
SenScreen – A Toolkit for Supporting Sensor-enabled
Multi-Display Networks

Stefan Schneegass
University of Stuttgart

Institute for Visualization and Interactive Systems
Pfaffenwaldring 5a

70569 Stuttgart, Germany
stefan.schneegass@vis.uni-stuttgart.de

Florian Alt
Media Informatics Group

University of Munich
Amalienstrasse 17

80333 Munich, Germany
florian.alt@ifi.lmu.de

Figure 1: Different sensors are used for public display application to realize input methods such as touch input or gesture input.

ABSTRACT
Over the past years, a number of sensors have emerged, that enable
gesture-based interaction with public display applications, includ-
ing Microsoft Kinect, Asus Xtion, and Leap Motion. In this way, in-
teraction with displays can be made more attractive, particularly if
deployed across displays hence involving many users. However, in-
teractive applications are still scarce, which can be attributed to the
fact that developers usually need to implement a low-level connec-
tion to the sensor. In this work, we tackle this issue by presenting a
toolkit, called SenScreen, consisting of (a) easy-to-install adapters
that handle the low-level connection to sensors and provides the
data via (b) an API that allows developers to write their applications
in JavaScript. We evaluate our approach by letting two groups of de-
velopers create an interactive game each using our toolkit. Observa-
tion, interviews, and questionnaire indicate that our toolkit simpli-
fies the implementation of interactive applications and may, hence,
serve as a first step towards a more widespread use of interactive
public displays.

Keywords
Toolkits, Interactive Applications, Public Display Architecture

Categories and Subject Descriptors
H.5.m [Information interfaces and presentation]: Misc
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

PerDis’14, June 03 - 04 2014, Copenhagen, Denmark
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2952-1/14/06 ... $15.00.
http://dx.doi.org/10.1145/2611009.2611017

1. INTRODUCTION
Consumer devices, such as Microsoft Kinect1, Asus Wavi Xtion2,

and Leap Motion3, make it apparently easy to augment public dis-
plays with interactive capabilities, thus supporting gesture-based in-
teraction. Prior research identified interactivity as an opportunity to
increase the tangible benefit of displays for providers and users [1].
Whereas sensor data can be used to obtain information on audience
behavior (e.g., how many people interacted with the display), there
is also a strong benefit for the user in terms of an increased user
experience and a more positive perception of such displays [17].

A major hindrance for the wide exploitation of such interactive
capabilities is the fact that many providers lack the expertise to de-
ploy interactive display applications. So far, showing static content
on displays (e.g., images) is as easy as setting up a slideshow. How-
ever, the complexity is growing as interactive applications need to
obtain data from sensors, analyze and process the data, and use it
as an input for the application. This problem becomes even more
pronounced as more sensors become commercially available.

A second challenge that arises as public displays become in-
terconnected, ultimately forming large-scale pervasive display net-
works, is the need to know, which display supports which interac-
tive capabilities. Clinch et al. argue, that in the future, public display
AppStores will provide display owners with a multitude of applica-
tions to download and install on their displays, very similar to what
we know today from GooglePlay or Apple’s AppStore [8]. In such
a scenario, applications would need to know beforehand, whether
a particular display can provide the required data (e.g., a depth im-
age, the user skeleton, or simply the number of people in the display
vicinity).

1Kinect: http://www.microsoft.com/en-us/kinectforwindows/
2Asus Wavi Xtion:
http://event.asus.com/wavi/product/WAVI_Xtion.aspx
3Leap Motion: https://www.leapmotion.com

http://dx.doi.org/10.1145/2611009.2611017
http://www.microsoft.com/en-us/kinectforwindows/
http://event.asus.com/wavi/product/WAVI_Xtion.aspx
https://www.leapmotion.com

In this paper, we present SenScreen – a platform that implements
a low level connection to arbitrary sensors by means of so-called
adapters and streams it to a web server. Furthermore, it provides
a web-based API that allows display applications to request the re-
quired data from the server. In this way, we make it possible to
easily find suitable displays for an application. At the same time,
we support developers of public display applications in a way such
that they do not need to collect and process sensor data anymore,
but can simply obtain the pre-processed data through the high-level
API. To evaluate the concept we conducted a workshop. Therefore,
we recruited eight web developers and asked them to implement
two simple web-based games (Whac-a-Mole and Pong). Using our
platform and the API, we enabled them to develop both games from
scratch in less than three hours, including the implementation of the
game logic and the connection to the sensors.

The contribution of this paper is twofold. First, we present the
toolkit and, second, we report on the results from the workshops.

2. RELATED WORK
Our research draws from several strands of prior work, including

gesture-based interaction, particularly with public displays, as well
as toolkits for creating interactive UIs and collecting context data.

2.1 Gesture-based Applications
Using sensor data for gesture-based interaction has been inves-

tigated by numerous researchers. Firstly, examples include means
to control TVs, for example Unicursal [4] or the MagicWand [7].
While the first one uses a touchscreen for gesture support, the latter
relies on a gyroscope and accelerometer data to control IR-based
devices. Secondly, in the context of mobile phones, Kratz et al. pre-
sented PalmSpace [14]. Their prototype consists of a smartphone
and a depth camera that can be used to enable mid-air interaction
in close proximity of a mobile phone to interact with virtual ob-
jects on the device screen. Similarly, ThumbStick is a gesture in-
terface for the use with mobile applications [16]. It uses coloured
fingernails and computer vision to determine the hand posture and
hence control the virtual object. Thirdly, in the area of wearable
computing, Bailly et al. presented ShoeSense, an interface that uses
a Kinect attached to a user’s shoe to enable gesture-based control of
devices such as MP3 players [5]. WristCam is a gesture-interface
aimed to recognize finger-based interaction [24]. To determine the
position of the fingers, a camera is attached to the user’s wrist.
Fourthly, hand-gestures have been used in working environments.
Wu et al. use hand-gestures to control a car robot [26]. To detect the
gestures, they use accelerometer data. The Attentive Workbench is
used to explore pointing gestures in a work environment [23]. All
these examples show the large variety of sensors and application
areas for gesture input we are going to address with our toolkit.

Today the use of sensors for interaction with public displays has
become commonplace. Most popularly, the Microsoft Kinect is be-
ing used for gesture-based, playful interaction. Examples include
Looking Glass, a simple gesture-based ball game used to explore
the user’s representation on the screen as an interactivity cue as
well as the honeypot effect [18]. Strike-A-Pose is an application
used to communicate how to use gestures for public displays [25].
Alt et al. used Kinect for an interactive soap bubble game to show
that interaction has an effect on the users’ cognition [3]. Screen-
finity uses the Kinect to determine the user’s position in front of
the screen to visually distort the content and make it hence better
readable from different positions [21]. Hardy et al. use the Kinect
to investigate the effectiveness of different kinds of gestures in the
context of menu selection [11]. Rofouei et al. use the Kinect and
a mobile phone’s accelerometer data to identify users, interacting

together with an interactive surface [19]. These examples show the
potential of using depth sensors for display-based interaction. How-
ever, each of the projects used their own implementation to extract
and process the sensor data. We particularly aim to tackle this prob-
lem through the toolkit presented in this paper.

2.2 Toolkits for GUIs and Sensor Data
Toolkits offer means to support the application developers in var-

ious ways. Among the most popular are the Java Abstract Window
Toolkit4 or the Google Web Toolkit5. These toolkit, however, fo-
cus on the user interface rather than on obtaining and processing
sensor data. Yet, a number of toolkits are proposed for obtaining
sensor data. The Context Toolkit allows for processing a variety of
sensor data and obtaining different types of context [9, 20]. The
IdentityPresence toolkit allows people arriving or departing from
a certain location to be determined. Holleis et al. presented the EI
Toolkit which allows information from a large variety of sensors
to be obtained in realtime and broadcasts them in different for-
mats and through different communication channels [13]. Sahami
et al. proposed a toolkit that allows sensor data from mobile phones
to be accessed from remote phones [22]. In this way, for example,
users could access the camera of the owner’s phone to obtain a
video stream or photo of a particular location. Nevertheless, those
toolkits are mainly aimed at context acquisition but not at support-
ing the development of interactive applications.

Most closely related to our work are the PureWidgets [6] toolkit
and the UbiDisplay [10]. The former toolkit is particularly aimed
at the use for public displays, supporting both context acquisition
as well as UI creation. However, it is focussing on interaction with
mobile phones and has not been used for gesture-based applications
that require sensor-data to be obtained, processed, and distributed
in real time. The UbiDisplay toolkit partly tackles this by providing
real-time sensor data. However, it is restricted to Kinect and the use
on a local machine. Our work combines the advantage of both ap-
proaches, also focusing on means to abstract from the data. This is
of high relevance for our work, since only few applications require
the raw sensor data. Instead, it is advisable to aggregate the data to
(a) decrease the amount of data, and (b) cater for the user’s privacy.
This first issue has been tackled by Heidemann et al. who showed
how to use aggregation to decrease the amount of data [12].

In the following, we present our concept of the SenScreen toolkit
with the aim to obtain information from multiple sensors, process
this data, and provide it in real time to a distributed display network.

3. SUPPORTING DISPLAY NETWORKS
Research has produced a number of interactive public display ap-

plications making use of sensors, such as Kinect or Leap Motion.
A common challenge for these applications is the fact that develop-
ers need to implement a low-level connection to the used sensors.
At the same time, multi-display applications are scarce since the
connection of multiple applications and the use of sensor data on a
remote display requires significant effort.

With our work we aim to close this gap by (1) providing means
for easy access to sensors via so-called adapters, (2) a server-based
platform that collects, processes, and distributes sensor data, and
(3) by providing a high-level API for the implementation of web-
based applications using JavaScript. There are several important
aspects that need to be taken into account when designing a (net-
worked) display architecture. We address these aspects as follows.
4Java Abstract Window Toolkit:
http://docs.oracle.com/javase/7/docs/api/java/awt/
package-summary.html
5Google Web Toolkit: http://code.google.com/webtoolkit

http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://code.google.com/webtoolkit

3.1 Privacy
As in almost any ubiquitous computing environment, collecting

sensor information in public space creates a potential privacy threat.
The use of cameras, for example, allows faces to be identified and
hence users to be tracked and movement profiles to be created. In
general, users do not want such sensitive information in the hand
of third parties, such as advertisers or their employees. At the same
time, many applications do not need this data in raw format, but an
abstracted form, such as a depth image, the coordinates of the per-
son standing in front of the display, or simply the number of persons
that passed by in the last hour are sufficient. With our approach, the
raw sensor data can be pre-processed and abstractions of data be
made available to the requesting application. In this way, for exam-
ple, applications that currently use the full resolution depth image
from Kinect – like Looking Glass [18] or the SoapBubble game
presented in [3] – could be modified in a way such that only the
performed gestures are provided through our platform.

3.2 Unified Input Gestures
Playful interactive public display applications use a large vari-

ety of different gestures, ranging from simple hand tracking (e.g.,
SoapBubble [3]) to more complex gestures such as a specific user
posture (e.g., Strike-A-Pose [25]). This not only puts a burden on
the developer since gestures recognition needs to be implemented
for each application, but also makes it difficult for the user, since
there is no unified gesture set. While this is not at the focus of this
research, we support the creation and use of unified gestures, which
we believe in the long term to be beneficial when a user needs to un-
derstand or learn how interaction works. Note, that by requesting,
for example, the skeleton data from Kinect, an application could
still implement customised gestures if necessary.

3.3 Platform Independence
Interactive web applications run on a variety of systems, includ-

ing but not limited to Linux desktops, Windows laptops, Mac Minis,
and Raspberry Pis. To be available for as many platforms as possi-
ble we opted to implement the toolkit component responsible for
obtaining the sensor information in Java. On the client side (i.e., the
application using the sensor data) we opted for a JavaScript based
API, to allow arbitrary web applications to access the sensor data.
The information exchange is realized using web services. This en-
sures that adapters and clients can be created on any kind of system.
Furthermore, this allows the system to be used in a local setting as
well. By installing the server on a local router, for example, we can
use the toolkit to create an interactive living room.

3.4 Scalability and Performance
Depending on the type of sensor, a large number of data may

be created, for example, a video stream from an HD camera. Our
approach to minimize the amount of data is to (a) obtain only data
from the sensor a client is requesting (e.g., a video with reduced
resolution and frame rate) and (b) to route and cache sensor data on
a server. In this way, data can be made available to multiple clients
and it can be pre-processed (e.g., downsampling, aggregation).

3.5 Ease of Use
A major hindrance for the deployment of interactive public dis-

play applications is the lack of expertise among display owners.
Where static content only requires the installation of a player soft-
ware, interactive applications require significant skills in program-
ming, particularly for obtaining sensor data. With our approach, we
aim to make access to sensor data as simple as installing a player
(i.e., an adapter in our case). For the client we aim at providing ac-

Figure 2: Overview of the architecture. The adapter and clients com-
municate via the server.

cess to the sensor data using JavaScript and, hence, allowing users
with limited programming knowledge to create powerful applica-
tions. This also follows a recent trend of implementing display ap-
plications as web services to allow for an easy setup by the owners.

3.6 Payment Model
We propose a system that uses a central server being in charge of

routing the whole data transferred through the network. This server
is independent from the actual display stakeholders and acts as a
trusted entity [2]. Since the server is in charge of controlling all
data, a payment or privacy model can easily be applied. Thus, only
clients that have the necessary rights can access specific sensor data.
Advertisement applications, for instance, could pay for receiving
anonymous profiles of the users in front of the display and adapt
their content. We see particular potential in such a platform in cases
where display networks employ app stores for distributing interac-
tive applications among display owners [8].

4. THE SENSCREEN TOOLKIT
In the following section we introduce SenScreen, a sensor toolkit

that allows the usage of sensors attached to nodes of display net-
works. The central component of the toolkit is a server. To this
server, arbitrary sensors via so-called adapters can be connected.
An API on the server enables client applications to obtain sensor
data in a number of different formats. An overview of the platform
is depicted in Figure 2.

4.1 Server
The main tasks of the server are, on one hand, to manage the

registered clients as well as the adapters and, on the other hand,
to route the sensor information from the adapter to the client. The
server itself is a Java Enterprise application running on a Glassfish
server. By sending a web service request, the adapter and clients
can register themselves at the server. The client is then able to re-
quest a list with available adapters from the server. As soon as the
client knows the available adapters, the client can request the sensor
data of each adapter from the server. This is again realized through
web service requests.

4.2 Adapters
The adapters are responsible for collecting data from the sensors,

initially processing them, and making them available to the client
via the server. They can be created in arbitrary programming lan-
guages that are needed for off-the-shelf sensors and communicate

Figure 3: An example of public display applications. The Kinect
Adapter records the depth image, calculates the skeleton points, and
transfers the data to the server. On the server, the data is cached,
gestures are detected, and both can be accessed from clients. In
this example, an interactive game requests the gestures as well as
the depth image and an audience measurement tool the number of
users in front of the display.

via web services with the server. As one example, we implemented
an adapter for the Microsoft Kinect. Data that is made available by
the adapters is either raw data, such as an image or video data, or
pre-processed data, such as skeleton points or recognized gestures.
In addition, different properties of the data may be specified, such
as the resolution of an image or the frame rate of a video.

For websites or applications to access the data, the adapter needs
to register with the coordinating server and provide information on
the available data and their properties. This information can then be
requested via the API from the client application. As the client ap-
plication requests data via the server, the latter forwards the request
– including data and parameters – to the adapter who answers with
the (pre-processed) data. This data is send to the server who for-
wards it to the requesting client application.

4.3 Client
To communicate with the server, clients can use an API. Cur-

rently, we provide a JavaScript API. Like the adapters, the client
needs to register at the server and can then request information on
available adapters (i.e., the available sensor data). The API provides
necessary functions for registering themselves at the server as well
as accessing sensor data from the adapter.

4.4 Data Transmission
The transmission of sensor data consists of two steps: (1) from

the adapter to the server and (2) from the server to the client. All
data passes through the server which routes it to the desired des-
tination. In this way, the server can check whether the data was
already requested by another client and is already available. If this
is the case, data are simply duplicated on the server and forwarded
to the requesting clients. As a result, adapters do not need to es-
tablish several parallel data transmissions. An example would be a
display running an interactive game and an audience measurement
application at the same time with both using the video stream of a
camera. Each transmission is characterized by an ID. For preserv-
ing the privacy, only the server knows both IDs. We believe this to
be a particular strength of the approach as in this way data can be
treated in a privacy-preserving way.

5. WORKSHOP
We conducted a hands-on workshop to gain insights into how the

toolkit can be used by web developers. We were particularly inter-
ested in qualitative feedback by the developers on the usability of
the SenScreen toolkit. Since the main application scenarios for our
toolkit are public displays, we opted to focus on the development
of interactive games because we believe them to be one of the most
promising applications to attract passersby. Note that our approach
is of course not limited to playful applications.

5.1 Participants
In total, eight developers participated in the workshop. They were

recruited through university mailing lists and posts to University
bulletin boards. The workshop was divided into two sessions with
four participants each. Each session took about four hours. The par-
ticipants were either computer scientists or had a background in me-
dia design. From the computer scientists, all had prior experience
in game development. To balance the groups, we mixed different
skill sets in a way such that experienced web-developers as well as
media designers where part of each group.

5.2 Procedure
After the participants arrived in the lab, we first provided them a

brief tutorial to programming with JavaScript. Although most par-
ticipants had prior experience with Javascript, we decided to pro-
vide a brief introduction to the most relevant aspects, so that par-
ticipants could afterwards focus on the task. After the introduction,
we explained them the features of the toolkit in detail. We handed
out the documentation of the toolkit to assist the participants during
the development task. Then, participants were presented the devel-
opment task. In total, there where two tasks (i.e., two application
that should be developed). In the first session, participants devel-
oped a Whac-A-Mole game whereas they developed a Pong game
in the second session (cf., Figure 4). Both games should be playable
using gestures obtained from Kinect data. After the participants fin-
ished developing the game, they filled in a questionnaire and we
conducted semi-structured interviews.

5.3 Apparatus
For the purpose of the study we setup a server running the Sen-

Screen toolkit and provided a laptop with an attached Kinect, which
ran the KinectAdapter. For development, participants were asked to
bring their own laptops and they were allowed to use their favorite
IDE for the study. A local network was setup for the workshop, al-
lowing all devices to connect. All participants were provided fast
Internet access to support the design and development task.

5.4 Results
In about three hours, participants of both groups were able to

solve the task and build an interactive game with gesture input us-
ing the proposed toolkit.

The Whac-A-Mole game was developed in an abstract manner
(Figure 4 – center), with the moles being represented by circles
and the hammers by squares. The moles slowly fade in. From the
Kinect skeleton, the participants chose to use the player‘s hands to
control the hammer. To attack a mole, players have to move their
hands closer to the screen. For each mole, players receive points.

For the Pong game (Figure 4 – right), the skeleton point of the
user’s left hand is used as well. Thus, the user controls the paddle
by moving the hand up and down. The bars are moved upwards
when the hand coordinate is larger than the shoulder coordinate of
the skeleton (i.e., players are lifting their arms above shoulder level)
and downwards when the hand coordinate is smaller, respectively.

Figure 4: Participants during the workshop (left) and the resulting games: an abstract version of Whac-A-Mole (center) and Pong (right).

In the questionnaire we were interested in how difficult partici-
pants perceived the different subtasks, particularly the use of the
API, developing the game logic, implementing the controls, design-
ing the UI and an overall rating. We used a 5-Point Likert scale,
ranging from 1 (very easy) to 5 (very difficult). The results show
that the usage of the API is perceived as easy (Mdn = 2), similar
to the development of the game logic (Mdn = 2), the user inter-
face (Mdn = 2) or the mapping of the user interaction to the game
logic (Mdn = 2.5). The results of the NasaTLX (0 = no task load,
100 = high task load) revealed a score of 31.7 for the Pong game
and 45.0 for Whac-a-Mole, suggesting a low to moderate task load.

In the interviews, the participants agreed that the toolkit is easy
to use. Suggestions on how to improve the toolkit included the rec-
ommendation for more detailed debug messages, means to easily
visualize the skeleton data, and an opportunity to sort the skeleton
data according to the position of the user in front of the screen (e.g.,
from left to right). Furthermore, the participants saw potential in
recognizing gestures on the server and making the gesture available
through the API. One participant raised privacy concerns because
of sensor data (e.g., depth image of a Kinect) being transferred via
a server, although the application is running locally. Regarding pos-
sible use cases, most participants stated that entertainment applica-
tions (i.e., games) in public are indeed very suitable. The use for
applications deployed at home was also considered useful.

6. DISCUSSION AND CONCLUSION
In this work we presented SenScreen – a toolkit that supports

developers of interactive public display applications by collecting
data from arbitrary sensor sources and making them available via
a high-level API. The toolkit provides so-called adapters that im-
plement the low-level sensor connection and route the sensor data
to a server that can aggregate and distribute the data. Hence, autho-
rized clients can simultaneously access the sensor data. In a qualita-
tive study with 8 participants we showed that our toolkit is easy to
use. Two groups of 4 participants each were able to rapidly design
and develop two gesture-controlled games based on data from the
Kinect with basic knowledge in web development using JavaScript.

We believe our toolkit to serve as a good basis for the future de-
velopment of interactive public display applications, particularly in
a networked setting where multiple applications access the same
sensor on a display or where games run across multiple displays.
While we initially focussed on the usability of the toolkit, discus-
sions with the participants allowed us to identify further aspects to
investigate. We believe the processing and distribution of data to be
one crucial point. Whereas the toolkit provides means to aggregate
and abstract from the data, this is not communicated yet to the user.
This might be useful, since users could be made aware of that their
data is being treated in a privacy-preserving way. We plan to further

investigate this in follow-up studies to increase the willingness of
users to participate and to also understand the view of developers,
display owners, and advertisers, who might be interested in more
fine-grained data.

In the future, we plan to extend the number of adapters to allow
for hooking up additional sensors, including but not limited to Leap
Motion or the EyeX eye tracker6. Furthermore, we plan to build
adapters that run on the user‘s devices rather than on the display.
One possible area of application is equipping wearable computing
devices such as smart textiles with adapters and, thus, allow users to
interact with the display using their own gadgets. These sensors pro-
vide more possibilities to interact with display applications. In con-
trast to consumer devices, there are many electronic platforms avail-
able that can be used to create sensors for display networks [15].
Creating an adapter that allows for easy deployment of self-build
sensors may increase the possible interaction techniques. In a fur-
ther evaluation, we plan to deploy the toolkit for our University
testbed and use it as a basis for courses in ubiquitous computing.

7. ACKNOWLEDGEMENTS
We thank Thomas Kubitza for his valuable input on the frame-

work architecture and Markus Fischer for his help with the imple-
mentation of the toolkit. The research leading to these results has re-
ceived funding from the European Union Seventh Framework Pro-
gramme ([FP7/2007-2013]) under grant agreement no. 600851.

8. REFERENCES
[1] Alt, F., Müller, J., and Schmidt, A. Advertising on Public

Display Networks. IEEE Computer 45, 5 (may 2012), 50–56.
[2] Alt, F., and Schneegass, S. A conceptual architecture for

pervasive advertising in public display networks. In
Proceedings of the 3rd Workshop on Infrastructure and
Design Challenges of Coupled Display Visual Interfaces
(Capri, Italy), PPD, vol. 12 (2012).

[3] Alt, F., Schneegass, S., Girgis, M., and Schmidt, A.
Cognitive effects of interactive public display applications.
In Proceedings of the 2nd ACM International Symposium on
Pervasive Displays, ACM (2013), 13–18.

[4] Aoki, R., Ihara, M., Maeda, A., Kobayashi, M., and Kagami,
S. Unicursal gesture interface for tv remote with touch
screens. In Consumer Electronics (ICCE), 2011 IEEE
International Conference on, IEEE (2011), 99–100.

[5] Bailly, G., Müller, J., Rohs, M., Wigdor, D., and Kratz, S.
Shoesense: a new perspective on gestural interaction and
wearable applications. In Proceedings of the 2012 ACM
annual conference on Human Factors in Computing Systems,
ACM (2012), 1239–1248.

6EyeX: www.tobii.com/en/eye-experience/eyex/

www.tobii.com/en/eye-experience/eyex/

[6] Cardoso, J., and José, R. Purewidgets: a programming toolkit
for interactive public display applications. In Proceedings of
the 4th ACM SIGCHI symposium on Engineering interactive
computing systems, ACM (2012), 51–60.

[7] Cho, S.-J., Oh, J. K., Bang, W.-C., Chang, W., Choi, E., Jing,
Y., Cho, J., and Kim, D. Y. Magic wand: a hand-drawn
gesture input device in 3-d space with inertial sensors. In
Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004.
Ninth International Workshop on, IEEE (2004), 106–111.

[8] Clinch, S., Davies, N., Kubitza, T., and Schmidt, A.
Designing application stores for public display networks. In
Proceedings of the 2012 International Symposium on
Pervasive Displays, ACM (2012), 10.

[9] Dey, A. K. Providing architectural support for building
context-aware applications. PhD thesis, Georgia Institute of
Technology, 2000.

[10] Hardy, J., Ellis, C., Alexander, J., and Davies, N. Ubi
displays: A toolkit for the rapid creation of interactive
projected displays. In The International Symposium on
Pervasive Displays (2013).

[11] Hardy, J., Rukzio, E., and Davies, N. Real world responses to
interactive gesture based public displays. In Proceedings of
the 10th International Conference on Mobile and Ubiquitous
Multimedia, MUM ’11, ACM (New York, NY, USA, 2011),
33–39.

[12] Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R.,
Estrin, D., and Ganesan, D. Building efficient wireless sensor
networks with low-level naming. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, ACM (New York, NY, USA, 2001),
146–159.

[13] Holleis, P., and Schmidt, A. Makeit: Integrate user
interaction times in the design process of mobile applications.
In Pervasive Computing. Springer, 2008, 56–74.

[14] Kratz, S., Rohs, M., Guse, D., Müller, J., Bailly, G., and
Nischt, M. Palmspace: Continuous around-device gestures
vs. multitouch for 3d rotation tasks on mobile devices. In
Proceedings of the International Working Conference on
Advanced Visual Interfaces, ACM (2012), 181–188.

[15] Kubitza, T., Schneegass, S., Weichel, C., Pohl, N., Dingler,
T., and Schmidt, A. Ingredients for a new wave of ubicomp
products. IEEE Pervasive Computing 12, 3 (2013), 5–8.

[16] Man, W. T., Qiu, S. M., and Hong, W. K. Thumbstick: a
novel virtual hand gesture interface. In Robot and Human
Interactive Communication, 2005. ROMAN 2005. IEEE

International Workshop on, IEEE (2005), 300–305.
[17] Müller, J., Alt, F., and Michelis, D. Introduction to Pervasive

Advertising. In Pervasive Advertising, J. Müller, F. Alt, and
D. Michelis, Eds., Springer Limited London (2011).

[18] Müller, J., Walter, R., Bailly, G., Nischt, M., and Alt, F.
Looking glass: a field study on noticing interactivity of a
shop window. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM (2012),
297–306.

[19] Rofouei, M., Wilson, A., Brush, A., and Tansley, S. Your
phone or mine?: fusing body, touch and device sensing for
multi-user device-display interaction. In Proceedings of the
2012 ACM annual conference on Human Factors in
Computing Systems, ACM (2012), 1915–1918.

[20] Salber, D., Dey, A. K., and Abowd, G. D. The context toolkit:
Aiding the development of context-enabled applications. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, ACM (New York, NY, USA,
1999), 434–441.

[21] Schmidt, C., Müller, J., and Bailly, G. Screenfinity: extending
the perception area of content on very large public displays.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2013), 1719–1728.

[22] Shirazi, A. S., Winkler, C., and Schmidt, A. Sense-sation: An
extensible platform for integration of phones into the web. In
Internet of Things (IOT), 2010, IEEE (2010), 1–8.

[23] Sugi, M., Nikaido, M., Tamura, Y., Ota, J., Arai, T., Kotani,
K., Takamasu, K., Shin, S., Suzuki, H., and Sato, Y. Motion
control of self-moving trays for human supporting
production cell ?attentive workbench? In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, IEEE (2005), 4080–4085.

[24] Vardy, A., Robinson, J., and Cheng, L.-T. The wristcam as
input device. In Wearable Computers, 1999. Digest of
Papers. The Third International Symposium on, IEEE (1999),
199–202.

[25] Walter, R., Bailly, G., and Müller, J. Strikeapose: Revealing
mid-air gestures on public displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, ACM (New York, NY, USA, 2013),
841–850.

[26] Wu, X.-H., Su, M.-C., and Wang, P.-C. A hand-gesture-based
control interface for a car-robot. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference
on, IEEE (2010), 4644–4648.

	1 Introduction
	2 Related Work
	2.1 Gesture-based Applications
	2.2 Toolkits for GUIs and Sensor Data

	3 Supporting Display Networks
	3.1 Privacy
	3.2 Unified Input Gestures
	3.3 Platform Independence
	3.4 Scalability and Performance
	3.5 Ease of Use
	3.6 Payment Model

	4 The SenScreen Toolkit
	4.1 Server
	4.2 Adapters
	4.3 Client
	4.4 Data Transmission

	5 Workshop
	5.1 Participants
	5.2 Procedure
	5.3 Apparatus
	5.4 Results

	6 Discussion and Conclusion
	7 Acknowledgements
	8 References

