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ABSTRACT
The way we grasp an object depends on several factors, e.g.
the intended goal or the hand’s anatomy. Therefore, a grasp
can convey meaningful information about its context. In-
ferring these factors from a grasp allows us to enhance in-
teraction with grasp-sensitive objects. This paper highlights
an grasp as an important source of meaningful context for
human-computer interaction and gives an overview of prior
work from other disciplines. This paper offers a basis and
framework for further research and discussion by propos-
ing a descriptive model of meaning in grasps The GRASP
model combines five factors that determine how an object is
grasped: goal, relationship between user and object, anatomy,
setting, and properties of the object. The model is validated
both from an epistemological perspective and by applying it
to scenarios from related work.
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INTRODUCTION
During evolution, humans gained the unique ability to grasp
tools and apply them skillfully. Nowadays, a multitude of
versatile or specialized tools extend our manual abilities.
Oftentimes, Human-Computer Interaction (HCI) also relies
on our ability to grasp objects - be it a computer mouse, a
tangible user interface, or a mobile phone. Given that we
spend a reasonable amount of time grasping objects while
using them, it seems straightforward to use the contact be-
tween device and hand for transmitting information to the
user. Haptic feedback sends short cues to users via actua-
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Figure 1. The way we grasp an object conveys meaningful information.
Several factors determine a grasp. Our GRASP model groups them
into five general factors: Goal of the grasp, Relationship between user
and object (e.g. knowing that an object is very expensive), Anatomy
of the user (including neuropsychological processes), Setting (i.e. envi-
ronment in which the grasp takes place), and Properties of the object.
Factors were chosen to represent orthogonal types of meaning

tors that stimulate tactile receptors in the skin. Such cues
and status information can also be represented as changes in
weight distribution or shape [9, 10]. However, a grasp ac-
tually allows bi-directional data transfer. The way we grasp
an object also conveys information about us, our goals, and
other aspects. Inferring these aspects from the grasp can al-
low us to enhance interaction with graspable user interfaces.
The way we grasp an object is determined in part by what
we want to do with it. Knowing the intended goal of a grasp,
a grasp-sensitive object could support this goal. For exam-
ple, a mobile phone would infer from your grasp that you
want to call someone - and would present the call list. A
bottle might know that you want to drink from it, and open
itself - because you grasped it near its center of gravity. And
a power drill might refuse to power on because you are not
holding it safely enough. With each grasp we convey in-
formation - and given that we grasp objects all the day, this
is a lot of information we produce. Currently, almost all of
this information is ignored, however. The aim of this paper
is to raise awareness to grasping as an important source of
meaningful context for human-computer interaction, give an
overview of existing work from other disciplines, and pro-
vide a basis for further research by proposing a descriptive
model of meaning in grasps (see Figure 1).

This paper is structured as follows: In the next section I give
an overview of related work from robotics, medicine and
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neuropsychology. Then I discuss technical foundations of
grasp sensing, presenting a three-stage process for capturing,
identifying, and interpreting grasps. Afterwards, I present a
descriptive model of the meaning of grasps and discuss its
validity, applications, and limitations.

RELATED WORK
Human’s ability to purposefully grasp arbitrary objects has
been subject of intensive research in different disciplines.
The biomechanical properties of the human hand are subject
of medical research [20]. In neuropsychology, researchers
investigate how grasps are planned and controlled [6]. In
robotics, researchers investigate how robotic hands may re-
liably grasp arbitrary objects [25]. MacKenzie and Iberall
[17] give a comprehensive but slightly dated overview of re-
search in these fields.

Definitions
In this paper, a grasp is defined as a “firm hold or grip” [1].
Accordingly, grasping means performing a grasp.
Stable grasps can be divided into two different types [21]:
Force closure - whereby the object is held by opposing fin-
gers exerting pressure against the object’s surface.
Form closure - whereby the object is enclosed by the hand
so that it cannot move even if no force is exerted by the fin-
gers. Often the terms grasping and prehension are used inter-
changeably [17]. For others, prehension is the coordinated
act of reaching for an object and grasping it [29]. Kang and
Ikeuchi state that a grasping task is composed of pre-grasp
phase, static grasp phase, and manipulation phase [13].

Classifications of Grasps
Several classifications of grasps have been proposed over
time. Schlesinger [24] classified grasps based on the shapes
of objects they were applied to. Napier [20] proposed a sim-
ple classification of grasps into power grips, which generally
involve the palm, and precision grips, which only employ
fingers and thumb. Cutkosky and Wright [7] use a tree hier-
archy for classifying grasps, beginning with Napier’s power
and precision grasps. Kang and Ikeuchi [13] recognized that
the aforementioned models lack a formal description of the
grasps which makes them unsuitable for automated grasp
recognition. They proposed the contact web, as a formal
classification of grasps that is based on contact points be-
tween object and fingers. Feix at al. condensed 147 grasp
descriptions found in a review of 17 publications into 33
unique grasps [8]. These were classified based on involved
fingers, Napier’s distinction, opposition type, and thumb po-
sition.

MEANING IN A GRASP
Existing classifications focus on defining groups of visually
or functionally distinctive grasps. However, a multitude of
factors contribute to a grasp which are not considered in
these classifications.
Iberall and MacKenzie offer an abstract model of grasping
[12, 17]. They describe grasping as a black box with a
goal and an object as inputs and a specific grasp as out-
put. Several additional constraints are given that affect the
outcome, like the placement and orientation of the object.

However, MacKenzie and Iberall do not explain the formal
difference between inputs and constraints. These constraints
are grouped by MacKenzie and Iberall [17] as follows:

• High Level: Social/Cultural, Motivational, Informational,
Functional

• Physical: Object Properties, Biomechanical/Mechanical

• Sensorimotor: Neural, Perceptual, Anatomical/Physiological,
Evolutionary/Developmental

However, for HCI the question is not how a grasp should
look like for a certain combination of object and goal (hu-
mans are quite good at figuring it out themselves). Instead it
would be useful to know what a grasp actually means. That
is, what can a grasp tell us about the context it is happening
in, and what can we do with this context intformation. For
a certain grasp - which we can capture by different means -
we want to know which factors contributed to it.

GRASP SENSING
This section explains why it is acceptable and helpful to only
capture stable grasps, and defines three interpretative steps
for grasp-sensing systems: capturing the grasp, identifying
it, and interpreting it (Figure 2).

capture

identify

interpret"left hand", "Alice", 

"wants to call somebody"

grasp signature

grasp classification
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Figure 2. General workflow for grasp sensing: sensors capture a grasp
signature which gets mapped to a specific group of grasps. Finally,
interpreting the grasp generates meaningful context.

An important simplification
Grasping is a complex action. Depending on the point of
view it also includes initial reaching movements and exploratory
adjustments until we find a stable grasp. Sometimes, we
move through a number of different grasps, even involving
different hands - e.g. when picking up an object and putting
it somewhere else. Complex hand movements are needed
to transform one stable grasp into another. However, in the
following I will use the term grasp to refer only to single,
stable, static grasps, performed by a human hand. This has a
formal and a technical reason:

• a series of grasps can be broken up into a number of stable
grasps. The transitional hand movements between those
stable grasps primarily depend on the previous and next
grasp. Therefore, these transitions add only very little in-
formation about the meaning of a grasp 1. Excluding those

1An exception would be a slippery object that is held in a form-
closure grasp. The (stable) grasp does not need to adress the slip-
pery surface. However, any transitional hand movement would
need to take this into account.



transitions from our analysis removes much complexity
while forfeiting only little information.

• the aforementioned complexity of transitional movements
makes them hard to interpret using heuristics or machine-
learning. Concentrating on stable grasps makes it much
easier to extract meaningful patterns.

Step 1: Capturing Grasps
Grasps can be captured by either capturing the grasping hand
or by equipping the object with a grasp-sensitive surface.
Both approaches have unique advantages and disadvantages.
For everyday use, objects with grasp-sensitive surfaces are
probably more convenient and socially acceptable, however.

Instrumenting the User
For tracking fingers and hand, often an optical or magneti-
cal tracking system is used. A marker or receiver needs to
be attached to each finger. This method allows for a high-
resolution capture of hand pose and position. It does not
provide any information about contact forces between fin-
ger and object. Therefore it can not detect whether a finger
is touching the object or not. Such tracking systems need
to instrument the user. Additionally, capturing grasps works
only within the tracking infrastructure. Therefore such sys-
tems are of limited use for real-world applications. However,
they are very flexible and therefore well suited for labora-
tory studies. External tracking systems also provide a high-
resolution ground truth for other technologies.
Instead of using markers for defining finger joints, some ap-
proaches use computer vision techniques for an image of the
hand pose to a grasp [31]. Another approach that does not
require a tracking infrastructure are data gloves. These are
thin gloves - often with a mesh surface on the palmar side
- that are equipped with strain sensors. These sensors al-
low capturing each finger joint’s angle. From these, a hand
pose can be derived [11]. These gloves are less obtrusive
than tracking markers. However, they limit tactile percep-
tion. Force-sensing with gloves is difficult, as force sensors
attached to the fingertips obviously result in greatly reduced
tactile perception. An alternative way of determining grasp
forces is to capture images of the finger nail and interpret
changes in blood flow that can be observed there [19].
As the fingers are controlled by muscles in the forearm, some
information about the hand pose can also be gained from
measuring changes in these muscles or the wrist shape [22].
Another option is not to capture grasps but only detect which
object is held. This can be done by attaching RFID tags to
all objects and strapping an RFID reader to the user’s wrist
[4]. This method does not provide any information about the
actual grasp, however.
Instrumenting the users allows for easily capturing grasps
for a multitude of object shapes. The objects need not be
modified. However, putting markers on hands would severly
impede everyday manual tasks. Additionally, in most appli-
cations the object itself shall react to a grasp. Therefore, the
grasp information would first need to be transferred to the
object - either wirelessly or by electrical coupling [34]. This
would require a standardized communications protocol for
grasp information.

Grasp-sensitive Surfaces
Grasp information can also be captured by the grasped ob-
ject itself. To this end, the object needs to be equipped with
a grasp-sensitive surface that can capture the contact area
between object and hand. Grasp-sensitive surfaces require
more engineering effort than external tracking solutions and
usually do not offer identification of single fingers or digits.
Implementing a grasp-sensitive surface is more difficult than
implementing a touch-screen for two reasons:
Shape Sensing. Instead of single or multiple touch points,
a grasp-sensitive surfaces should capture multiple complex
shapes and possibly additional information like pressure. There-
fore, common commercial touchscreen technologies like (ana-
log) resistive[16] or self-capacitance [3] touch sensing can-
not be used. Digital resistive [23] or mutual-capacitance
technologies are better suited for capturing contact areas shapes.
Additionally, the driver software needs to be able to repre-
sent complex shapes.
Sensor Shape. The sensing surface is usually non-planar
and continuously wrapped around the whole object. While
it is possible to embed only a few sensors at strategic posi-
tions within the surface[5, 33], often large parts of the sur-
face shall be made grasp-sensitive. This requires flexible or
very small sensors. Additionally, a normal cartesian coor-
dinate system - as used in displays and touch input - may
not correctly represent the sensing surface. Possible alterna-
tives are spherical coordinate systems[15] or a relative map-
ping[32].

In research prototypes a multitude of sensor technologies are
used for making surfaces grasp-sensitive. Often researchers
build their own capacitive sensors [14, 27, 33]. Other pro-
totypes use resistive pressure sensors [15, 30], impendance
sensors [18] or optical sensors [5, 32]. A comparison of the
inherent properties of the different types of sensors can be
found in [32].
Capturing a grasp results in a grasp signature, a digital rep-
resentation of contact points or digit positions.

Step 2: Identifying Grasps
Once a grasp signature has been captured, the system needs
to derive the grasp that caused this signature [13]. This is
commonly done by mapping the signature to a certain cat-
egory of grasps, either using heuristics or machine learn-
ing. The classification algorithm to be used depends both
on the format of the sensor data and the type of informa-
tion that is needed in the interpretation stage. Commonly
used classifieres include support vector machines [14, 26],
Bayesian classifiers [14, 26], and Hidden-Markov-Models
[27]. Grasp categories can be defined formally, using e.g.
one of the models described above. More often, grasp cat-
egories are defined by example. To this end, a machine-
learning classifier is trained with grasp signatures of grasps
the developer deems similar. Without a set of formally de-
fined grasps, however, it is not possible to compare differ-
ent classifiers and sensing technologies. In several cases,
grasps with completely different signatures should actually
be interpreted as the same grasp. For example, when grasp-
ing a uniform sphere, the grasp signature greatly depends
on the rotation of the sphere. In these cases, an appropri-



ate mapping needs to be found that ignores certain features
of a grasp. Wimmer et al. [33] recognize different types of
left-handed and right-handed grasps using slightly modified
heuristics for both. Kry et al. [15] use spherical harmonics
for rotation-invariant grasp classifications.
Classifying a grasp signature results in a grasp classification
- for example a list of grasps that might have generated the
grasp signature.

Step 3: Interpreting Grasps
The final step in graps sensing is to determine what a cap-
tured and classified grasp actually means. What is to be
considered meaningful depends on the application. For au-
thentication purposes [30], it is relevant whether the grasp
belongs to a certain category - whereby different categories
represent different users. When using grasps to switch an ob-
ject between different modes [27], the mapping from a cer-
tain grasp category to a mode provides meaning. However,
existing grasp-sensitive systems capture only one meaning-
ful aspect of a grasp (see below), ignoring the other aspects.
While such systems attribute a certain meaning to a grasp,
the actual meaning of a grasp is ultimately defined by the
user. This leads to unexpected behavior if the system at-
tributes a meaning to a grasp that the user did not intend.
For example, a grasp-sensitive mobile phone might interpret
a certain grasp as the intention to switch to camera mode
[14]. However, the user might just hold the phone this way
for a variety of other reasons - and would be annoyed if the
phone suddenly changed into a different mode.

Insofar it seems advisable to try to capture as much informa-
tion about the meaning of a grasp as possible. In the follow-
ing section I look at meaningful factors that influence which
grasp is chosen.

GRASP - A MODEL OF MEANING IN GRASPS
As stated above, a model of meaning within a grasp is needed.
The model I present here is based on the model by MacKen-
zie and Iberall that is described in the second section. The
new model considers the constraints and inputs they described
and re-organizes them into meaningful factors. An important
simplification is abstracting the user, hiding much of the neu-
ropsychological and anatomical complexity. This probably
does not remove meaningful information as most statements
we might be able to make about such sub-factors will not
help us in improving the user interface. Being aware of this
abstraction allows us to replace it with a more fine-grained
representation, if needed.

In the following I present GRASP, a model of human grasp-
ing that describes five meaningful factors. These factors all
influence which grasp a user applies, and each of them repre-
sents a different group of meaningful information. Figure 3
illustrates these factors. All factors are independent of each
other. The validity of this model is discussed in the next
section.

Goal
A very important factor determining how to grasp a given
object is the goal that is to be achieved by the grasp. Goals

are all factors that cause a grasp to be initiated. Goals can
be divided into sub-goals. As goals are essentially meaning,
they are discussed here in more detail than the other factors.
I propose grouping goals by two dimensions: implicit vs.
explicit grasps and primary vs. supportive grasps. Table
1 shows examples for each combination of implicit/explicit
and primary/supportive grasps.

implicit explicit
primary user picks up mo-

bile phone
user holds phone
horizontally to in-
voke photo mode

supportive user holds phone
while typing on
touchscreen with
other hand

user holds phone,
scrolling a map
with the other
hand, zooming
by squeezing the
phone

Table 1. Examples illustrating the distinction between implicit and ex-
plicit grasp interaction, respectively primary and supportive grasps.

Usually, a grasp is implicit, meaning that its goal is to ma-
nipulate an object. Implicit grasps are similar for grasp-
sensitive and non-grasp-sensitive objects. Explicit grasps are
conducted primarily in order to trigger a certain effect in a
grasp-sensitive object. For example, a user might authenti-
cate himself to the device using a certain grasp, or switch
the mode of an object by holding it in a certain way. Like-
wise, there is a difference in the user’s intention for primary
and supportive grasps. A primary grasp is a grasp that is
executed with the intention to manipulate the grasped ob-
ject. For example, a primary grasp is used for moving a
computer mouse. A supportive grasp serves to fixate or po-
sition an object in order to interact with it using e.g. the
other hand or fingers that are not involved in grasping. For
example, holding a mobile phone while typing a short mes-
sage is a supportive grasp. These distinctions are not ran-
dom but are needed to judge the amount of meaning gained
from a grasp. An explicit grasp always conveys informa-
tion about the user’s intention. It can and should always be
seen as meaningful. The user expects a reaction. An im-
plicit grasp may convey some information about the user’s
intention. However, this intention is not necessarily aimed
at interacting with the object. A user might just want to
put away an object and would be annoyed if it reacts to the
grasp. Therefore, determining whether a grasp is implicit
or explicit is necessary for interpreting the grasp’s meaning.
Likewise, a supportive grasp conveys less meaning than a
primary grasp as the main focus of the interaction lies not
on the grasp but on the action that is supported by it. Addi-
tionally, a supportive grasp is restricted by the requirements
of the main interaction and usually can not be modified as
easily as a primary grasp. One might use this distinction to
assign different meanings to a grasp. For example, when
holding a mobile phone to the ear (primary grasp), different
grasps can launch actions. When holding the phone while
interacting with its touchscreen using the other hand, differ-
ent supportive grasps might only switch between modes or
adjust viewport properties.



Figure 3. Examples for each of the meaningful factors that contribute to a grasp. A user might hold a screwdriver differently, depending on the Goal
he wants to achieve with it. The mental Relationship to an object determines how we grasp it. In the illustrated case, a paper towel that belongs to
oneself is held differently than one found on the floor. Depending on our Anatomy we need to apply different grasps to achieve the same effect. Due
to different Settings, a bottle in a shelf has to be grasped differently than a bottle in a crate. The Properties of an object, for example its size, have a
major influence on the grasp to be used.

Relationship
Feelings like disgust, fear, or anger can also influence the
way we grasp. Relationship includes all non-physical fac-
tors that apply to a combination of user and object. The re-
lationship between user and object can be different for every
user-object combination. For example, many people seem to
find a used paper towel disgusting. They would only pick it
up with a pinching grasp, trying to avoid contact with any-
thing attached to it. However, if the used paper towel belongs
to oneself, one might just pick it up like any arbitrary piece
of paper. Unlike anatomical properties, the relationship can
also change over time, like when someone overcomes a fear
of spiders and is able to touch one. How a feeling changes
a grasp is also determined by the knowledge about an ob-
ject. An angry person might unconsciously grasp the steer-
ing wheel more tightly but would not do the same with an
egg. These effects are not solely properties of the grasp-
ing person or the object but depend on the combination of
grasping person and grasped object. Relationship probably
has little impact on most grasps. However, this factor has
not been explored in detail so far.

Anatomy
Not every hand grasps the same way. Anatomy includes
all factors that are inherent to the grasping person’s body.
Obviously, differences in palm size, finger length, or finger
count result in slightly different grasps. Additionally, differ-
ences in sensorimotor control of grasps also causes differ-
ent grasps. Differences in people’s grasps might be used for
automatically identifying the person grasping an object. A
power tool might also detect insufficient grasp forces for a
stable grasp and warn users that they have to hold it more
tightly.

Setting
The environment within which a grasp takes place also af-
fects its outcome. Setting includes all factors that pertain to
the environment in which a grasp takes place, i.e. all physi-
cal factors that are independent of user and object. For exam-

ple, the grasp used for pulling a bottle out of a crate differs
from the one used for picking the bottle from a shelf. Ad-
ditional environmental factors might include lighting condi-
tions, space constraints, or temperature.

Properties
The properties of the object to be grasped naturally have a
huge influence on the grasp to be used. Properties are all
factors that are intrinsic to the object. This includes shape,
size, surface texture, weight and weight distribution, or sur-
face temperature.

VERIFYING GRASP
This section explains why GRASP is indeed a model, and
that it fulfils formal requirements of a model. Finally, several
examples highlight how GRASP can be applied.

Formal Validity
There are a variety of views what a model actually is. Bailer-
Jones offers the definition[2]: “A model is an interpretative
description of a phenomenon that facilitates access to that
phenomenon.”. GRASP is a model according to this def-
inition as it describes a certain aspect (the meaning) of a
phenomenon (a grasp). However, what are the criteria for
a good model? I have chosen Vaandrager’s definition of a
good model [28]. While it pertains to models in computer
system analysis, it is a concrete checklist that with plausible
requirements. Vaandrager lists seven properties of a good
model but notes that some of these contradict each other
sometimes. These properties have been rephrased in the fol-
lowing to keep them succinct.

According to Vaandrager, a good model should:

...have a clearly defined object of modeling.
GRASP pertains to static human grasps.

...have a clearly specified purpose.
GRASP defines meaningful factors contributing to a grasp



...clearly show the links between model and empirical
world.
each factor is clearly tied either to a clear concept (Goal,
Relationship) or a physical object (Anatomy, Setting, Prop-
erties)

...be truthful, i.e. correctly represent relevant properties
of the object of modelling.
As a model is a simplification of a complex matter, there is
not only one correct model. Additionally, a model inherently
oversimplifies certain aspects of a phenomenon. Therefore,
a model can not be completely truthful (as acknowledged by
Vaandrager). Additionally, meaning is a property that is at-
tributed to a phenomen by humans. Therefore it is hard to
tell if our distinction of meaningful factors in a grasp is cor-
rect. However, we can look at the meaning other researchers
attribute to a grasp and see whether it matches to the factors
we defined:

• Veldhuis et al.[30] solely try to derive the Anatomy of a
user from a grasp.

• Taylor and Bove[27] solely try to derive an explicit Goal
from a grasp.

• Kim et al.[14] solely try to derive an explicit Goal from a
grasp.

• Wimmer and Boring[33] solely try to derive an implicit
Goal from a grasp. In the two cases without a grasp, a
Setting is guessed from the sensor data.

• SpherUID - a yet unpublished project - tries to determine
the user’s position in relation to the object (Setting) from
a grasp.

• Kry et al.[15] solely tries to derive an explicit Goal from
the grasp.

Therefore our model seems to correctly identify at least Goal,
Anatomy, and Setting as meaningful factors of a grasp. I do
not know of any application deriving Relationship or Prop-
erties from a grasp, however.

...be as simple as possible - but not too simple.
For GRASP this would mean that none of factors can be
omitted. Otherwise, the model could be simplified. That is,
for each factor at least one situation exists where the grasp is
primarily determined by the factor. Examples of such situa-
tions are given in the descriptions of the factors. The require-
ment also indicates that none of the factors may be partially
covered by another (i.e. they should be orthogonal). Other-
wise the model would need to be more granular and therefore
more complex. A goal can be defined without knowing any
of the other factors. Therefore it may not contain sub-factors
also found in the other factors. Relationship explicitly covers
sub-factors that are independent of the user’s and the object’s
physical properties. The Relationship also only pertains to a
certain user-object combination and is therefore independent
of goal and setting. Anatomy, setting and properties pertain
to inherent properties of user, environment, and object. Each
of them is a clearly defined physical object. Thus, they share
no common sub-factors with each other or the other factors.

...be extensible and reusable.
GRASP is intended as a working draft. Therefore, it is also
intended to be extended. For example, GRASP could be
used as a basis for a predictive model. I discuss this idea
in the Future Work section.

...allow interoperability with related models.
GRASP shares the the concepts of Goal and Properties with
other models. Anatomy combines multiple factors from other
models. Setting - while not explicitly named in the other
models - seems to be compatible to them. Relationship is a
newly introduced factor. It is not yet completely clear how it
relates to other models.

Overall, using above criteria, GRASP seems to be a useful
and robust model of meaning in grasps.

Practical Applications
In the following, the GRASP model is exemplarily applied
to two different grasp-sensitive applications which have been
proposed in related work. The goal is to identify which is-
sues need to be considered when actually implementing such
applications

Both Taylor and Bove [27] and Kim et al [14] propose to use
grasp recognition for mode switching. For example, a mo-
bile phone might switch between camera mode (two-handed
grasp) and short-message typing mode (one-handed, thumb
on keypad), depending on the way it is being held. The
GRASP model can be used to highlight which factors of a
grasp were investigated in the prototype, and which impor-
tance these factors have in real-life scenarios:
Goal: recognized: switch mode (implicit, might become ex-
plicit with regular use)
Relationship: ignored, in real-life scenarios probably mostly
constant, as a mobile phone is a personal device
Anatomy: varied, in real-life scenarios probably mostly con-
stant, as a mobile phone is a personal device
Setting: assumed constant (lab study), in real-life scenarios
setting changes constantly
Properties: assumed constant, prototype does not change
properties

GRASP also allows a structured analysis of the design space,
revealing a number of challenges faced when implementing
mode-switching functionality for mobile phones:

• Users might get accustomed to the mode-switching be-
havior. It should be checked - e.g. with a long-term study -
whether this affects their use. Persons using such a phone
for the first time might get irritated.

• The phone should achieve good grasp recognition accu-
racy for a single user but should not completely fail if
another person uses it (both systems were trained using
grasps from multiple persons).

• It should be tested how different settings affect recogni-
tion performance.

• It should be tested how well the system performs if the
phone’s weight distribution or shape change [10, 9].



Veldhuis et al [30] present a a prototype of a grasp-sensitive
gun. It recognizes its user based on the pressure pattern of
the grasp. Only authorized users shall be able to use the gun.
Like before, GRASP can be used to investigate which mean-
ingful factors of a grasp are considered by this prototype:
Goal: assumed constant, defined as ‘fire gun“ (implicit)), in
real-life scenarios probably mostly constant
Relationship: ignored, in real-life scenarios probably mostly
constant, as a gun is a personal device
Anatomy: recognized
Setting: controlled (lab study), will vary greatly in real-life
scenarios
Properties: constant, prototype does not change properties

Similarly, a structured analysis of the design space reveals a
number of challenges:

• Users might have different goals when grasping the gun,
e.g. cleaning it. The system should not treat this as an
unauthorized attempt to use the gun.

• A gun may be used in various different settings, e.g. while
running, or in tight spaces. The system needs to correctly
identify authorized users in all these conditions.

• Sweat or rain might make the gun’s handle slippery, re-
quiring the user to grasp differently.

In summary, the GRASP model proposed in this paper can
be used for categorizing grasp-sensitive objects, exploring
the design space of grasp-sensing applications, and analyz-
ing challenges when implementing grasp-sensitive user in-
terfaces.

Limitations
GRASP is a descriptive model of meaning in grasps. As
such it is based on a subjective concept. Different persons
and cultures might prefer other groupings. GRASP is also
limited to meaningful interaction. Thus it is not necessarily
suited for other domains. While I have tried to show that this
model is formally valid and can be useful for reseachers and
designers, ony time will tell whether this model is actually
helpful. Finally, I am not yet certain whether Relationship
really is an own factor. One might als group it with Anatomy
into a Human factor. Some might argue that Relationship is
a actually just a modifier to a Goal. In the end, it might
depend on whether it is useful to define Relationship as an
own factor.

CONCLUSION AND FUTURE WORK
In this paper I have argued that grasp sensing is an impor-
tant source of meaningful information for human-computer
interaction. I have given an overview of existing work from
other disciplines and have shown that existing models are
not sufficient for describing grasps in the context of human-
computer interaction. Therefore, I propose a descriptive model
of meaning in grasps. This model is supported by examples
and an epistemological analysis. GRASP is intended as a
working model. The main goal for GRASP is to serve as a
vocabulary and basis for discussing meaning in grasps and
grasp interaction utilizing this meaning. This model may

also help in structuring research, e.g. by highlighting inter-
esting areas of further research. It can also be used to deter-
mine which factors need to be controlled in a user study. An
important long-term goal would be to automatically extract
all factors contributing to a grasp from just the signature of
the grasp. For this, a classifying model would be helpful,
associating certain quantitative features of a grasp with the
meaningful factors contributing to it.
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