Publication Details
![]() Download |
Doris Hausen
Peripheral Interaction - Exploring the Design Space PhD thesis, Faculty of Mathematics, Computer Science and Statistics, University of Munich, 2014. |
In our everyday life we carry out a multitude of activities in parallel without focusing our attention explicitly on them. We drink a cup of tea while reading a book, we signal a colleague passing by with a hand gesture, that we are concentrated right now and that he should wait one moment, or we walk a few steps backwards while taking photos. Many of these interactions - like drinking, sending signals via gestures or walking - are rather complex by themselves. By means of learning and training, however, these interactions become part of our routines and habits and therefore only consume little or no attentional resources. In contrast, when interacting with digital devices, we are often asked for our full attention. To carry out - even small and marginal tasks - we are regularly forced to switch windows, do precise interactions (e.g., pointing with the mouse) and thereby these systems trigger context and focus switches, disrupting us in our main focus and task. Peripheral interaction aims at making use of human capabilities and senses like divided attention, spatial memory and proprioception to support interaction with digital devices in the periphery of the attention, consequently quasi-parallel to another primary task. In this thesis we investigate peripheral interaction in the context of a standard desktop computer environment. We explore three interaction styles for peripheral interaction: graspable interaction, touch input and freehand gestures. StaTube investigates graspable interaction in the domain of instant messaging, while the Appointment Projection uses simple wiping gestures to access information about upcoming appointments. These two explorations focus on one interaction style each and offer first insights into the general benefits of peripheral interaction. In the following we carried out two studies comparing all three interaction styles (graspable, touch, freehand) for audio player control and for dealing with notifications. We found that all three interaction styles are generally fit for peripheral interaction but come with different advantages and disadvantages. The last set of explorative studies deals with the ability to recall spatial locations in 2D as well as 3D. The Unadorned Desk makes use of the physical space around the desktop computer and thereby offers an extended interaction space to store and retrieve virtual items such as commands, applications or tools. Finally, evaluation of peripheral interaction is not straightforward as the systems are designed to blend into the environment and not draw attention on them. We propose an additional evaluation method for the lab to complement the current evaluation practice in the field. The main contributions of this thesis are (1) an exhaustive classification and a more detailed look at manual peripheral interaction for tangible, touch and freehand interaction. Based on these exploration with all three interaction styles, we offer (2) implications in terms of overall benefits of peripheral interaction, learnability and habituation, visual and mental attention, feedback and handedness for future peripheral interaction design. Finally, derived from a diverse set of user studies, we assess (3) evaluation strategies enriching the design process for peripheral interaction. |