
Designing communication add-ons
for VR applications using
VR-embedded Widgets

Cuong Nguyen
Adobe Research
San Francisco, CA, USA
cunguyen@adobe.com

Stephen DiVerdi
Adobe Research
San Francisco, CA, USA
diverdi@adobe.com

ABSTRACT
A software application rendered on a physical screen can naturally support social activities. Multiple
users can watch the screen together, exchange ideas, or provide guidance. These interactions, however,
are not easily supported in applications rendered in an enclosed Virtual Reality system. Information
about how a user is using the application in VR such as the screen output and the controller interactions
are not accessible to other users. Worse, users outside of VR also cannot easily interact with the user in
VR. These barriers prevent fluid collaborative interactions around a VR application. This position paper
discusses our ongoing effort in making VR applications more social using VR-embedded widget. These
widgets are interactive interface elements that can be rendered on top of an existing VR application.
They allow a VR application to interface with other applications without modifying the source code.
We will motivate our initial effort in using VR-embedded widget in developing a tutorial system for
VR painting, and illustrate several potential ideas and opportunities to apply VR-embedded widgets.

KEYWORDS
virtual reality, collaboration

CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland UK
Proceedings of the 1st Workshop on Challenges Using Head-Mounted Displays in Shared and Social Spaces. This is the author’s
version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published
in Proceedings of (CHI’19 Extended Abstracts),.



INTRODUCTION
Many communicative, collaborative, and social interactions can happen around a software application
without explicit support from the developer. Consider a creative director discussing a new Photoshop
sketch with her designer. They both look at a same design, rendered on the interface canvas on the
computer screen. The designer can point on the canvas and brief the director on what’s new. The
director can sometimes take over the computer input to highlight issues or make small changes.

Figure 1: Many social and collaborative
activities can happen naturally around a
software application without explicit sup-
port from the developer. How can we en-
able this type of collaboration in current
VR applications, which are often rendered
in en enclosed and isolated HMD? [Cre-
ative Commons], via Knight Foundation
on Flickr. (http://flic.kr/p/avxjtF).

This communal experience of using a software application is mostly missing from Virtual Reality
(VR). VR head-mounted display (HMD) technologies have matured enough for VR software develop-
ment to grow rapidly, with applications in games, art, design, and healthcare. However, an application
rendered in an enclosed VR HMD puts the user in isolation. Both the application output and the
VR controller input are often accessible exclusively to the VR user. It is difficult for a user in VR and
another user on any other platforms to exchange information, discuss, or interact with the application
together. Simple gestures such as telling a friend in VR how to trigger a teleport move using use the
VR controller often result in awkward and inefficient hand-holding moments.

Contemporary approaches to make VR applications less isolated often rely on built-in components
that are tied into a specific application such as the Studio Share feature in Oculus Medium [1]. Other
solutions explore instrumented hardware to capture and project VR content to outside users [4]. Some
researchers have also begun to propose new design concepts that can better support collaborative
tasks [7, 10], which requires rebuilding existing applications from the ground up.

How can we support social activities for VR applications without modifying their source code? We
propose that one way to achieve this is to support communication add-ons in VR. We envision these
add-ons to be usable and accessible in a VR application without interrupting the application process.
In this way, in addition to using the VR application, a user could also access communication features
such as chat box, video stream, and annotations to communicate with other user without stopping
her current work in the HMD.
Designing VR communication add-ons raises three challenging questions. First, what would be

the user mental model when multitasking between a VR application and a communication add-on?
Second, how do we make sure the add-on is truly usable and accessible when it runs in parallel with
a VR application that can completely immerse the user view and interactions. Third, what are the
potential social and collaborative applications that these add-ons can support?
In order to explore these questions, we have developed a set of interface building blocks called

VR-embedded widgets. Briefly, these widgets are interactive interface elements that can be rendered
on top of an existing VR application, allowing us to experiment and build communication add-ons
without modifying an existing VR application. In the next sections, we will explain VR-embedded
widgets in more details and discuss potential social applications.

http://flic.kr/p/avxjtF


VR-EMBEDDEDWIDGETS
At its core, VR-embedded widgets are similar to traditional graphical user interface (GUI) widgets.
They are both interface elements that display information and can interact with the user [9]. However,
because our widgets are designed to be used in VR and in parallel with a VR application, certain
aspects of VR-embedded widgets are fundamentally different than widgets designed for a 2D screen,
which we will outline below.

Figure 2: We have explored using VR-
embedded widgets to design a video tu-
torial system for VR painting [6]. Here, a
user is creating a 3D painting in a VR ap-
plication Tilt Brush (https://www.tiltbrush.
com/). We rendered several video player
widgets (A, B) directly into this applica-
tion to help him easily watch and learn tu-
torial content.

Appearance and placement
On a desktop computer, an application is often shown as a window. In VR, an application is a world—
one that surrounds and immerses the user. Thus, the interfaces of the communication add-on need
to be rendered as a part of the world. To do this, we leverage the OpenVR API[2] to access VR
transformation matrices of the current running application. These matrices include the HMD and the
left and right hand controllers. Using this information, we can render the UI elements into the back
buffer of the current application and make it appear as a part of the scene. The UI can be anchored to
the 3D world as a 3D panel (world-fixed, Figure 2A ), to the user’s HMD as a HUD display (view-fixed,
Figure 2B), or to the user’s controller as a hand-held UI (hand-fixed).

A trade-off of this approach is that the UI elements will always overlay the graphics of the running
application. In a stereoscopic-rendered VR environment, it can cause depth conflict problems—visual
discomforts that occur when the widgets overlay contents that are close to the viewer. One way to
alleviate conflicts is to acquire the depth buffer exposed by the VR SDK and adjust the rendering of
the widget based on solutions proposed by Nguyen et al. [8].

Interaction
The OpenVR API also exposes interaction data of the left and right hand controller. These data include
translation, rotation, and button presses. By listening to these interaction events, we can program
VR-embedded widgets to respond to user input in the HMD. An important point to note is that, unlike
in commercial overlay systems such as Dash [3], the user does not have to pause the current running
VR application to interact with the widget. As a result, tasks that require frequent switch between the
VR application and the widget can be carried out more seamlessly.

DESIGNING COMMUNICATION ADD-ONS USING VR-EMBEDDEDWIDGETS
By having widgets that integrate directly into the user’s HMD, we can extend a VR application’s
communication capability without modifying its source code. The extent to what these applications
can and cannot do depend on the level of integration of the widget. Currently, our widgets can access
publicly available data from OpenVR such as the application display view, the rendering matrices,

https://www.tiltbrush.com/
https://www.tiltbrush.com/


and the controller interaction. In future, we also expect the view associated depth map data. With
these rudimentary data, below, we will describe our first exploration with VR-embedded widget and
illustrate a range of social applications. Higher-level data such as tool uses, scene map, or enemy
health can be made available from the application developer and further enrich the design possibilities.

Tutorial systems
In TutoriVR [6], we leveraged VR-embedded widgets to design a video tutorial system for 3D design
tasks in VR. 3D painting, sketching, and sculpting applications in VR have recently received significant
interest from the creative community. Currently, many users seek community-posted videos on
YouTube to explore and learn new creative skills of VR design. However, users still do not have a
convenient way to browse, watch, and learn these videos directly in the HMD. They either have to
pause the VR application to switch to another video player software, or need to take off the HMD to
watch the video.

TutoriVR addressed this problem by showing a tutorial video player in the user’s VR design
application using VR-embedded widget. Figure 2 illustrates our system running on top of Tilt Brush.
In addition to the video player, we were able to experiment with a number of new widgets to enhance
the user learning experience. For example, the Perspective Thumbnail (Figure 2A) widget allows us to
better visualize the 3D strokes of the tutorial author in the video. The Awareness widget (Figure 2B)
is a view-fixed panel that helps a user to keep track of the video tutorial progress even when she is
focusing on the painting and not the video.

Other applications
Most VR systems can mirror the application output onto a display view, so a user outside of VR can get
a sense of what the user inside in VR is doing. However, the outside user cannot easily communicate
or interact with the VR user. By using VR-embedded widgets to exchange multimedia and interaction
data between an external application and the VR application, we can support numerous social and
collaborative activities.

(1) Pointing. A user outside of VR can touch a point on the VR user display view. The location of
the point can be rendered on a view-fixed widget in the VR user’s HMD. The shared pointer
can help ground discussions and conversations around the VR application.

(2) Screen sharing. Similar to using Team Viewer (https://www.teamviewer.com/), two users can
initiate a screen sharing session in VR. One application is that a person outside of VR can send
graphical instructions into VR to help onboard a first time user. In another application, a VR
artist can teach a group of VR users how to paint in VR. They can all share their screens and
exchange feedback, re-creating the real world experience of taking an art class.

https://www.teamviewer.com/


(3) Social experiences. In a VR multiplayer game, a group of friends can share their game screens.
Being able to see what everyone else is seeing, they can potentially cooperate by sharing location
and strategy with one another [5].

(4) Creative collaboration. Multiple VR artists could create a 3D asset together. Although VR-
embedded widgets do not allow them to share the same canvas, they still could see each other’s
work and can coordinate tasks.

(5) User study. A researcher can inject multiple-choice questionnaires into a VR application to
carry out user studies without having to instrument the application.

(6) Collaborative UI prototyping. A VR UI designer can deploy and test new design sketches
in existing VR applications. For example, a new menu layout for Tilt Brush could be designed
in Photoshop and then anchored on the user hand controller in VR. With this deployment,
the designer can also collect feedback from the test user such as where she pointed, her head
motion, and her verbal feedback.

CONCLUSION
This paper outlined our ongoing exploration into making VR applications more social. We proposed
developing communication add-ons in VR to extend an existing VR application with communication
features without modifying it. To illustrate this idea and motivate further research, we discussed an
application in tutorial system and illustrated a number of new design ideas.

REFERENCES
[1] 2018. Introducing Studio Share: Sculpt with Friends in Oculus Medium. https://www.oculus.com/blog/

introducing-studio-share-sculpt-with-friends-in-oculus-medium/
[2] 2019. OpenVR SDK. https://github.com/ValveSoftware/openvr
[3] Josh Constine. 2017. Oculus Dash replaces your computer monitor with VR. http://tcrn.ch/2g1XZSg
[4] Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, and Enrico Rukzio. 2017. ShareVR: Enabling Co-Located Experiences

for Virtual Reality between HMD and Non-HMD Users. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems - CHI ’17. ACM Press, New York, New York, USA, 4021–4033. https://doi.org/10.1145/3025453.3025683

[5] Shunichi Kasahara, Mitsuhito Ando, Kiyoshi Suganuma, and Jun Rekimoto. 2016. Parallel Eyes: Exploring Human
Capability and Behaviors with Paralleled First Person View Sharing. Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (2016), 1561–1572. https://doi.org/10.1145/2858036.2858495

[6] Balasaravanan Kumaravel, Cuong Nguyen, Stephen DiVerdi, and Björn Hartmann. 2019. TutoriVR: A Video-Based
Tutorial System for Design Applications in Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19). ACM, New York, NY, USA. https://doi.org/3290605.3300514

[7] Cuong Nguyen, Stephen DiVerdi, Aaron Hertzmann, and Feng Liu. 2017. CollaVR: Collaborative in-headset review for VR
video. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology - UIST ’17. ACM Press,
New York, New York, USA, 267–277. https://doi.org/10.1145/3126594.3126659

[8] Cuong Nguyen, Stephen DiVerdi, Aaron Hertzmann, and Feng Liu. 2018. Depth Conflict Reduction for Stereo VR Video
Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York,

https://www.oculus.com/blog/introducing-studio-share-sculpt-with-friends-in-oculus-medium/
https://www.oculus.com/blog/introducing-studio-share-sculpt-with-friends-in-oculus-medium/
https://github.com/ValveSoftware/openvr
http://tcrn.ch/2g1XZSg
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1145/2858036.2858495
https://doi.org/3290605.3300514
https://doi.org/10.1145/3126594.3126659


NY, USA, Article 64, 9 pages. https://doi.org/10.1145/3173574.3173638
[9] Ralph R Swick and Mark S Ackerman. 1988. The X Toolkit: More Bricks for Building User-Interfaces or Widgets for Hire..

In Usenix Winter. Citeseer, 221–228.
[10] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Spacetime: Enabling Fluid Individual and Collabora-

tive Editing in Virtual Reality. In The 31st Annual ACM Symposium on User Interface Software and Technology - UIST ’18.
ACM Press, New York, New York, USA, 853–866. https://doi.org/10.1145/3242587.3242597

https://doi.org/10.1145/3173574.3173638
https://doi.org/10.1145/3242587.3242597

	Abstract
	Introduction
	VR-embedded widgets
	Appearance and placement
	Interaction

	Designing communication add-ons using VR-embedded widgets
	Tutorial systems
	Other applications

	Conclusion
	References

