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ABSTRACT
Machine Learning systems are, by now, an essential part of the
software landscape. From the development perspective this means
a paradigmatic shift, which should be reflected in the way we write
software. For now, the majority of developers relies on traditional
tools for data-driven development, though. To determine how re-
search into tools is catching up, we conducted a systematic literature
review, searching for tools dedicated to data-driven development.
Of the 1511 search results, we analyzed 76 relevant publications
in detail. The diverse sample indicated a strong interest in this
topic from different domains, with different approaches and meth-
ods. While there are a number of common trends, e.g. the use of
visualization, in these tools, only a limited, although increasing,
number of these tools has so far been evaluated comprehensively.
We therefore summarize trends, strengths and weaknesses in the
status quo for data-driven development tools and conclude with a
number of potential future directions this field.

CCS CONCEPTS
•General and reference→ Surveys and overviews; • Software
and its engineering → Software notations and tools; • Com-
puting methodologies→Machine learning; Artificial intelligence.
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1 INTRODUCTION
The ubiquity of systems that leverage large amounts of data, and
often Machine Learning, have turned their development from an
academic exercise to an established development paradigm. Ded-
icated data-driven development is becoming quite common and
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will, in all likelihood, eventually be just another part of industrial
software development.

Yet, the most common way for defining how a software behaves
has not dramatically shifted in decades. Particularly the popular
programming languages rely on explicitly defined behavioral pat-
terns, typically described by a sequence of instructions. And even
with more declarative tools, like functional or logical programming,
the knowledge of the desired behavior must be transferred from
the developers mind to the machine via some form of, typically
written, explicit definition of behavior.

For Machine Learning systems, on the other hand, the descrip-
tion of the behavior is typically implicit and embedded in the data
and the developers task is to provide the necessary framework to
extract it. So, while at first glance, a piece of code that extensively
uses Machine Learning may appear very similar to its traditional
counterpart. Yet, while in the latter the developer has defined the
algorithm in detail, the former code would usually describe the
management and directing of data such that the behavior can be
inferred from it, making it much closer to the idea of programming
by example [57]. This marks an important change in the nature of
the programs and the activities of their developers, leading to some
referring to data-driven software as “Software 2.0” [41].

While this may mark a paradigmatic change in the approach
to software development, from the tooling perspective many of
the traditional tools, like simple text editors, command line inter-
faces and integrated development environments (IDEs) remain the
popular choice for developers. These offer a wide array of support
mechanisms, e.g. for dependency management or debugging. Man-
agement of a large volume of data and its exploration, however,
are often done not as easily and traditional debugging with break-
points can only get a developer so far when the programs behavior
is embedded in the data and not in the lines of code.

Using existing tools certainly works, and those who pioneered
Machine Learning and those who now use it had and have to build
on top of eixisting technology and use the tools at hand. How-
ever, if the data-driven development paradigm is to be carried into
everyday development, now may be a good time to consider and
evaluate whether tools that drive software development since its
early beginnings are still adequate for this change in paradigm,
new practices and a broader audience that may not have a tradi-
tional programming background but wishes to participate in the
development process.

The fact that the simple text editor and IDEs are very common
for data-driven development does, also, not mean that there are no
alternatives. Both industry and academia have created a myriad
of tools of the years to make software development, including for
data-driven software, easier andmore accessible. This is particularly
relevant when development becomes a team effort, for not everyone
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may be comfortable using typical programming tools. For all their
benefits, their adoption is lagging though.

Their limited use in practice may have many reasons that are
hard to pinpoint, particularly when there is only little effort to
evaluate existing tools. Moving forward with new types of tool
support in the future, it is crucial to understand what has already
been tried, what tools exist, and what issues have already been
addressed, though.

To provide an overview of the tooling landscape and particularly
systematic evaluations of tools for the development of data-driven
applications, this paper reports on a review of the academic liter-
ature (Sect. 2). Through systematic labeling (Sect. 2.2) , we were
able to determine some popular avenues that have already been
explored and evaluated, representing the state-of-the-art, and areas
that still remain open (Sect. 3). Based on these, we discuss possible
future directions and what upcoming tools may look like and what
needs to be done to ensure that they are successful (Sect. 4).

2 METHOD
In order to gauge the state of the literature and to get an overview of
existing development tools for data-driven software and their eval-
uations, we conducted a literature research, following the PRISMA
guidelines [67] which we outline in the following section. The goal
of this survey is to determine which aspects of data-driven software
development must currently rely on previously existing tools are
which are already well supported with novel and dedicated tools.
We are particularly interested in indicators that tell us how well
tools work, that were specifically created to support data-driven
development.

2.1 Search and Filtering
To determine the efficacy of existing tools, we need to rely on form
of analysis or evaluation. We therefore queried large publication
databases, specifically the ACM Digital Library, the IEEExplore
and the proceedings of the AAAI conference, for publications that
matched this research focus. The first two represent the major
publication databases for computer science literature, while we
included the AAAI proceedings specifically, because the AAAI
conference is a major venue for related literature that is typically
not listed in either of the other databases.

Arguably, there are also tools coming exclusively from industry
that try to address the needs of developers. However, either there
is little to no evaluations publicly available for some of these or
these tools have been evaluated as part of a publication and should
therefore show up when querying the publication databases. We
accept the possibility of missing out on tools that have been evalu-
ated and the results being available somewhere but not as part of
a scientific publication, since comprehensively finding such eval-
uations is unfeasible and their number should be relatively small.
This would include especially in-house tools, which may be used
at some industry companies to great success, but as long as they
are not public, they offer only limited value for developers at large
and thus cannot contribute to this overview.

Given that scientific research in the fields of Machine Learning,
Artificial Intelligence and data-driven application is very active,
terminology can sometimes be in flux. We therefore decided to start

our search with broad queries and refine the results later based on
manual selection.

We therefore queried each of the publication databases using the
following search criteria:

• The term “tool” had to be present in the abstract to limit the
results to publications that had tooling as a focus.

• “data-driven“, “machine learning“ or “artificial intelligence“
as the general research field also had to occur in the abstract.

• “developer” or “development” as our intended target group
could be anywhere in the text. We decided for this broader
query here because an initial scan of promising literature
revealed that the target group was often left implicit in the
abstract.

• Considering the major pace at which the field is changing,
we furthermore decided to only consider publications of the
last ten years. Tools that are more than a decade old and
have not received any attention in the meantime clearly
have limited relevance for current and future research and
development.

Joining these criteria was trivial for the IEEExplore and the ACM
DL, both of which provide a powerful advanced search. For the
AAAI database, no such option was available though, so we re-
sorted to downloading the metadata of 9 717 available publications
from the last ten years and filtered them ourselves. Naturally, since
we could not download these nearly 10,000 full texts, we filtered
the third criterion, i.e. the term “developer” or “development” only
in the available metadata (abstract, keywords, etc.) for the AAAI
publications. Additionally, we omitted the query pertaining to Ar-
tificial Intelligence, as this is the topic of the conference series to
begin with and should trivially be the subject of all the publications
published there.

The results of our query are listed in Table 1. The table also
provides the number of results, which remained after screening,
which we did in an multi-stage process (cf. [67]).

After extracting the list of meta-data for each publication from
their respective databases, we first filtered them by title. Since our
search focused on tool support for development experts, the pri-
mary inclusion criterion here was whether the publication would
introduce or evaluate a new or existing tools in this context re-
spectively. At this stage we also excluded all those texts where the
title clearly indicated that the tools were not intended for software
development but for example for end users of various domains, e.g.
software tools for medical diagnoses.

Given the ambiguity and broad use of the search terms, particu-
larly “tool” and “development”, this already substantially reduced
the number of relevant publications to about a tenth of the initial
search results.

In the second stage we then read the abstracts of the remaining
papers, applying the same filter criteria, i.e. include tools that were
specifically concerned with the creation of data-driven software.

We excluded publications that only applied data-driven prin-
ciples or ML to domain problems, e.g. those that apply Machine
Learning to medicine, manufacturing, etc. but also those that apply
these techniques to, for example, conventional software repositories
to automatically detect defects via ML. While the latter certainly
fall in the intersection of software engineering and data-driven
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software, the goal of this survey is to determine how to specifi-
cally enhance development experience of data-driven, not using
data-driven software.

Technical publications that reported on the development or im-
provement of algorithms but did not integrate them or provide
them in a dedicated tool, we also removed from the list of relevant
texts at this point. This left us with a manageable amount of 76
publications in total. A full list can be found in the addendum to
this text.

2.2 Labeling
Using the full text of those 76, we labeled each publication in two
ways.

First, we had a number of pre-defined criteria that we were
interested in:

• As a rough classification we looked at what kind of tool
support each paper describes? Is it about an existing tools,
did the authors improve a tool from prior work or did they
creates a completely new solution. This provides us with a
general overview of the tool landscape in this area.

• Since, asmentioned, adoption of existing tools from academia
is limited, we also recorded whether publications went be-
yond a purely technical description and reported on on real-
world application of their tools or any other forms of practi-
cal evaluation in the form of case studies, field studies, etc.
to gauge the effectiveness of these tools.

• To determine areas in need of additional research, another fo-
cus was what aspect of the development process these tools
focus on? Since each tool can support steps specific to data-
driven development but also integration into conventional
software engineering, we use the terminology of Hesenius
et al. and the EDDA process [31]. The EDDA process is an
extension of traditional software engineering processes to
capture the additional requirements of data-driven devel-
opment. Specifically, it adds additional steps for assessing
the suitability of Machine Learning, data exploration and
subsequent model requirements, model development, and in-
tegration. By categorizing the tools according to the steps in
this process, we can determine whether the whole process
is similarly well supported or whether some steps receive
more attention than others.

Beyond this we performed open labeling of the publications,
which we subsequently clustered into categories. The following
chapter will list these labels and further results.

3 RESULTS
Our search and filtering resulted in 76 publications pertaining to
tools for data-driven development. The following section will de-
scribe these publications in further detail and highlight shared
topics and point out differences.

3.1 Metadata
First we looked at the metadata of the publications, starting with
the publication date. While we specifically selected only publica-
tions from the last ten years, it is noteworthy that even during this
period of time, we can see a trend of increasing research interest.

1

2021202020192018201720162015201420132012
year

nu
m
be
ro
fp
ub
lic
at
io
ns

0

5

10

15

4
2

1 3

11

4

18 18

13

Figure 1: Distribution of the publication date of the papers
in our selection.

Fig. 1 shows this steady increase. This also matches the results
of similar surveys of various topics related to Machine Learning,
which generally find that this development paradigm is becoming
more popular in practice and research [95].

This is also reflected in the breadth of domains that publish about
data-driven development tools. Naturally, Machine Learning and
data-management venues are represented by our sample of papers
(16 times), but also other areas of computing, like general software
engineering (12 times), education (5 times), and particularly human-
computer-interaction (16 times). Considering that tools a form of
human-machine interaction, this comes as no surprise, though.

Notable, however, is the fact that our search criteria only yielded
a single publication from the AAAI conference series. While, cer-
tainly, the complete database of AAAI publications is smaller than
ACM DL and IEEExplore, we found the primary reason for this to
be that these publications tend to be either highly focused on the
underlying technology or report on case studies where Machine
Learning was applied to solve a problem in practice.

3.2 Research Topics
Opposed to that, of the 76 publications we extracted, only one re-
ported on algorithmic improvements in the context of automating
and thus simplifying development [18]. Automating development
in general was a popular topic in the full set of search results, but
often with the goal of eliminating the developer from the software
creation process – and thus of limited interest to our question of
how tools can support developers. However, partial automation
also was a topic of interest for 14 of the 76 publications, again
with an increase in the recent years, e.g. for entity matching [89],
prediction [73] and optimization [64]. Particularly the use of meta-
learning [87], or “AutoML” systems, i.e. ML systems that automati-
cally learn their ideal configuration, seem to be of interest for tool
developers [56, 78, 89, 94].

Just as automation is of interest from a technical perspective,
they also end up in dedicated tools for developers with the goal
of simplifying model development and optimization (e.g. [56, 89].
ATMSeer [90], for examples, extends AutoML systems with visual-
izations to give developers feedback about the systems performance
and progression.

Researchers, however, recognize that complete automation may
not always be feasible or desirable [94]. Particularly the general
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Table 1: Total number of publications throughout the search and filtering process.

AAAI Proceedings ACM Digital Library IEEExplore Total

Records retrieved from databases 80 839 592 1511
Screened by title 9 95 67 171
Screened by abstract 1 48 27 76

opacity and black-box nature is viewed critically. If even the de-
velopers no longer have means for understanding their complex
software, it will become hard to debug [46], evaluate [32, 49], and
control [79]. Works like “ATMSeer” by Wang et al. [90] or “Cer-
tifAI” by Sharma et al. [79] thus attempt to make the advances
from the research on Explainable AI (XAI) accessible as tools
for developers through interaction or examples and visualization
respectively (cf. also [23, 46]). In this field, there are also a number
of structured evaluations, e.g. a study by Kaur et al. [42] of how
XAI tools are used by developers and whether they achieve their
goal of informing them.

For these explanations, but also for development tools in general,
another major topic appears to be how to visualize the complexity
of ML. Many researchers recognize that in the traditional, code-
based format, it can be hard to understand what is going on. For
this reason, 12 publications specifically investigate the use of vi-
sualizations, e.g. for data preparation [84], development [44, 92]
and evaluation [49]. Typically, they use various graphical presenta-
tions to offer real-time, and sometimes interactive, visualizations
of various metrics of the ML models as shown in Fig. 2.

In addition, many of the tools mentioned or investigated in 24
of the publications have some visual component a use graphical
programming. Especially the graphical programming aspect is of-
ten directly inspired by the domain of model-driven development
(MDD), like the work by Zhang et al. [96], which aspires to bring
MDD and data-driven development together.

This naturally also includes a number of analyses and evaluations
of existing graphical tools for data-driven development, like Rapid-
Miner [7, 38, 72] or Orange [80], which Bjaoui et al. [7] consider
for novices and Shastri [80] for non-programmers respectively.

Some of these tools have been around for quite a while – in the
case of RapidMiner for two decades now [72] – and have been used
for various domains (e.g. [27, 47, 54, 59]). It therefore comes as not
surprise that the evaluations highlight a number of benefits of these
graphical tools, particularly with respect to visual organization and
managing complexity. Yet, no single graphical tool has managed to
become as popular as code-based tools like Jupyter Notebooks [39].

Kery et al. [44] and Zhao et al. [98] therefore report on attempts
to bridge the divide between code and visualization via widgets
that allow switching between these representations. The results
of their evaluations in the form of a user study indicate that data
scientists view this flexibility and the ability to hide and show code
on demand very favorable, which may be an important factor for
adoption.

3.3 Supporting the Development Process
As previously mentioned, we also specifically looked into which
steps of the development process different tools aim to support.

Table 2: The steps of the EDDA process [31] and the publica-
tions that introduce or evaluate tools that support this step
in some way. Publications not listed did not introduce tools
to specifically support individual steps of the development
but either provided general support or helpedwith activities
related to the development but not captured by the EDDA
process.

Activity Publications
Requirements Engineering [99]
Specification and Design —
Evaluation of ML suitability [17, 99]
Data Exploration [2, 3, 12, 26, 70, 83, 84]
Model Requirements —
Model development [3, 12, 18, 30, 32, 48, 56, 58, 65, 68,

74, 85, 88, 90, 92, 98]
Model integration [50, 96]
System Test & Evaluation [11, 23, 32, 33, 46, 49, 79, 90, 97]
Operation & Maintenance —
End-to-end [10, 30, 49]

Table 2 provides an overview of the different steps of the EDDA
process [31] and the publications from our selection that support
each step.

Very clearly there are some steps that seem to be of more inter-
est to researchers than others. Especially data exploration, model
development and testing and evaluation seem to get a lot of atten-
tion and tooling. Some of this may be an effect of our search and
screening strategy, since we only queried the databases for tools
for data-driven development. Some steps of the EDDA process are
in part covered by conventional software engineering, so existing
and established tools may suffice.

For data-centric steps in the process there are quite a number of
novel tools, however, e.g. for labeling the data where Alaghbari et
al. [2] explore the use of gamification or TagRuler by Choi et al. [12],
which combines Natural Language Processing and programming
by example to automate this usual tedious process.

The concrete implementation of ML models is very heavily sup-
ported from various perspectives, be it the selection of the appro-
priate model [3, 58, 68] and architecture [98] or its implementation,
[22, 56, 85] training and optimization [32, 64, 74, 90]. Optimizing
ML models is of course also a question of optimizing hardware-
specific code for running the complex models efficiently on GPUs
or other specialized hardware. Liou et al’s. [48] GEVO-ML is an
example for a tool that addresses this particular challenge of ML
via automation, detecting and applying certain optimizations.
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(a) RapidMiner (image from [7]) allows the development of a data processing pipeline by composition of functional blocks

(b) ConfusionFlow (image taken from [32]) supports developers with visualizations during performance analysis of classifiers

Figure 2: Two examples for tools for the development of data-driven software that heavily rely on a graphical presentation.
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Optimization of course is also very much related to the testing
and evaluation step, where many of the XAI and visualization
systems play a role, either in order to give the developers a better
understanding of the metrics and machinations [30, 32, 79, 92] or
explicitly for debugging [32, 46].

Some of the authors attempt to maintain a holistic view though
[3, 10, 60], addressing issues that are relevant throughout the de-
velopment process like traceability [63] and asset management
[36].

Much less in the focus appears to be the question of ML require-
ments, which according to the EDDA process [31] should include
questions about acceptance criteria, i.e. when a ML model is ade-
quate. For the integration of ML systems, we found two publications
in our search: Liu et al. [50] which explores how different ML sys-
tems and libraries can interoperate via model transformation and
Zhang et al. [96] who approach ML tools from the perspective of
MDD and highlight the existing integration challenges in the tool
infrastructure.

Overall it appears that certain aspects of data-driven develop-
ment are already very actively explored – whether to a degree of
saturation we cannot yet say – while others still provide ample
opportunity for improvements. Still, the breadth of tools for many
niche and specialized aspects also highlights a certain fragmenta-
tion. Instead of integrating solutions into tools with a large user
base, researchers currently appear to prefer building their solutions
from scratch and as stand-alone solutions. This may be in part due
to the nature of research, focusing on small, well defined aspects.
Another factor, though, may also be the matter of interoperability
and integration, as previously mentioned [96].

There are notable exceptions like Malviya et al. [52], who advo-
cate for a plugin-based architecture, and others [5, 38, 44, 53, 73]
who build plugins or extensions to existing tools. However, based on
the publications we investigated, the tooling landscape remains in
flux, with Jupyter Notebooks – currently – a solid contender as the
tool of choice [39]. Alternatively, it is also possible to leverage the
existing tooling landscape and adapt it to support the development
of data-driven applications too [16, 96], which not only is an effi-
cient reuse of resources but could also lead to a greater integration
of software tools and thus counteract a potential fragmentation.

3.4 Evaluation Methodology
A slow adoption of tools can of course also be the result of insuffi-
cient quality and poor usability. We therefore specifically noted the
evaluation methods, if any, in the publications. Positively, almost
half (31) of the publications we analyzed did perform some for of
evaluation.

However, when comparing the method of evaluation, we found
that there are three mostly disjoint groups: publications from the
more technically inclined venues tend to favor benchmarks with
analytical metrics to compare their implementations with prior
work (7), while particularly researchers from the field of human-
computer interaction rely more on user studies, interviews and
surveys to capture to how their tools are perceived (13). A method
that both groups occasionally rely on are case studies, i.e. applying
their tool in a realistic setting (10). Here we could, however, not
reliably determine from the text whether these case studies were

selected after the tools were completed or whether the tools were
built with the application in mind.

While all these evaluation methods are very much valid to deter-
mine the quality of the tools which people build, they each of course
only address a limited number of quality criteria. Unfortunately,
our analysis shows that only a handful of publications use more
than one of those methods, so even though researchers may claim
their tool to be high quality, we typically get an incomplete picture,
focusing often either on analytical quality or the human perception
but rarely both.

3.5 Related Literature Surveys
Beyond direct evaluation on individual tools, we found 14 pub-
lications in our sample that reported not on single tools but on
comparative surveys across multiple existing tools, eight of which
are from the last two years. This, to us, indicates an increase in
reflection on the status quo and a desire to understand the current
situation before moving forward [25, 66].

Being from different domains, these publications focused on
different aspects of data-driven tools, be it where the tools are used,
e.g. in education [39], or how they support specific steps in the
development from data preparation [26] to model selection [68] or
training and optimization [74]. In contrast to our survey they did
not specifically focus on the benefits for development experts but
contrasted the expert perspective to that of data science novices [4,
15, 74]. This focus is often motivated by the complexity and opacity
of current machine learning models and the process for developing
and tuning them [74], which makes existing tools hard to use for
less experienced users. At the same time, it is acknowledged that
even experts often require a considerable amount of skills and
training for effectively using current tools [65] which suggests that
there is still much to do to achieve easy to use tools for data science,
regardless of the target group.

Nonetheless, these types of comparisons and overviews, partic-
ularly when applied to practical, real-word use cases, provide an
additional perspective for evaluation the existing tool landscape
for data-driven development.

4 DISCUSSION
From the body of publications, we were able to determine a number
of commonalities and shared directions but also highlight some
of the outliers and shortcomings in existing scientific literature.
The following section will now summarize some of these and draw
conclusion regarding tooling for data-driven development in the
future.

4.1 Common Goals
The generally high – and increasing – interest in the topic of data-
driven development and tools and methods for its support already
suggest that is by now well understood that Machine Learning etc.
have moved from academic exercise to be the driver of real-world
change and thus needs to be treated as such. This view is shared by
many of the reviews and shows in a decent number of evaluations,
which also suggest a increase in reflection.

Such introspection will help with transitioning from data science
to an engineering discipline but considering how diverse the field
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still is with many disjoint methods and process but a limited con-
sensus on best practices, prerequisites and goals [28], there may
be a need for a coordinated effort to consolidate and steer the field
similar to the movement that brought us software engineering [61].

Another fact that has been acknowledged is that it can be quite
challenging for developers to move from conventional program-
ming to developing data-driven software. While the former builds
on a defined sequence of instructions, the latter has many of its
functionality and intricacies implicit in the data where it is learned
by the software but remains hidden to the developer.

Certainly, the field of XAI is working on this challenge, but, at
the current point in time, the preferred target group seems to be
end-users [13, 14, 20]. While this yields interesting results, it is still
unclear whether end users need or want explainability [21, 91].
Developers, on the contrary, very clearly benefit from opening up
the black box that is ML for the purpose of debugging [32, 46],
identifying biases [33] and just general fairness [79], transparency
[90] and an ethical use of the technology [86]. Focusing some of the
XAI efforts on developers first may, therefore, yield more immediate,
actionable successes. In addition, given that someone has to develop
the end-user explainability, making sure that developers precisely
understand what is going on, may also prevent a situation where
flawed mental models are propagated and should in turn improve
the situation for all (cf. [55]).

4.2 Common Openings
As highlighted in Tab. 2, not all aspects of data-driven development,
in this case represented by steps in the EDDA-process [31], have
received an equal amount of attention in the form of publications.
As mentioned before some of these areas may already be covered
by prior research from traditional software engineering though.
In addition, a high number of publications and approaches in one
area must not mean that this step has been solved but can also
indicate a high need for diverse solutions or many incremental
improvements. It is therefore hard to precisely determine, where
exactly more needs to be done.

It it, however, noteworthy that the large gaps appear to lie at the
interface between data-driven and more traditional software devel-
opment: there is little to nothing for specifying the requirements
of the data-driven aspect in the context of the larger software and
similarly little for integrating the data-driven part into the software
and pushing it into the world. This may be due to a diffusion of
responsibility between traditional and data-driven development,
both expecting the other side to handle this. Another possible ex-
planation may be that these are the points of friction where we
have not yet found adequate solutions. Both these potential rea-
sons, however, strongly suggests that these areas will require some
attention and should not be neglected going forward.

4.3 Quo Vadis
Research into the development of data-driven explanations certainly
is only getting started, though. Nonetheless, the question arises
which immediate issues need to be addressed now to steer the
field in a good direction. For tooling in particular it is important to
make Machine Learning and related technologies accessible to a
broad audience to make sure many can participate in a technology

that affects everyone. Likewise, we need to determine the major
impediments for its common adoption first before we rush into
niche solutions for specialized problems.

Based on the literature we described in this paper, we see a
number of properties that tools in the nearby future should try to
achieve:

Vertical Integration. One issue that is not just bothersome but can
also introduce an arbitrary number of problems is when a developer
has to use a specialized tool for each step in the development.
It is no wonder that for traditional software engineering, many
professionals use Integrated Development Environments (IDEs), i.e.
tools that attempt to integrate support mechanisms for a slew of
activities in a single application.

As our literature review shows quite clearly, there are many
helpful tools for many important steps in the development process
but most of them are stand-alone applications. In order to use them,
developers will have to export, import and transform their data,
which will be the source of errors.

Arguably, this may very well be an artifact of the fact that aca-
demic projects often focus on one aspect only. Still, a growing
number of projects, including from academia, provide their support
mechanisms integrated into the Jupyter Notebook environment, as
one of the most popular tool. Such a close integration into an estab-
lished platform not only does reduces the likelihood of errors due
to for example data-transfer, but also simplified usage and increases
usability, which saves time and should positively affect adoption.
We therefore encourage this practice for future development efforts.

Horizontal Integration. Of course, consolidating tools leads to an-
other open topic: how to integrate data, models, etc. from various
tools, libraries and systems. This will require some form of univer-
sal interface between applications, which is highly non-trivial, but
there are early efforts for interaction between software systems,
both in our sample of the literature, e.g. the AI-ESTATE standard
[37, 83], or beyond, like the ONNX standard and platform1 which
allows for a shared representation and thus exchange of ML models.
Unfortunately, in our literature sample, we could find only very
few examples where these, admittedly relatively new, standards are
being used.

Currently, the more common practice (e.g. [3]) is to leverage the
RESTful architecture, as well established in traditional software
engineering, and provide ML functionality as a service with an
API. Adherence to this de facto standard method also allows fairly
simple interoperability with traditional software systems; a topic
that was barely mentioned in our literature sample.

Automation. A major trend in the publications from our sample
seems to be automation though, with one in five publications intro-
ducing a tool that automates some aspect of the development. As
mentioned before, complete automation is viewed critically in some
of the analyses though, for it will exasperate the opaque nature of
ML, which is undesirable for developers and unacceptable in many
domains like for example healthcare [34, 69, 76].

This balance between automation and control is of course not
new, but in this case of software and data-driven development is

1https://onnx.ai

https://onnx.ai
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somewhat reflexive in that the developers of the automation would
potentially automate their own work.

To ensure this balance, we should strive to make the transition
across the spectrum of automation as easy as possible. This means
that for any step that can be automated, developers should have
the choice of letting the computer solve the problem for them,
manually solve it themselves or rely on any form of collaborative
interaction in between with little overhead for switching between
these options.

Graphical and Code-based Tool. Another very common theme is the
use of visualizations, which were used in a number of publications.
They way they are often presented suggests that for many data-
driven development has a strong graphical component, be it as a
means of tackling its complexity or as a property inherent to this
development paradigm.

Naturally, many have leveraged this in some form or another,
yielding a number of graphical programming tools for data-driven
development. Still, Jupyter notebooks, which are at their core code-
based, remain among the most popular tools [39].

Various evaluations in our sample suggests, though, that the
graphical aspects provides a number of benefits, particularly when
dealing with complexity at the scale of many data-driven appli-
cations. Code, on the other hand, is very concise and expressive,
allowing a high degree of control and flexibility. Both therefore are
valid presentations.

Work like that of Kery et al. [44] already show that these two
options must not stand distinct from each other but can be com-
bined. Solutions like that, which allow a seamless transition from
established to novel interfaces may convince more people to try
interfaces beyond what they already know and use – particularly
when integrated into a platform that developers already use, like
Jupyter notebooks. The division of Jupyter Notebooks into individ-
ual blocks that individually can be switched between graphical and
code-based view lends itself especially well for this, but this notion
of decomposition has been used to a further degree already. Silva
et als. [81] DBSnap++ uses graphical programming, where queries
of data are built from individual blocks, or consider RapidMiner
[7], which builds the whole data processing pipeline by composing
blocks.

In fact, the pipeline-nature of data-driven software lends itself
very much to this idea inspired by prior work in MDD, since the
data-flow from a high-level perspective is straight forward. To still
facilitate the aforementioned control and flexiblity, tools could allow
a fluid switch to code [44] for individual steps or even a hierarchical
structure where developers can drill down through multiple levels
of abstraction per block until they reach the level of detail they
require.

However, one should not forget that this way of abstraction,
composition and general approach to complexity has been state-
of-the-art for many years in MDD but did manage to convince the
majority of software engineers to use it in everyday practice.

Holistic Evaluation. Why exactly MDD is not as widely adopted as
it might be for all its benefits is beyond the scope of this paper, but
some recent trends in that field [6] and some aspects of our data may
hold some clues how to prevent this for data-driven development.

To be adopted a tool should fulfill certain criteria, among which
are that it should provide sufficient benefits at a low cost. For data-
driven tools the benefits can include an increase in model and
software quality, while the cost can come in work overhead and
general usability.

Part of this is often the topic of an increasing number of evalua-
tions in this field of research – a development that is to be encour-
aged. Still, looking at how the tools in our sample are evaluated,
we saw that the majority is only evaluated for one of these two
aspects: either some form of usability evaluation or performance
benchmarking. However, even if a tool is superior to other in the
benchmarks, few people will adopt it if it is only usable by highly ex-
perienced experts. Likewise, if a tool is a delight to use but provides
only limited practical value, it will likely also be rejected.

This is not to say that tools from technology experts are unusable
or those from HCI are technically unsound – with the current eval-
uations we cannot tell – but to convince potential early adopters,
an holistic evaluation from multiple perspective may be more con-
vincing.

This should also encourage and facilitate collaboration across do-
mains, which generally is desirable and should lead to better, more
rounded tools. However, such collaboration must be supported
on an organizational level also, for example by encouraging more
human-centered work at technical venues and vice versa. Consider-
ing how tooling and support for developers is distributed across the
different venues in our data set, there still seems be a bit of work
left to do.

4.4 Limitations
At the same time, one would assume that an area like software
development, where the target groups is capable of building their
own solutions, would be self-regulating in that developers will
likely build the tools for their own most pressing issues. So, our
selection of scientific literature cannot fully reflect the full breath
of tooling for data-driven development, since it will not include
all the individual solutions that did not make it into a scientific
publication. Likewise we also cannot judge the tooling landscape
that large corporations might employ internally, as long as they
remain behind closed doors.

These tools, however, often are created in an ad-hoc fashion
and without publicly accessible evaluations it is hard to determine
their actual value and benefit. Particularly for data-driven software,
where many factors like unknown biases can be the deciding factor
between impressive results and hidden flaws, a healthy degree
of skepticism for un-tested and un-evaluated tools is appropriate.
Consequently publication, scientific or otherwise, an open-source
mentality and, in general, continuous evaluation are all what we
should strive for to ensure that data-driven software increases in
quality and its development becomes easier, more accessible and
more reliable.

That is, of course, not to say that many of the current tools we
looked at are necessarily flawed, but with only about half of them
providing an evaluation, there is still some room for making their
benefits more convincing and improving transparency.

Naturally, our results for these tools depend on the search and
filter criteria we applied and can only reflect a snapshot of the status
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quo. Given how fast the field of ML is changing, many more tools
are probably already being developed to address many of the open
issues and at the same time the technology may change such that
existing tools become obsolete. Given that software developers do
still use tools that have been around for decades, the adoption is not
a quick though. So, the question really is not which individual tool
will be used by how many people but which overarching theme will
be prevalent and can convince developers to change habits. These
themes, some of which have been described in this paper, are more
stable and much more than just trends, but therefore should also
be grounded in the results of systematic evaluations of what works
and what does not.

5 CONCLUSION
Motivated by the growing importance of software powered by data
and Machine Learning, we conducted a survey of the current scien-
tific literature to find current means for supporting the software
developers behind this software.

Filtering the search results down to 76 relevant publications, we
determined common topics and shortcomings of the literature at
this point. A considerable number of these publications introduced
novel tools that try to solve, automate or simplify various aspects of
the development process, from data acquisition, model creation and
tuning to evaluation and interpretation of the resulting software.

In spite of the abundance of tools a number of step in the de-
velopment of data-driven software have not yet received as much
attention and support as others, particularly those steps at the in-
tersection with traditional software engineering, e.g. determining
the requirements of these systems.

For other steps there are many existing tools. While there is a
growing culture of evaluation in this domain for these tools, the
majority of them is only scrutinized from one perspective, either
as a case study, by benchmarking or by eliciting user feedback, but
rarely are these methods combined.

To make sure that all these tools actually meet a wider demand
and are not just a one-off solution for a single problem, we need
more cross-domain collaboration for both requirements and evalua-
tion specifically and for supporting developers and the development
teams generally.

The community of tool developers for data-driven development
does appear to be very active andML software is in high demand, so
we can expect many more tools, hopefully with some comparative
studies in between. Based on our findings we also provide a series
of suggestions for future tool development, which may give this
community even more to work on.

The long term goal of simplifying the development of data-driven
applications is not only one that concerns this small group of devel-
opers, though. Certainly, better tools has an immediate impact on
their work experience but it will also affect many of the involved
team members, not all of which will be experts, and it will also
affect the quality of the software they write. This software in turn
can have a wide ranging impact on society and thus should be as
good as we can get it. It is therefore in everyone’s interest that, for
example, decisions about ethical implications like privacy, biases,
etc. are made deliberately by an informed development team so
that they can then be implemented correctly. In addition, when

software development gets easier and we get a better understand-
ing of these systems, they also become more accessible to regular
people up to the point of end-user programming. Improving the de-
velopment process and increasing the understanding of data-driven
applications is therefore a matter that in the long term affects just
about everyone, which makes it endeavor where broad collabo-
ration across many domains and areas of expertise should be the
goal.
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