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ABSTRACT
Integrated Development Environments (IDEs) are used for a variety
of software development tasks. Their complexity makes them chal-
lenging to use though, especially for less experienced developers.
In this paper, we outline our approach for an user-adaptive IDE
that is able to track the interactions, recognize the user’s intent and
expertise, and provide relevant, personalized recommendations in
real-time. To obtain a user model and provide recommendations, in-
teraction data is processed in a two-stage process: first, we derive a
bandit based global model of general task patterns from a dataset of
labeled interactions. Second, when the user is working with the IDE,
we apply a pre-trained classifier in real-time to get task labels from
the user’s interactions. With those and user feedback we fine-tune
a local copy of the global model. As a result, we obtain a person-
alized user model which provides user-specific recommendations.
We finally present various approaches for using these recommenda-
tions to adapt the IDE’s interface. Modifications range from visual
highlighting to task automation, including explanatory feedback.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); User models; Graphical user interfaces; • Com-
puting methodologies→ Reinforcement learning.
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1 INTRODUCTION
IDEs are software development tools with an abundance of func-
tionality but consequently also with the tendency to overwhelm
users with their complexity. Command-search and context-based
hints are some of the methods which modern IDEs use to address
this issue. Current IDEs also support various user adaptations, en-
abling the developer to adjust his work environment to his personal
preferences. One step further to these adaptable systems are adap-
tive IDEs, that apply user modeling to automatically adjust and
personalize the system to a developer’s individual preferences and
demands. While the concept of user modeling and adaptive sys-
tems is well-established in the web context, for example for content
recommendation, applications in software development are still
scarce. Previous work in the field mostly addresses identification
and prediction of user behavior based on joint interaction data
collected from multiple developers. By contrast, our approach also
provides personalized recommendations and interface adaptations.
For this purpose, we introduce a two-tier, bandit-based approach
for real-time user modeling (Sect. 3) as well as approaches for how
to use predictions for interface adaptation (Sect. 4). In addition, we
take system transparency and user control into account.

2 RELATEDWORK
Several publications investigated concepts for user-adaptation in
software development. Robillard et al. [16] present an overview on
recommendation systems for software engineering (RSSE). They
describe systems that provide recommendations based on user char-
acteristics, conducted task, task characteristics or past user actions.
The presented applications support developers by recommending
reuse of specific code fragments, expert consultants, code examples,
information navigation or what parts of code to change next. A sim-
ilar overview on software development recommendation systems
is given by Happel et al. [10].

Murphy-Hill et al. [15] combine collaborative filtering and mul-
tiple discovery algorithms to make developer command recommen-
dations. Based on a dataset of around 4000 developers, they were
able to recommend commands with an accuracy of about 30%. In
addition, they conducted a live study, manually presenting recom-
mendations to novice and expert users to evaluate usefulness and
acceptance. In a more recent work, Damevski et al. [5] present a
topic modeling approach (Temporal Latent Dirichlet Allocation) for
predicting future developer behavior in an IDE. However, they do
not implement or evaluate any forms of recommendation or system
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adaptation. Similarly, Bulmer et al. [2] also predict developers’ next
interaction with up to 64% accuracy using a neural network trained
on a dataset with interaction data from 3000 developers.

All of these approaches make predictions by training on offline
datasets. While we follow the same strategy in our first tier, in
our approach we add a second level of personalization by contin-
uously readjusting the model based on real-time user interaction.
Regarding personalized recommendation in IDEs, Gasparic et al.
[9] introduced a command recommender system based on the de-
veloper’s current work context and his previous knowledge of
commands. With this approach, the user also gets personalized
recommendations for relevant commands that he is assumingly not
aware of.

3 USER MODELING
In this section, we propose a bandit model approach for user model-
ing in adaptive IDEswith two tiers, Initialization and Personalization.
After describing the two levels of interaction data granularity, we
show how this data is used in the two tiers. The following sections
describe in detail how to construct the user model and the recom-
mender system, which are the foundation for adapting the IDE’s
interface to the user’s needs and preferences.

3.1 Data Description
To build an adaptive IDE we closely collaborated with the develop-
ers of AutoFocus3 (AF3) 1, an IDE for model-based development.
This collaboration allowed us to record user interaction in great de-
tail, directly inside the IDE. Input at the click- or mouse-move-level
is noisy though, for example due to random user exploration and
meaningless interactions. This makes it hard to identify task pat-
terns and user preferences. So, following an approach described in
[11] and [17], we introduce an additional level of granularity, differ-
entiating between fine-grained, low-level interactions as recorded
by the IDE and high-level task labels. Each task is a labeled se-
quence of low-level interactions. Selecting adequate task labels is
domain-specific and should be chosen with feedback from domain
experts.

3.2 A Two-Tier Approach to Personalization
To get value from our data we propose a two-tier bandit model
framework. In the initialization-tier, illustrated in the upper part
of Fig. 1, we first train an interaction classifier (see Sect. 3.2.1) and
derive user expertise criteria (see Sect. 3.2.2) from the training data.
Then, we initialize a global user model (see Sect. 3.3), extracting
from the training data how often and in which order different tasks
are performed (task frequencies). During this initialization stage,
only offline training data is required. A copy of the global model
serves as base for the personalization-tier, which in contrast to the
first tier also requires real-time user interaction. As shown in the
lower part of Fig. 1, the classifier created in the first tier labels the
low-level real-time data to obtain the high-level task description.

As next step, the user expertise level is determined by compar-
ing the local task patterns with the global task patterns regarding
the expertise criteria (see Sect. 3.2.2). Subsequently, an individual
local user model is obtained by incrementally fine-tuning the local
1https://af3.fortiss.org

copy of the global model with the real-time high-level data and
implicit user feedback. In this way, during fine-tuning the local
model is adapted to the user’s individual task patterns, leading to a
personalized copy of the global task patterns.

There are mainly three advantages of applying this two-tier
approach. First, we can transfer the prior knowledge (general user
task patterns) directly into personalized recommendation, so that
we do not suffer from the common cold-start problem. Second, since
the proposed framework allows us to incrementally update the local
user model, we only fine tune with the user’s interactions and do
not have to re-train the model from scratch. Third, with data of
individual users only captured and processed locally, our approach
offers a high level of privacy and data sovereignty (see also Sect. 4.3).
In the following, we introduce the previously described components
in detail.

3.2.1 Interaction Classifier. While the training data is labeled with
task descriptors, the real-time interaction data stream is not. How-
ever, our user models and bandit based recommendation models
(see Sect. 3.3 and 3.3.1 respectively) are based on the high-level task
descriptors. Thus, we train an interaction classifier that maps low-
level interaction data to high-level task descriptions. The classifier
is trained in a supervised manner by minimizing the high-level task
description classification error on the training data. As an example,
assume there is a low-level interaction trace l = {b,a, c,d, e, f }
with high-level task descriptions h = {A,A,A,A,B,B} in the train-
ing data. In training, the interaction classifier takes N (here N = 3)
consecutive low-level interactions {b,a, c} as the input and learns
to predict the first corresponding high-level task descriptionA. The
benefit of this method is that it can capture the temporal dependen-
cies maintained in the low-level interactions.

3.2.2 Expertise Criteria. Ahigh-level task can be described through
a pattern, consisting of a chronological sequence of low-level in-
teractions. By comparing a individual user’s task patterns to the
common task patterns, a user’s level of expertise can be estimated
(see knowledge modeling in [1]). For expertise level determination,
we assume that advanced users need fewer actions for finishing
the same tasks than less experienced users. Consequently, for all
user levels, we set a threshold of average number of steps for fin-
ishing tasks. The average step number of a user is no more than
the threshold of his expertise level.

3.3 User Model
In context of IDE task recommendation, we define a user model M
as a function that maps a user representation u and a high-level
task representation e to a real value. This real value is the payoff of
choosing e givenu and can also be interpreted as the user preference
to the task e of the user u. More formally, it can be defined as:

M : U × E 7→ R, (1)

whereU is the user representation space and E is the high-level task
representation space. There can be different choices ofmathematical
models for M, for example regression model or neural networks.
Since for our purposes we investigate only a limited number of
tasks and user states, we can use a tabular form of user model.

Its row index is user representation and column index is high-
level task representation. We denote task ID as the high-level task



Figure 1: Two-tier user modeling and recommendation approach.

A B C
ABC 0.7 0.1 0.2

Table 1: Exemplary row in the tabular user model
Three tasks A, B,C , following the trigram ABC in the training with

7, 1, 2 occurrences respectively.

representation. The entry value of this table is the estimated payoff
in context of bandit problems. For user representations, we use a N -
Grammodel [4] based representation, which originate from the field
of language modeling. In our N -Gram setup, user representation
is formalized by concatenating N last task representation in one
aggregation as defined in the following equation,

ut = [eu,t−N ... eu,t−2 eu,t−1], (2)

where ut is the representation of user u at time t , eu,t is the task
taken by user u at time t .

Throughout this work, we have two types of user models, which
we both consider as tables. One is the global user model which
captures the common user task patterns like task types and order
of task execution. Each row of the global model is initialized with
the task frequencies of the corresponding user representation as
shown in Tab. 1. Since we do not get real-time frequencies of high-
level tasks, training of local user model should follow the typical
contextual bandit model approach, which will be introduced in the
following section.

3.3.1 Recommendation Algorithm. We model personalized IDE
task recommendation as a contextual multi-armed bandit prob-
lem [13, 14]. We consider all available tasks to be recommended
as arms, user representation and task representation as context.
Therefore, a contextual-bandit based recommender R evaluates all
possible tasks with learned user models. Intuitively, the recommen-
dation is made by taking the arm with the maximal payoff. The
update rule of the recommender R can be concluded as following,
at each time t :

(1) The recommender R observes a new coming user u and a set
of n available tasks Et . R summarizes the information of u
and Et into n feature vectors, which can also be referred as
arm contexts.

(2) R forwards the arm contextual information to the corre-
sponding user model and gets the estimated payoffs of all

arms. It selects a task et from Et with maximal estimated
payoff.

(3) R receives the corresponding user feedback (payoff) rt of et
and updates the selection strategy.

It is necessary to emphasize that the payoff rt here only depends on
the user representation u and selected task et . The unchosen tasks
don’t affect the payoff rt . When a recommended task is selected
by a user, a payoff of 1 is incurred; otherwise, the payoff is -1. It
is equivalent to maximizing the recommendation accuracy, which
in turn is the same as maximizing the total expected payoff in our
bandit model. Differing from the traditional multi-armed bandit
approach, we don’t further explore other actions in the global model.
That is because the global model was trained in a supervisedmanner
and can well represent the general user behaviors. The candidates
of the optimal action are reasonably among the actions with the
highest payoffs. Therefore, inefficient exploration will even reduce
the algorithm performance and user satisfaction.

3.4 Proof of Concept
Although we developed this approach within a project of a pub-
lished, open-source modeling IDE, development and distributions
processes do not allow for proper validation regarding amount and
quality of captured interaction data at this time. So, in order to
get a first proof of concept, we create synthetic data representing
individual high-level task patterns as described in Tab. 1.

3.4.1 Synthetic Dataset. In a first step, we generate a synthetic
dataset to train a tier-one global model. We initially define Npat =

10 ground truth task patterns consisting of randomly generated
sequences of five to ten high-level tasks. To simulate diverse real-
world interaction events, we define Ntask = 10 available high-
level tasks. The generated task patterns then are used to create
Ntrain = 10000 synthetic user records. Each record is a set of up
to 50 randomly chosen task patterns. In this process, individuality
of each user is introduced by applying a corruption function to
the ground truth task patterns. Here, we interpret individual user
behavior as differing preferences in interaction order for the same
task. Therefore, the applied corruption strategy is to randomly swap
high-level tasks in individual user records. As a result, we obtain
a dataset of individual task patterns, that we use to train a global
tabular user model. In the same way, we create a second dataset of



size Nval = 1000, that we use for model validation. In a further step,
we simulate real-time user feedback in order to gain a personalized
local user model. Thereby user feedback on recommendations is
simulated in a simplified way: if the predicted recommendation hits
the user action, a positive feedback is given. Otherwise, the local
model receives a negative feedback.

3.4.2 Model Evaluation. For accuracy evaluation, we create multi-
ple synthetic datasets, modifying the parameters Ntask and Npat
to train multiple global models. Fig. 2 illustrates accuracy for global
and local model resulting of ten repetitions with a growing num-
ber of available high-level tasks Ntask = 1..10. Correspondingly,
Fig. 3 illustrates the accuracy of ten repetitions with a growing
number of defined task patterns Npat = 1..10. According to these
results, our two-tier model approach continuously outperforms the
single global model gaining a performance improvement over 5%.
With a parameter setting that roughly depicts interaction patterns
observed in the real-world modeling IDE AutoFocus3 (Ntask = 8,
Npat = 10), the local model accuracy is around 36%, providing an
improvement of around 6% compared to the global model.

Figure 2: Model accuracy over Ntask = 1..10 with Npat = 10.

3.4.3 Discussion. We are aware that the use of a synthetic dataset
is linked to various limitations. So for example real-world noise in
interaction behavior is hard to simulate. However, results suggest
that our two-tier approach in general is feasible and promising
regarding the accuracy improvement even given very sparse user
feedback for the local model. Using real interaction data, we assume
that accuracy improvement may be even larger due to possible
user behavior exploration and potentially much more dense user
feedback for the local model adaptation. As further described in Sect.
5, we plan to implement our approach using real IDE interaction
datasets, possibly following another run on synthetic data that is
closer to real IDE interaction than our current randomly generated
data. In addition, we may compare alternative mathematical models,
taking evaluations of related approaches into account.

Figure 3: Model accuracy over Npat = 1..10 with Ntask = 10.

4 SYSTEM ADAPTATION
In the previous section we described how to identify and predict
individual user behavior in real-time. These predicted task patterns
can now be used to perform personalized system adaptations, that
means adapt the user interface according to the personalized recom-
mendations. Based on the classification described by Bunt et al. [3],
adaptations can be divided into the following categories: content,
presentation, and modality adaptation. Referring to Jameson [12],
we add an additional category functionality adaptation, achieved for
example by automating routine tasks or a adapting a system’s dialog
strategy. In the following sections we describe our approaches on
how to apply the user model and the recommendations for adapting
the IDE’s interface.

4.1 Functionality Adaptation
As described in Sect. 3.1, a local user model describes the task pat-
terns of an individual developer. These patterns can be used to
dynamically support the user’s workflow according to his inten-
tions and preferences. That means that when performing a specific
task, the IDE can support the execution of subsequent tasks with
appropriate adaptions. The following sections describe different
forms of functionality adaptation for this kind of individual work-
flow optimization.

4.1.1 Action Shortcut. One variant of functionality adaptation is
to provide to the user a shortcut to the predicted next action. Such
a quick access can be presented e.g. with a permanently accessible
“quick-fix”-button. For multiple recommendations, a temporary
displayed radial menu can provide quick access (see Fig. 4). In
addition, a hotkey can be assigned to execute the next recommended
action. With respect to transparency and usability, all of these
options - above all the last one - have the issue that it can be
unclear why an action was recommended, so it should come with
some form of explanation (see Sect. 4.3).

4.1.2 Action Initialization. Beyond offering quick access, a further
functionality adaption is to automatically initiate the predicted



action. This can be accomplished by for example focusing relevant
interface elements like windows, buttons or text input fields. For
example when a possible high-level task renaming is predicted,
the system can initiate the action by opening the renaming dialog.
Again, these functionality should provide some kind of explanation
to the user, especially when changing the input or cursor focus.

4.1.3 Action Automation. The most thorough approach would be
to not just initiate an action, but automate the complete execution
of the predicted next step. An adaptive IDE could for example auto-
matically compile and run a project at points where this has been
identified as part of the user’s routine. However, as this is a deep
intervention in the user’s workflow, it requires correspondingly
designed feedback and undo functionality.

4.2 Presentation Adaptation
Contrary to functionality adaptions, presentation adaptations alter
the interface in order to show or hide selected content and is often
used in adaptive-web context [3].

4.2.1 Expertise-Level Based Hints. As described in Sect. 3, the local
user model is able to estimate the level of expertise of an individual
user. That means, if a developer is performing a specific task for
the first time, we can provide him with a detailed task description
instead of action shortcuts. For more experienced users, the hint
would remain hidden. In this way, developers get the possibility
to learn new tasks while experienced users are not distracted or
annoyed. Furthermore, hints could also provide experienced users
with additional information about the recommended task. These
hints can be realized in different ways, for example as short how-to
animations as sketched in Fig. 4, textual notifications or by high-
lighting relevant interface elements.

Figure 4: Interface adaptions.
Video instructions (left) and radial menu (right) with quick access

to recommended actions A, B and explanation.

4.2.2 Information Dimming. While hints represent a way of high-
lighting and showing additional information, another form of adap-
tation is to remove less relevant information [3]. This can be achieved
by dynamically hiding or minimizing interface elements to reduce
cognitive overload and support task focus flow. In an IDE, elements
to hide are for example the individual panels that are not relevant
for the steps in the predicted workflow and based on the users
preferences: a developer might prefer a maximized console panel
or file overview for one task while for another task he prefers a
maximized code window. Based on this information, other panels
can be minimized, scaled or just made visually less intrusive, for
example via lighter colors. Especially re-arranging or minimizing

interface elements can easily be confusing for the user though. So
mechanism have to be in place to ensure the decision and adaption
process to be transparent to the user. Furthermore the user must
maintain control of the interface to undo adaptions, should they
turn out to be undesired.

4.3 Transparency and Control
Ensuring the feeling of transparency and control is an important
factor in adaptive systems [6, 8]. A transparent system should
always be able to answer: why has the functionality or layout
changed and how can I (the user) modify or undo these adaptations?

4.3.1 Explanation Access. To enable continuous access, we argue
that explanations about system adaptivity should be permanently
available, for example in the IDE’s settings. However, additional
direct access to explanation could increase the user’s understand-
ing of why adaptations occur. One possible implementation is to
provide an interactive element that leads to further information
on click. This could be a permanent button which is highlighted
on adaptation, or an element that is faded in when an adaptation
occurs, as shown in Fig. 4. Depending on the informational content,
an explanation could also be directly shown on system adaptation,
for example in a dedicated explanation panel or with short textual
or graphical overlays.

4.3.2 Explanation Content. Another important factor to be consid-
ered is the explanation’s information content and granularity. We
suggest to initially provide explanations with a minimum level of
detail and to enable some kind of zoom-into-details functionality. So
for example regarding the task expertise level (see Sect. 3.2.2), the
developer would be presented some kind of progress visualization
which shows the currently assigned level of expertise. On request,
a more detailed explanation could inform the user how certain
levels of expertise lead to certain adaptations or recommendations.
Finally, an even more detailed explanation screen could explain
how level of explanation is determined.

4.3.3 User Control. As described in Sect. 3, the local user model is
fine tuned through implicit user feedback, for example when the
user follows or ignores given recommendations. However, the user
should also be able to explicitly influence the system’s adaptive
behavior [7, 8]. Correcting individual adaptive actions can easily
be done by observing common interface elements like the undo
button or hotkey. More complex modifications of the adaptation
behavior will most likely require some dedicated settings menu.

4.3.4 Privacy and Data Protection. Finally, we want to mention
that in every system processing user data, privacy and transparency
of the data processing should be considered. Besides adding corre-
sponding information to the IDE’s terms, a more accommodating
approach would be to add information about captured and pro-
cessed data to the adaptation feedback. This can include an inter-
face element which visualizes when and which data is captured as
well as when and where it is processed and stored.



5 CONCLUSION AND OUTLOOK
In this paper we have outlined our approach for an adaptive IDE,
how to make personalized interaction predictions and recommen-
dations and how to adapt the IDE interface accordingly. Our two-
tiered approach consists of a common bandit based global model
which is refined into a local personalized one for each user, using
real-time classified interaction data. As a first proof of concept, we
implemented this approach using synthetic data. The results regard-
ing accuracy suggest the viability of our two-tiered approach. In
addition, this methodology offers benefits regarding offline model
training and privacy. We have also described a number of potential
interface adaptions, taking into account system transparency and
user control.

As mentioned in Sect. 3.1, the described concepts have been
developed for the open-source model-based IDE AutoFocus3. Our
next goal is to apply our approach to IDEs with a larger user base,
giving us access to a larger amount of interaction data. There are
also some further domains, like game development with for example
Unity3D (https://unity3d.com), where a complex development tool
is used by a diverse group of users that can benefit greatly from a
personalized and skill-based adaptive interface. In addition, we will
evaluate the different proposed adaptions with respect to usability
and how beneficial they are for providing recommendations.
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