimate of task diffi-
culty would be useful in a number of situations. In software 
environments it might allow us to identify when users are 
confused or overwhelmed, which in turn could trigger a 
change in the interaction approach for the user interface. In 
learning environments, the estimate of task difficulty might 
help us find the optimal way to present the material based on 
the user’s current state. 

Our results are encouraging. We explored the combined ef-
fect of lighting and task difficulty on pupil diameter for in-
door lighting conditions commonly found in offices and 
homes, and for plausible task difficulty levels. We found that 
we must account for the effects of light if we intend to use 
pupil diameter as a measure of task difficulty. This is demon-
strated in Figure 6, which shows pupil diameter measure-
ments for one participant at two different lighting levels: 
25% gray scale brightness, and 2 lamps. Note that the partic-
ipant’s average pupil diameter is 3.484 mm when engaged 
the 0-back task and viewing the screen at 25% gray scale 
brightness, and it is 3.496 mm when engaged in the 1-back 
task with 2 lamps as the light source. In practice the two pupil 
diameters are indistinguishable from each other. This situa-
tion demonstrates that in general we cannot estimate task dif-
ficulty from pupil diameter without separating the effects of 
task difficulty and light.  

To be able to separate these effects we introduce a simple 
model, which treats the effects of light and cognitive load as 
additive parts of the overall pupil diameter. We show that we 
can use the model to classify pupil diameter readings accord-
ing to the underlying task difficulty if we have two pieces of 
information available: the current lighting level and the av-
erage size of the user’s pupil for that lighting level. Our re-
sults demonstrate that it is possible to use the model to esti-
mate the difficulty of the underlying task with about 75% ac-
curacy. As an example, if we apply our model to the data in 
Figure 6 the resulting normalized pupil diameters are -0.188 
mm and 0.005 mm, respectively. Our model correctly classi-
fies these values as resulting from 0-back and 1-back task 
difficulty, respectively.  

Our simple model builds on the work of Palinko and Kun 
[34], in which they proposed a model of pupil diameter that 
incorporated both the effects of visual target luminance and 
task difficulty. However, the parameters of their model [34] 
were manually derived to demonstrate the idea of separating 
the effects of light and task difficulty for a small portion of 
the data collected in that experiment. There was no attempt 
to systematically evaluate their model’s performance using 
all of the data from the experiment. In contrast, the model 
presented in this paper was created and evaluated using the 
entire dataset collected in this experiment, allowing us to 
quantify what we might expect to achieve in estimating task 
difficulty based on pupil diameter measurements.  

The results also provide indication that the system might be 
able to use training data from existing users in order to ac-
commodate new users. Specifically, in our k-fold validation 
we found thresholds for our model based on data from 15 of 
the 20 participants, and tested the model on data from the 
remaining 5 participants. With this approach we were able to 
correctly classify the workload based on pupil diameter 
measurement in 75% of the cases. 

Using the current model as input for adaptive UIs could be 
challenging since this accuracy could (negatively) impact the 
user in case of misclassifications. Thus, further work is re-
quired to increase accuracy and investigate the required level 
of accuracy. However, our approach cannot only be used for 
UI adaptation, but also as a tool to highlight challenges of the 
interaction during UI design, and provide ideas how/what to 
modify. For UI adaptation as one of the long-term goals we 
see our approach as one of the steps towards this goal but 
agree that further aspects need to be considered (e.g., [30]). 

Finally, our data also demonstrates that using pupil diameter 
measurements to estimate task difficulty is complicated by 
measurement noise. Noise can result from eye blinks, head 
motion, and other natural user actions and environmental 
conditions. We can expect such noisy measurements to occur 
with remote eye trackers, although the situation might im-
prove if we use head-worn eye trackers. Head-worn eye 
trackers might become widespread with the advent of de-
vices similar to Google Glass, or the upcoming Microsoft 

Figure 6: Pupil diameter data for one participant for two 
different lighting conditions. Note that raw pupil diameter 
measurements result in indistinguishable results for the 0-

back task performed while looking at the LCD screen set to 
25% gray scale brightness, and for the 1-back task per-

formed with 2 lamps. 

 



HoloLens (although neither of these two devices has eye 
tracking capabilities at this time). 

PRACTICALLY  ESTIMATING  WORKLOAD  
Looking ahead, based on the findings presented in this paper 
it becomes possible to continuously estimate workload for 
new users and new tasks. To apply our model in an office or 
home environment, for example to track a user’s task diffi-
culty while coding, or playing a game, we would need three 
types of information: the user’s pupil diameter, the current 
lighting conditions, and the average pupil diameter for those 
lighting conditions.  

Pupil diameter measurement will likely become inexpensive 
soon. Even today we can purchase eye trackers at about 
$200, and we can imagine that in the near future eye tracking 
applications will be able to utilize a high-resolution webcam 
(and infrared illumination) integrated into a computing de-
vice. And, at least for applications where the user’s visual 
attention is focused on a screen, we should be able to easily 
assess lighting conditions: e.g., for a user writing code on a 
computer we can track the user’s gaze, and assess the lumi-
nance of the screen around the user’s visual focus as well as 
the environmental illumination. We can also assess ambient 
light – mobile devices can already measure the intensity of 
ambient light to control their display luminance. Finally, as-
sessing the average pupil diameter for a given lighting level 
would require a calibration process: this might be as simple 
as instructing the user to look at different areas of the screen 
and it collecting pupil diameter data as a function of screen 
luminance. In this process the pupil size would be measured 
at expected lighting levels (e.g. lighter and darker application 
windows), and at extremes (e.g., a white and a black screen), 
while there is no workload present.  One could calculate, 
based on these data, an illumination-dependent average pupil 
diameter for the user. Using these values for the pupil size 
and knowing the current lighting level (e.g., based on what 
is shown on the screen) the proposed model can be used to 
estimate the workload while engaged in arbitrary tasks. 

LIMITATIONS  
One limitation of our work is that our model was imple-
mented and tested using discrete levels of lighting and task 
difficulty. Furthermore, we avoided transitions between 
these discrete levels by introducing long rest periods between 
experimental conditions. Finally, the time resolution of our 
estimate is low, as we estimate workload for 30-second seg-
ments. We averaged measurements from the eye-tracker to 
reduce the effect of measurement noise. For future work, we 
plan to separate the two effects for each measurement point 
(at the frequency of the eye-tracker). However, we see this 
model as a first step towards high time-resolution workload 
estimation through pupil diameter, independent of lighting. 

In a natural setting, a number of variables will change con-
tinuously in time and value, including the luminance and 
color of visual targets, ambient lighting, as well as task mo-
dality and difficulty. Thus, future work will have to address 
modeling pupil diameter changes in these realistic environ-
ments. If we can model pupil diameter changes due to factors 
other than cognitive workload, then we expect that we can 
use this model to estimate the changes that are due to cogni-
tive workload. Our plan is to first explore this question in the 
context of interactions with user interfaces presented on 
screens, both small and large. 

Another limitation is that our calculations are completed af-
ter all of the data has been collected, and not in real-time. 
While this approach would be useful in the design phase of a 
user interface, more work is needed to create a model that 
can be used to provide real-time feedback to UI algorithms.  

Furthermore, in this work we use a simple heuristic classi-
fier. It is possible that we could attain better classification 
with a more sophisticated classifier. However, the classifier 
we implemented serves the intended purpose of providing a 
proof of concept that separating the effects of light and task 
difficulty is possible. One of the next steps is to investigate 
continuously changing levels of light and task difficulty and 
present a system that can do this in real-time. With this step 
we will also introduce a sophisticated new classifier. 

CONCLUSION  
With the increasing proliferation of eye-tracking devices, it 
becomes more and more feasible to rely on this technology 
when interacting with computers and intelligent devices. One 
desire is to use eye-tracking to estimate the user’s mental 
workload. This work seeks to tackle potential limitations of 
using eye-tracking methods in estimating mental workload 
such as the influence of illumination. By conducting a fully 
controlled experiment under different lighting and workload 
conditions, we are able to provide a dataset and preliminary 
model that can be used to estimate mental workload based on 
eye-tracking employing the user’s pupil diameter.  

ACKNOWLEDGMENTS  
This work was funded in part by the NSF under grant IIA-
1358096. We thank Micah Lucas, Michael Nguyen, and Ru-
dra Timsina for their help in conducting the study and pro-
cessing the data. We also thank the German Research Foun-
dation (DFG) for financial support of the project within the 
Cluster of Excellence in Simulation Technology 
(EXC 310/2) and within the projects C02 of SFB / 
Transregio 161 “Quantitative Methods for Visual Compu-
ting” at the University of Stuttgart. 

   



REFERENCES  
1.   Ulf Ahlstrom and Ferne J. Friedman-Berg. 2006. Using 

eye movement activity as a correlate of cognitive 
workload. International Journal of Industrial Ergo-
nomics 36, 7 (Jul. 2006), 623-636. DOI: 
http://dx.doi.org/10.1016/j.ergon.2006.04.002  

2.   Amanda N. Baraldi and Craig K. Enders. 2010. An in-
troduction to modern missing data analyses. Journal of 
School Psychology 48, 1 (Feb. 2010), 5-37. DOI: 
http://dx.doi.org/10.1016/j.jsp.2009.10.001  

3.   Jackson Beatty. 1982. Task-evoked pupillary re-
sponses, processing load, and the structure of pro-
cessing resources. Psychological Bulletin 91, 2 (Mar. 
1982), 276-292. DOI: http://dx.doi.org/10.1037/0033-
2909.91.2.276  

4.   Simone Benedetto, Marco Pedrotti, Luca Minin, 
Thierry Baccino, Alessandra Re, and Roberto Mon-
tanari. 2011. Driver workload and eye blink duration. 
Transportation Research Part F: Traffic Psychology 
and Behavior 14, 3 (May 2011), 199-208. DOI: 
http://dx.doi.org/10.1016/j.trf.2010.12.001  

5.   Anne-Marie Brouwer, Maarten A. Hogervorst1, Jan B. 
F. van Erp, Tobias Heffelaar, Patrick H. Zimmerman, 
and Robert Oostenveld. 2012. Estimating workload us-
ing EEG spectral power and ERPs in the n-back task. 
Journal of Neural Engineering 9, 4, Article 045008 
(Jul. 2012), 045008, 14 pages. DOI: 
http://dx.doi.org/10.1088/1741-2560/9/4/045008  

6.   Joseph F. Coughlin, Bryan Reimer, and Bruce Mehler. 
2009. Driver Wellness, Safety & the Development of an 
AwareCar. MIT AgeLab White Paper. Massachusetts 
Institute of Technology, Cambridge, MA. 
http://web.mit.edu/reimer/www/pdfs/coughlin_well-
ness_2009.pdf 

7.   Andrew T. Duchowski. 2002. A breadth-first survey of 
eye-tracking applications. Behavior Research Methods, 
Instruments, & Computers 34, 4 (Nov. 2002), 455-470. 
DOI: http://dx.doi.org/10.3758/BF03195475  

8.   Christine Fogarty, and John A. Stern, 1989.  Eye move-
ments and blinks: Their relationship to higher cognitive 
processes. International Journal of Psychophysiology 
8, 1 (Sep. 1983), 35-42. 
http://dx.doi.org/10.1016/0167-8760(89)90017-2  

9.   Thomas M. Gable, Andrew L. Kun, Bruce N. Walker, 
and Riley J. Winton. 2015. Comparing heart rate and 
pupil size as objective measures of workload in the 
driving context: initial look. In Adjunct Proceedings of 
the 7th International Conference on Automotive User 
Interfaces and Interactive Vehicular Applications (Au-
tomotiveUI '15). ACM, New York, NY, USA, 20-25. 
DOI: http://doi.acm.org/10.1145/2809730.2809745  

10.   Alan Gevins, and Michael E. Smith. 2003. Neurophysi-
ological measures of cognitive workload during hu-

man-computer interaction. Theoretical Issues in Ergo-
nomics Science 4, 1-2 (2003), 113-131. DOI: 
http://dx.doi.org/10.1080/14639220210159717  

11.   Audrey Girouard and Erin Treacy Solovey and Robert 
J.K. Jacob. 2013. Designing a passive brain computer 
interface using real time classification of functional 
near-infrared spectroscopy. International Journal of 
Autonomous and Adaptive Communication Systems 6,1 
(2013), 26-44. DOI: 
http://dx.doi.org/10.1504/IJAACS.2013.050689  

12.   D. M. A. Gronwall. 1977. Paced Auditory Serial-Addi-
tion Task: A Measure of Recovery From Concussion. 
Perceptual and Motor Skills 44 (1977), 367-373. DOI: 
http://dx.doi.org/10.2466/pms.1977.44.2.367  

13.   Jennifer A. Healey, and Rosalind W. Picard. 2005. De-
tecting stress during real-world driving tasks using 
physiological sensors. IEEE Trans. Intelligent Trans-
portation Systems 6, 2 (June 2005), 156-166. DOI: 
http://dx.doi.org/10.1109/TITS.2005.848368  

14.   Peter A. Heeman, Tomer Meshorer, Andrew L. Kun, 
Oskar Palinko, and Zeljko Medenica. 2013. Estimating 
cognitive load using pupil diameter during a spoken di-
alogue task. In Proceedings of the 5th International 
Conference on Automotive User Interfaces and Inter-
active Vehicular Applications (AutomotiveUI '13). 
ACM, New York, NY, USA, 242-245. DOI: 
http://dx.doi.org/10.1145/2516540.2516570   

15.   Daniel Kahneman, D., and Jackson Beatty. 1966. Pupil 
Diameter and Load on Memory. Science 154, 3756 
(Dec. 1966), 1583-1585. DOI: 
http://dx.doi.org/10.1126/science.154.3756.1583  

16.   Daniel Kahneman, Linda Onuska, L., and Ruth E. Wol-
man. 1968. Effects of pupillary response in a short-
term memory task. The Quarterly Journal of Experi-
mental Psychology 20, 3 (1968), 309-311. DOI: 
http://dx.doi.org/10.1080/14640746808400168  

17.   W. K. Kirchner. Age differences in short-term reten-
tion of rapidly changing information. Journal of exper-
imental psychology 55, 4 (Apr. 1958), 352-358. 

18.   Jeff Klingner, Rakshit Kumar, and Pat Hanrahan. 2008. 
Measuring the task-evoked pupillary response with a 
remote eye tracker. In Proceedings of the 2008 sympo-
sium on Eye tracking research & applications (ETRA 
'08). ACM, New York, NY, USA, 69-72. DOI:  
http://dx.doi.org/10.1145/1344471.1344489  

19.   Jeff Klingner, Barbara Tversky, and Pat Hanrahan. 
2011. Effects of visual and verbal presentation on cog-
nitive load in vigilance, memory, and arithmetic tasks. 
Psychophysiology 48, 3 (Mar. 2011), 323-332. DOI: 
http://dx.doi.org/10.1111/j.1469-8986.2010.01069.x  

20.   Andrew L. Kun, Susanne Boll, and Albrecht Schmidt. 
2016. Shirting gears: User interfaces in the age of au-
tonomous driving. IEEE Pervasive Computing 15, 1 



(January-March 2016), 32-37. DOI: 
http://dx.doi.org/10.1109/MPRV.2016.14  

21.   Andrew L. Kun, and Zeljko Medenica. 2012. Video 
call or not, that is the question. In CHI '12 Extended 
Abstracts on Human Factors in Computing Systems. 
ACM, New York, NY, USA, 1631-1636. DOI: 
http://dx.doi.org/10.1145/2212776.2223684  

22.   Andrew L. Kun, Oskar Palinko, Zeljko Medenica, and 
Peter A. Heeman. 2013. On the Feasibility of Using 
Pupil Diameter to Estimate Cognitive Load Changes 
for In-Vehicle Spoken Dialogues. In INTERSPEECH, 
(2013), 3766-3770. 

23.   Andrew L. Kun, Oskar Palinko, and Razumenić, I. Ex-
ploring the effects of size and luminance of visual tar-
gets on the pupillary light reflex. In Proceedings of the 
4th International Conference on Automotive User Inter-
faces and Interactive Vehicular Applications (Automo-
tiveUI '12). ACM, New York, NY, USA, 183-186. 
DOI: http://doi.acm.org/10.1145/2390256.2390287  

24.   Sandra P. Marshall, 2002. The Index of Cognitive Ac-
tivity: measuring cognitive workload. In Proceedings 
of the 2002 IEEE 7th Conference on Human Factors 
and Power Plants. IEEE, 7-5 – 7-9. DOI: 
http://dx.doi.org/10.1109/HFPP.2002.1042860  

25.   Bruce Mehler, Bryan Reimer, Joseph F. Coughlin, and 
Jeffery A. Dusek. 2009. Impact of incremental in-
creases in cognitive workload on physiological arousal 
and performance in young adult drivers. Transporta-
tion Research Record: Journal of the Transportation 
Research Board 2138, 1 (2009), 6-12. DOI: 
http://dx.doi.org/10.3141/2138-02  

26.   Bruce Mehler, Bryan Reimer, and Joseph F. Coughlin. 
2012. Sensitivity of physiological measures for detect-
ing systematic variations in cognitive demand from a 
working memory task an on-road study across three 
age groups. Human Factors 54, 3 (2010), 396-412. 
DOI: http://dx.doi.org/10.1177/0018720812442086  

27.   Bruce Mehler, Bryan Reimer and Jeffery A. Dusek. 
2011. MIT AgeLab Delayed Digit Recall Task (n-back) 
Working Paper 2011-3B. Massachusetts Institute of 
Technology, Cambridge, MA. 
http://agelab.mit.edu/system/files/Mehler_et_al_n-
back-white-paper_2011_B.pdf  

28.   W. Thomas Miller, and Andrew L. Kun. 2013. Using 
speech, GUIs and buttons in police vehicles: field data 
on user preferences for the Project54 system. In Pro-
ceedings of the 5th International Conference on Auto-
motive User Interfaces and Interactive Vehicular Ap-
plications (AutomotiveUI '13). ACM, New York, NY, 
USA, 108-113. DOI: 
http://dx.doi.org/10.1145/2516540.2516564  

29.   William F. Moroney, David W. Biers, Thomas 
Eggemeier, and Jennifer A. Mitchell. 1992. A compari-
son of two scoring procedures with the NASA Task 

Load Index in a simulated flight task. In Proceedings 
of the IEEE 1992 National Aerospace and Electronics 
Conference, NAECON 1992. IEEE, 734-740. DOI: 
http://dx.doi.org/10.1109/NAECON.1992.220513  

30.   Nesrine Mezhoudi, Iyad Khaddam, and Jean Vander-
donckt. 2015. Toward Usable Intelligent User Inter-
face. In: Proceedings of the 17th International Confer-
ence on Human-Computer Interaction (HCII ‘15), Part 
II, LNCS 9170, Springer International Publishing, 459-
471. DOI:  
http://dx.doi.org/10.1007/978-3-319-20916-6_43  

31.   Michael Myrtek, Doris Weber, Georg Brügner, and 
Wolfgang Müller. 1996. Occupational stress and strain 
of female students: results of physiological, behavioral, 
and psychological monitoring. Biological Psychology 
42, 3 (Feb. 1996), 379-391. DOI: 
http://dx.doi.org/10.1016/0301-0511(95)05168-6  

32.   Luis Nunes and Miguel A. Rescarte 2002. Cognitive 
demands of hands-free-phone conversation while driv-
ing. Transportation Research Part F 5, 2 (Jun. 2002), 
133-144. DOI:  
http://dx.doi.org/10.1016/S1369-8478(02)00012-8  

33.   Julie Onton, Arnaud Delorme, and Scott Makeig. 2005. 
Frontal midline EEG dynamics during working 
memory. NeuroImage 27, 2 (Aug. 2005), 341-356. 
DOI:  
http://dx.doi.org/10.1016/j.neuroimage.2005.04.014  

34.   Oskar Palinko and Andrew Kun. 2011. Exploring the 
influence of light and cognitive load on pupil diameter 
in driving simulator studies. In Proceedings of the Sixth 
International Driving Symposium on Human Factors in 
Driver Assessment, Training and Vehicle Design (Driv-
ing Assessment 2011), University of Iowa, Iowa City, 
IA, 329-336. 
http://drivingassessment.uiowa.edu/sites/de-
fault/files/DA2011/Papers/048_PalinkoKun.pdf  

35.   Oskar Palinko and Andrew Kun. 2012. Exploring the 
effects of visual cognitive load and illumination on pu-
pil diameter in driving simulators. In Proceedings of 
the Symposium on Eye Tracking Research and Applica-
tions (ETRA ’12), ACM, New York, NY, 413-416. 
DOI: http://dx.doi.org/10.1145/2168556.2168650  

36.   Oskar Palinko, Andrew L. Kun, Alexander Shyrokov, 
and Peter A. Heeman. 2010. Estimating cognitive load 
using remote eye tracking in a driving simulator. In 
Proceedings of the Symposium on Eye Tracking Re-
search and Applications (ETRA ’10), ACM, New 
York, NY, 141-144. DOI: 
http://dx.doi.org/10.1145/1743666.1743701  

37.   Bastian Pfleging and Albrecht Schmidt. 2015. (Non-) 
Driving-Related Activities in the Car: Defining Driver 
Activitgies for Manual and Automated Driving. In 
Workshop on Experiencing Autonomous Vehicles: 
Crossing the Boundaries between a Drive and a Ride at 



CHI ’15. http://www.hcilab.org/wp-content/up-
loads/pfleging-2015-drivingrelatedactivities.pdf  

38.   Bastian Pfleging, Stefan Schneegass, and Albrecht 
Schmidt. 2013. Exploring user expectations for context 
and road video sharing while calling and driving. In 
Proceedings of the 5th International Conference on 
Automotive User Interfaces and Interactive Vehicular 
Applications (AutomotiveUI '13). ACM, New York, 
NY, USA, 132-139. DOI: 
http://dx.doi.org/10.1145/2516540.2516547  

39.   Bryan Reimer, Bruce Mehler, Joseph F. Coughlin, 
Kathryn M. Godfrey, and Chauanzhong Tan. 2009. An 
on-road assessment of the impact of cognitive work-
load on physiological arousal in young adult drivers. In 
Proceedings of the 1st International Conference on Au-
tomotive User Interfaces and Interactive Vehicular Ap-
plication (AutomotiveUI ’09), ACM, New York, NY, 
115-118. DOI: 
http://dx.doi.org/10.1145/1620509.1620531  

40.   A. H. Roscoe. 1992. Assessing pilot workload. Why 
measure heart rate, HRV and respiration? Biological 
Psychology 34, 2 (Nov. 1992), 259-287. DOI: 
http://dx.doi.org/10.1016/0301-0511(92)90018-P  

41.   Dennis W. Rowe, John Sibert, and Don Irwin. 1998. 
Heart rate variability: Indicator of user state as an aid 
to human-computer interaction. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI ‘98), ACM, New York, NY, 480-487. 
DOI: http://dx.doi.org/10.1145/274644.274709  

42.   Kilseop Ryu and Rohae Myung. 2005. Evaluation of 
mental workload with a combined measure based on 
physiological indices during a dual task of tracking and 
mental arithmetic. International Journal of Industrial 
Ergonomics 35, 11 (Nov. 2005), 991-1009. DOI: 
http://dx.doi.org/10.1016/j.ergon.2005.04.005  

43.   Stefan Schneegass, Bastian Pfleging, Nora Broy, Fred-
erik Heinrich, and Albrecht Schmidt. A data set of real 
world driving to assess driver workload. In Proceed-
ings of the 5th International Conference on Automotive 
User Interfaces and Interactive Vehicular Applications 
(AutomotiveUI 2013). ACM, New York, NY, 150-157. 
DOI: http://dx.doi.org/10.1145/2516540.2516561  

44.   Erin T. Solovey, Paul Schermerhorn, Matthias Scheutz, 
Angelo Sassaroli, Sergio Fantini, and Robert J.K. Ja-
cob. 2012. Brainput: Enhancing Interactive Systems 
with Streaming fNIRS Brain Input. In Proceedings of 
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI '12). ACM, New York, NY, USA, 
2193-2202. DOI: 
http://dx.doi.org/10.1145/2207676.2208372 

45.   Yi-Fang Tsai, Erik Viirre, Christopher Strychacz, 
Bradley Chase, and Tzyy-Ping Jung. 2007. Task per-
formance and eye activity: Predicting behavior relating 
to cognitive workload. Aviation, Space, and Environ-
mental Medicine 78, 5 (May 2007), B176-B185. 

46.   Karl F. Van Orden, Wendy Limbert, Scott Makeig, and 
Tzyy-Ping Jung. 2001. Eye activity correlates of work-
load during visuospatial memory task. Human Factors: 
The Journal of the Human Factors and Ergonomics 
Society 43, 1 (Spring 2001), 111-121. DOI: 
http://dx.doi.org/10.1518/001872001775992570  

47.   Ying Wang, Bryan Reimer, Bruce Mehler, Jun Zhang, 
Alea Mehler, and Joseph F. Coughlin. 2010. The Im-
pact of Repeated Cognitive Tasks on Driving Perfor-
mance and Visual Attention. In Proceedings of the 3rd 
International Conference on Applied Human Factors 
and Ergonomics (AHFE’ 10), Miami, FL, USA. 

48.   Yan Yang, Bryan Reimer, Bruce Mehler,and Jonathan 
Dobres. 2013. A field study assessing driving perfor-
mance, visual attention, heart rate and subjective rat-
ings in response to two types of cognitive workload. In 
Proceedings of the 7th International Driving Sympo-
sium on Human Factors in Driver Assessment, Train-
ing, and Vehicle Design (Driving Assessment 2013). 
University of Iowa, Iowa City, IA, 397-403. 

49.   Yabo Yang, Keith Thompson, and Stephen A. Burns. 
2002. Pupil location under mesopic, photopic, and 
pharmacologically dilated conditions. Investigative 
Ophthalmology & Visual Science 43, 7 (Jul. 2002), 
2508-2512.  

50.   Zhiwei Zhu, Kikuo Fujimura, and Qiang Ji. 2002. 
Real-time eye detection and tracking under various 
light conditions. In Proceedings of the 2002 Sympo-
sium on Eye Tracking Research & Applications (ETRA 
2002). ACM, New York, NY, 139-144. DOI: 
http://dx.doi.org/10.1145/507072.507100  

	
  


